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Supersymmetric partition functions

Supersymmetric QFT often gives us an analytical handle on strongly-coupled physics.
[Seiberg, Witten, 1994; ... ]

Exact, non-perturbative computations are possible. In the path-integral formulation, this
is generally explored through supersymmetric localisation:

⟨O⟩ =
∫

[DϕDA] Oe−S[ϕ,A,··· ] =
∑

top. sector k

∫
Mk

dφkdAk O|Mk e−S[φk,Ak,··· ]

To make this precise, we need to replace (Euclidean) space-time by a more general
d-dimensional manifold (more generally, a geometric background [Festuccia, Seiberg, 2011]):

Rd ⇝ Md



Supersymmetric partition functions

There are two (related) approaches:
(1) Md

∼= Rd + Ω deformation: modifies the UV couplings at the origin. [Nekrasov, 2002; ...]

(2) Md compact and smooth. UV physics preserved. [Pestun, 2007; Kapustin, Willett, Yaakov, 2009; ...]

(One can obtain (2) from gluing (1) patches, and one can also extend (2) to some some
singular backgrounds [e.g. spindles; see Dario Martelli’s talk].)

In the following, ‘supersymmetric partition function’ with Md = (2).

We are here interested in gauge theories with four supercharges and a U(1)R symmetry:

4d N = 1 → 3d N = 2 → 2d N = (2, 2)

They often flow to interesting superconformal field theories in the IR.



Generalised symmetries and global structures

[Gaiotto, Kapustin, Seiberg, Willett, 2014]

Over the past 10 years, the symmetries of QFTs have been much revisited. In particular,
we better understand the higher-form symmetries acting on higher-dimensional operators:

[Uγ , Lp] = R(γ)Lp , γ ∈ Γ(p)

Here Lp is p-dimensional. In the Euclidean path integral, the symmetry operator is a
topological operator defined on a submanifold Cd−p−1 linking Lp:

Uγ(Cd−p−1) .

We will focus on Γ(p) a discrete abelian group (‘invertible symmetries’).

On compact manifolds, the insertion of Uγ only depends on the homology class:

[Cd−p−1] ∈ Hd−p−1(Md, Γ(p))

Dually, we introduce the ‘flat’ background gauge fields:

Bp+1 ∈ Hp+1(Md, Γ(p))



Generalised symmetries and global structures

Common examples are the one-form ‘center’ symmetries of gauge theories with (real,
compact) gauge group G with non trivial center:

Γ(1) ∼= Γ ⊆ Z(G) .

Uγ(Cd−2) acts on the Wilson loops L1 = W by a phase.
We can compactify space-time to Rd−1 × S1 and wrap W over S1. This Polyakov
loop is a local operator in Rd−1 and there is an ordinary (0-form) symmetry acting
on it.
Color confinement iff Γ(1) preserved by the vacuum (⟨W ⟩ ∼ e−A = 0).

Given a gauge theory with gauge group G and symmetry Γ(1), we can construct the
gauge theory with the smaller gauge group:

G′ = G/Γ′ , Γ′ ⊆ Γ

by gauging a non-anomalous subgroup Γ′ ⊆ Γ(1) of the one-form symmetry.

The choice of G for a fixed Lie algebra g is often called the ‘global structure’ of the
gauge theory. In 4d, it does not affect the spectrum of local operators, only the lines.

[Aharony, Seiberg, Tachikawa, 2013]



Higher-form symmetries and supersymmetry

The symmetry operators Uγ are topological, hence supersymmetric. Thus, in principle,
we can use supersymmetric methods to compute exactly any expectation value:

⟨Uγ⟩Md = ZMd (Bγ)

on a supersymmetric Md. This would allow us to gauge higher-form symmetries explicitly:

ZMd [T ] ⇝ ZMd [T /Γ(p)] =
∑

B∈Hp+1(Md,Γ(p))

ZMd [T ](B)

Perhaps surprisingly, there has been little work exploring higher-form symmetries with
supersymmetry, so far.
(Early work on global structures on Lens spaces: [Razamat, Willett, 2013].)

In the following, we will focus on 3d N = 2 supersymmetric gauge theories. This already
gives rise to an intricate structure.



The 3d A-twist and 1-form symmetries



The 3d A-twist and the twisted index

2d N = (2, 2) theories with a U(1)R ‘vector’ R-symmetry can be defined on any closed
Riemann surface Σ through the topological A-twist: [Witten, 1988]

LR
∼=

√
KΣ .

The nilpotent scalar supercharges Q, Q̄ can be used to define a 2d TQFT:

A-model = 2d Cohomological TQFT Z ∼= HSUSY(2d N = (2, 2) QFT)

The 3d N = 2 half-BPS backgrounds are Seifert 3-manifolds – circle-fibered over the
(orbifold) surface Σ̂: [CC, Dumitrescu, Festuccia, Komargodski, 2013; CC, Kim, Willett, 2017-2018]

S1 −→ M3
π−→ Σ̂

The 3d A-twist is a pull-back of the A-twist on Σ̂ through π. Simplest case:

M3 = S1 × Σg .

The supersymmetric partition then computes the topologically twisted index:

ZΣg×S1 [T ] = TrHΣg

(
(−1)FyQF

)
[Nekrasov, Shatashvili, 2014; Benini, Zaffaroni, 2015-2016; CC, Kim, 2016]



The 3d A-twist and the twisted index

To compute this index, it is best to exploit the 2d TQFT structure:

3d N = 2 theory on S1 × R2 ∼= effective 2d N = (2, 2) Kaluza-Klein (KK) description.

The effective A-model has a finite number of states on S1 ⊂ Σ:

HS1 ∼= SpanC{|û⟩}

û are the Bethe vacua, due to the Bethe/gauge correspondence. [Nekrasov, Shatashvili, 2009]

They are the solutions to the effective twisted superpotential of the 2d KK theory:

exp
(

2πi
∂W
∂u

)
= 1 , u ∈ gC ∼= Lie(G)C

Then:
ZΣg×S1 [T ] = TrH

S1

(
Hg−1)

=
∑

û∈SBE

H(û)g−1

Here H is the handle-gluing operator, given by: [Vafa, 1991; Nekrasov, Shatashvili, 2009]

H(u) = Hess(W(u)) exp (2πiΩ(u))

where Ω is the effective dilaton coupling on Σ.



The 3d A-twist and the twisted index

This Bethe-vacua formalism only works for 3d gauge theories with gauge group G = G̃
simply-connected and/or unitary – that is, with:

π1(G̃) ∼= ZnT

For instance, it works for G = U(N) or SU(N) but not for P SU(N) = SU(N)/ZN :

π1(SU(N)) = 0 , π1(P SU(N)) = ZN

In particular, it works for SU(2) but not SO(3) = P SU(2).

To extend the A-twist formalism to any G, we need to: [CC, Furrer, Khlaif, 2024]

1. Study the one-form (center) symmetry Γ(1)
3d of the G̃ theory as it acts on HS1 .

2. Explicitly gauge Γ(1)
3d in the A-model formalism.

Previous works along those lines: [Willett, 2019 (unpublished)]

[Eckhard, Kim, Schafer-Nameki, Willett, 2019; Gukov, Pei, Reid, Shehper, 2021]



Higher-form symmetries in the 2d description

The one-form symmetry operators Uγ(C) are one-dimensional. They can themselves be
charged under Γ(1) (’t Hooft anomaly).

Upon compactification to 2d, we have:

Γ(1)
3d = Γ −→ Γ(1) ∼= Γ , Γ(0) ∼= Γ .

with the topological point and line operators:

−→ Πγ ∼= Uγ(S1
A) , Uγ .



One-form symmetry Γ(1) and decomposition

The two-dimensional Γ(1) is necessarily preserved by the 2d vacua. (Γ(p) cannot be
spontaneously broken in dimension d < p + 2. [Gaiotto, Kapustin, Seiberg, Willett, 2014])

In fact, Πγ for γ ∈ Γ(1) acts as:

Πγ |û⟩ = χû(γ)|û⟩ , χû ∈ Γ̂(1) = Hom(Γ(1), U(1))

Inserting the topological line Πγ is equivalent to inserting a background G = G̃/Γ bundle
over Σ which is not a G̃ bundle:

ΛG̃/Γ
mw ⊃ ΛG̃

mw , Γ(1) ∼= ΛG̃/Γ
mw /ΛG̃

mw .

This topological point operator is then a flux operator, which is known to be governed by
the effective twisted superpotential: [CC, Kim, Willett, 2017]

Π(u)γ ≡ exp
(

2πiγ
∂W
∂u

)
Note that the Bethe vacua satisfy:

Π(û)m = 1 , ∀m ∈ ΛG̃
mw



One-form symmetry Γ(1) and decomposition

[Hellerman et al, 2009; Sharpe et al, 2022]

The existence of a one-form symmetry in 2d implies decomposition in ‘universes’:

HS1 =
⊕

χ∈Γ̂(1)

Hχ

S1 , Hχ

S1 ≡ SpanC

{
|û⟩

∣∣∣ û ∈ Sχ
BE

}
,

Γ(1) is always non-anomalous. Gauging it is exceedingly simple, and projects us onto a
specific ‘universe’:

Z
[T /Γ(1)]
Σg×S1 (ϑ) =

∑
û∈Sχ=ϑ

BE

H(û)g−1 = TrHϑ
S1

(Hg−1) .

Here ϑ is a background gauge field for the dual (−1)-form symmetry.



Zero-form symmetry Γ(0) and twisted sectors

Note that, off-shell, u ∼ u + m and

u ∈ gC , γ + m ∈ ΛG̃/Γ
mw ⊂ gC

The action of Γ(0) on Bethe vacua is more interesting. It acts by permutations:

Uγ(C)|û⟩ = |û + γ⟩

Hence, in each vacuum û, the symmetry Γ(0) is (generically) spontaneously broken to a
subgroup:

Γ(0) −→ Stab(û) ⊆ Γ(0)

Ahead of gauging (a.k.a. ‘orbifolding’), we should also consider the twisted sectors:

H(δ)
S1

∼= SpanC

{
|û; δ⟩

∣∣∣ û ∈ SBE , û+δ ∼ û
}

.



Zero-form symmetry Γ(0) and twisted sectors

The twisted sectors exist for Bethe vacua with non-zero stabiliser:

S(γ)
BE ≡

{
û ∈ SBE

∣∣∣ û + γ ∼ û
}

, γ ∈ Γ(0) ,

Given an orbit ω̂ = Orb(û) under Γ(0), the number of twisted sector is:

|Stab(û)| =

∣∣Γ(0)
∣∣

|Orb(û)| ,

In the KK theory under consideration, Γ(0) is non-anomalous. We can then gauge it and
get the gauged Hilbert space:

H[T /Γ(0)]
S1

∼= SpanC

{
|ω̂; sω̂⟩

∣∣∣ ω̂ ∈ SBE/Γ(0) , sω̂ = 1, · · · , |Stab(ω̂)|
}

,



Zero-form symmetry Γ(0) and twisted sectors

On Σg, we can do the gauging explicitly, summing over topological line insertions, using
the TQFT structure:



’t Hooft anomalies and orbit structure

In 3d, there can be a non-trivial anomaly for Γ(1)
3d , which becomes a mixed anomaly in

the 2d A-model:

Sanom
4d [B] = 2πa

∫
M4

B ∪ B ⇝ Sanom
3d [B] = 2πa

∫
M3

B ∪ C

This anomaly implies that the two types of topological operators don’t commute:

A : Γ(0) × Γ(1) → R/Z , Πγ(1) Uγ(0) = e2πiA(γ(0),γ(1)) Uγ(0) Πγ(1)

The anomaly coefficients can be extracted from W, and only depend on the
Chern-Simons levels of the 3d gauge theory.

One interesting implication of A is that it constrains the orbit structure under Γ(0). For
instance, there can exist û fixed by the full Γ(0) iff the anomaly vanishes. (‘Larger’
anomaly means larger orbits.)

Example: Γ = ZN , anomaly a ∈ ZN : All orbits are of size:

|ω̂| = n
N

gcd(a, N) ≤ N , n ∈ Z>0



Topologically twisted index for general G

For any non-anomalous Γ(1)
3d , we can now compute the topologically twisted index for:

G = G̃/Γ

namely:

ZT /Γ(1)
3d (θ, CD) = 1

|Γ|2g

∑
δ∈Γ(1)

∑
[γ]∈H1(Σg,Γ(0))

ei(θ,Bδ)e2πi(CD,Cγ ) 〈
Πδ Uγ

〉
Σg

.

Turning off background gauge fields for the dual symmetries, we obtain:

Z
T /Γ(1)

3d
Σg×S1 = Tr

H[G̃/Γ]
S1

(
Hg−1

G

)
with the trace over the Hilbert space

H[G̃/Γ]
S1

∼= SpanC

{
|ω̂; sω̂⟩

∣∣∣ ω̂ ∈ Sϑ=1
BE /Γ(0) , sω̂ = 1, · · · , |Stab(ω̂)|

}
.

and the action:

HG|ω̂; sω̂⟩ = H(ω̂)
|ω̂|2 |ω̂; sω̂⟩ , H(ω̂) ≡ H(û) , ∀û ∈ ω̂



3d N = 2 SU(N)K Chern–Simons (revisited)



Chern-Simons theories with gauge algebra su(N) – G̃ = SU(N)

Consider the SU(N)K N = 2 Chern–Simons theory. For K ≥ N , this is equivalent to
the pure SU(N)k Chern–Simons theory at level k ≡ K − N .

The twisted superpotential is simply:

W = K

2 (u, u)

It is well-known that the (ordinary) Witten index is: [Witten, 1999; Ohta, 1999]

IW = ZT 2×S1 [SU(N)K ] =
(

K − 1
N − 1

)
More generally, the index on Σg is given by the Verlinde formula: [Verlinde, 1988]

ZΣg×S1 [SU(N)K ] = Ng−1
(

K

2N

)(g−1)(N−1) ∑
l∈JN,K

∏
1≤a<b≤N

(
sin π(la − lb)

K

)2−2g

with the indexing set for the Bethe vacua:

JN,K ≡

{
(l1, · · · , lN ; ℓ) ∈ ZN

K ⊕ ZN ,

∣∣∣ 0 ≤ l1 < · · · < lN ≤ K ,

N∑
a=1

la − ℓ ∈ KZ

}
,



Chern-Simons theories with gauge algebra su(N) – G̃ = SU(N)

The SU(N)K theory has one-form symmetry and anomaly:

Γ(1)
3d = ZN , a = −K (mod N)

In particular, we can gauge any non-anomalous subgroup Zr for r|N and obtain the CS
theories:

(SU(N)/Zr)K with KN

r2 ∈ Z

By direct computation, we find the Witten index:

ZT 2×S1 [(SU(N)/Zr)K ] = 1
r2

∑
d|r

J N,K
3 (d)

(
K
d

− 1
N
d

− 1

)
which is given in terms of Jordan’s totient J3 function as:

J N,K
3 (d) ≡

{ 1
7 J3(d) for N even, N

d
odd, K

d
even ,

J3(d) otherwise .

This was known in the literature only when the 1
7 subtlety can be ignored (see [Beauville,

1998; Oprea, 2010]). General result is (apparently) new. Non-trivial number-theoretic
conjecture (fact, from physics): the index is an integer!



Chern-Simons theories with gauge algebra su(N) – G̃ = SU(N)

Explicit numbers for the Witten index of P SU(N)κN :

Similar explicit results for higher-genus partition functions – i.e. Verlinde formula for any
G:

ZΣg×S1 [(SU(N)/Zr)K ] = 1
r2g−1

∑
d|r

J2g(d)
∑

û∈Sϑ(Zr)=1,Zd
BE

H(û)g−1



Chern-Simons theories with gauge algebra su(N) – G̃ = SU(N)

Explicit numbers for the Witten index of P SU(N)κN :

N=2

N=3
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N=5

N=6

N=7

N=8

N=9

N=10

5 10 15 20 25 30
κ=K/N

5

10

15

20

25

30

35

Log[ IW ]

Similar explicit results for higher-genus partition functions – i.e. Verlinde formula for any
G:

ZΣg×S1 [(SU(N)/Zr)K ] = 1
r2g−1

∑
d|r

J2g(d)
∑

û∈Sϑ(Zr)=1,Zd
BE

H(û)g−1



A simple example: SU(2)K versus SO(3)K

For N = 2, we have the SU(2)K theory with W = Ku2 and K − 1 Bethe vacua:

ûl = l

2K
, l = 1, · · · , K − 1

with u
∑

−u (Weyl symmetry). The Verlinde formula gives:

ZΣg×S1 [SU(2)K ] ≡ ⟨1⟩Σg =
K−1∑
l=1

[√
2
K

sin
(

πl

K

)]2−2g

.

The action of Γ(0) = Z2 on the Bethe vacua is:

U(C)|ûl⟩ = |ûK−l⟩ .

We can gauge the 3d one-form symmetry only if K is even, and we then find:

ZT 2×S1 [SO(3)K ] = 1
4

∑
n,n′,n′′∈Z2

〈
U(C̃)nU(C̃)n′

Π
n′′

2

〉
T 2

= 1
4

(
K − 1 + 3 + 1 + 3(−1)

K−2
2

)
=

{
K
4 + 3

2 for K
2 odd ,

K
4 for K

2 even .

This can be checked using anyon condensation in 3d TQFT as in [Hsin, Lam, Seiberg, 2018].



Future directions



The 3d A-twist on Seifert manifolds

For G = G̃, there is a well-developed formalism for 3d N = 2 gauge theories on any
Seifert manifold: [CC, Kim, Willett, 2018]

M3 ∼= [d; g; (q1, p1), · · · , (qn, pn)]

For instance:
[0; g; ] ∼= Σg × S1 , [d; 0; ] ∼= S3/Zd , · · ·

A more fun example is the Poincaré homology sphere:

S3/BI ∼= [−1; 0; (2, 1), (3, 1), (5, 1)] π1(S3/BI) = BI (binary icosehedral group).

Using the Seifert fibration over a Riemann surface orbifold:

S1 −→ M3
π−→ Σ̂g,n

we can compute the partition function as the insertion of a Seifert fibering operator:

ZM3 [T ] = TrH
S1

(
Hg−1GM3

)
=

∑
û∈SBE

H(û)g−1GM3 (û)

For G = G̃/Γ, we should now compute GM3 in the Γ(1)
3d -gauged theory. In the A-model,

we must wrap topological lines around orbifold points. [CC, Furrer, Keyes, Khlaif, to appear]



The 4d A-twist on elliptic quasi-bundles

We can similarly consider the 4d A-model – that is, the 2d A-model obtained from a 4d
N = 1 gauge theory with U(1)R on:

T 2 × Σg

The most general half-BPS geometries are complex manifolds called elliptic quasi-bundle:

M4 ∼= [d, d′; g; (qi, pi, p′
i)] , T 2 → M4 → Σ̂g,n

The partition functions on such manifolds can also be computed by fibering operator
techniques. [CC, Keyes, arXiv:24xx.xxxxx]

The gauging of four-dimensional one-form symmetries become rather intricate. In the 2d
language, we have:

Γ(1)
4d −→ Γ(1) ⊕ Γ(0) ⊕ Γ(0) ⊕ Γ(−1)

The gauging can be performed similarly to 3d. Many new questions arise due to intricate
interplay with 0-form symmetries and their anomalies.



Summary and outlook

Summary:
We generalised the 3d A-model formalism for 3d N = 2 supersymmetric partition
functions to the case of generic gauge group – that is, generic global structure.
Equivalently, we studied in detail the insertion of topological defect operators for
higher-form symmetries in these 3d N = 2 gauge theories.
We computed partition functions explicitly. Even for pure Chern–Simons theories
without matter, this formalism subsumes and generalises many previous results.

Outlook:
The 4d N = 1 theories can be treated similarly. Lots of exciting question linked to
e.g. higher-groups.
How can one treat non-invertible symmetry operators in the A-model formalism?
Similar questions can be asked about partition functions with 8 supercharges, e.g.
for 5d SCFTs.
{generalised symmetry} ∩ {SUSY localisation} ̸= 0 – lots more to do!
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