Higher-form symmetries and the A-twist

Cyril Closset

University of Birmingham
Royal Society URF

Eurostrings / FPUK 2024
University of Southampton, 5 September 2024

based on 2405.18141 with Osama Khlaif and Elias Furrer
+ WIP with Adam Keyes



Supersymmetric partition functions

Supersymmetric QFT often gives us an analytical handle on strongly-coupled physics.
[Seiberg, Witten, 1994; ... ]

Exact, non-perturbative computations are possible. In the path-integral formulation, this
is generally explored through supersymmetric localisation:
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To make this precise, we need to replace (Euclidean) space-time by a more general
d-dimensional manifold (more generally, a geometric background [Festuccia, Seiberg, 2011]):

RY ~ My



Supersymmetric partition functions

There are two (related) approaches:
(1) Mg = R? + Q deformation: modifies the UV couplings at the origin. [Nekrasov, 2002; ..]
(2) Mg compact and smooth. UV physics preserved. [Pestun, 2007; Kapustin, Willett, Yaakov, 2009; ...]

(One can obtain (2) from gluing (1) patches, and one can also extend (2) to some some
singular backgrounds [e.g. spindies; see Dario Martelli’s talk]. )

In the following, ‘supersymmetric partition function’ with My = (2).

We are here interested in gauge theories with four supercharges and a U(1)r symmetry:

AN=1 - - 2N =(2,2)

They often flow to interesting superconformal field theories in the IR.



Generalised symmetries and global structures

[Gaiotto, Kapustin, Seiberg, Willett, 2014]

Over the past 10 years, the symmetries of QFTs have been much revisited. In particular,
we better understand the higher-form symmetries acting on higher-dimensional operators:

W, L) =RMZ,  yer®

Here .Z), is p-dimensional. In the Euclidean path integral, the symmetry operator is a
topological operator defined on a submanifold Cq—p,—1 linking .Z):

U (Cag—p-1) -
We will focus on T?) a discrete abelian group (‘invertible symmetries’).
On compact manifolds, the insertion of &7 only depends on the homology class:
[Ca—p—1] € Ha—p—1(Ma, T*)
Dually, we introduce the ‘flat’ background gauge fields:

Bpi1 € HPT1 (Mg, T®)



Generalised symmetries and global structures

Common examples are the one-form ‘center’ symmetries of gauge theories with (real,
compact) gauge group G with non trivial center:

r'~rcza.

@ U7(Cq-2) acts on the Wilson loops £1 = W by a phase.

o We can compactify space-time to R4~ x S* and wrap W over S*. This Polyakov
loop is a local operator in R?™! and there is an ordinary (0-form) symmetry acting
on it.

@ Color confinement iff ') preserved by the vacuum ((W) ~ e~* = 0).

Given a gauge theory with gauge group G and symmetry I we can construct the
gauge theory with the smaller gauge group:

G'=G/T", I'cr
by gauging a non-anomalous subgroup IV C I'D of the one-form symmetry.

The choice of G for a fixed Lie algebra g is often called the ‘global structure’ of the
gauge theory. In 4d, it does not affect the spectrum of local operators, only the lines.
[Aharony, Seiberg, Tachikawa, 2013]



Higher-form symmetries and supersymmetry

The symmetry operators U” are topological, hence supersymmetric. Thus, in principle,
we can use supersymmetric methods to compute exactly any expectation value:

U Yy = Znay (By)

on a supersymmetric M. This would allow us to gauge higher-form symmetries explicitly:

ZaaT] ~  Zag,[T/TP] = > ZuTIB)

BeHP+1(My,1'(P))

Perhaps surprisingly, there has been little work exploring higher-form symmetries with
supersymmetry, so far.
(Early work on global structures on Lens spaces: [Razamat, Willett, 2013].)

In the following, we will focus on 3d N = 2 supersymmetric gauge theories. This already
gives rise to an intricate structure.



The 3d A-twist and 1-form symmetries




The 3d A-twist and the twisted index

2d N = (2,2) theories with a U(1)r ‘vector’ R-symmetry can be defined on any closed
Riemann surface ¥ through the topological A-twist: [Witten, 1988]

LR =/ K:E .
The nilpotent scalar supercharges Q, Q can be used to define a 2d TQFT:

A-model = 2d Cohomological TQFT Z = Hgysy(2d N = (2,2) QFT)

The 3d A = 2 half-BPS backgrounds are Seifert 3-manifolds — circle-fibered over the
(orbifold) surface X: [CC, Dumitrescu, Festuccia, Komargodski, 2013; CC, Kim, Willett, 2017-2018]

St — My s S
The 3d A-twist is a pull-back of the A-twist on 3 through 7. Simplest case:
Mz =S8"x%,.
The supersymmetric partition then computes the topologically twisted index:
Zzgxsl [T]= Terg ((—1)FyQF)

[Nekrasov, Shatashvili, 2014; Benini, Zaffaroni, 2015-2016; CC, Kim, 2016]



The 3d A-twist and the twisted index

To compute this index, it is best to exploit the 2d TQFT structure:
3d NV = 2 theory on S* x R? = effective 2d N = (2,2) Kaluza-Klein (KK) description.
The effective A-model has a finite number of states on S* C :
Her = Span{|a))

@ are the Bethe vacua, due to the Bethe/gauge correspondence. [Nekrasov, Shatashvili, 2009]
They are the solutions to the effective twisted superpotential of the 2d KK theory:

exp <27ri%—);v> =1, u € gc = Lie(G)c
Then:
Zsyust [T) = Tragy (HO) = > H@)*™
4ESER
Here H is the handle-gluing operator, given by: [Vafa, 1991; Nekrasov, Shatashvili, 2009]

H(u) = Hess(W(u)) exp (2mi€2(u))

where Q is the effective dilaton coupling on X.



The 3d A-twist and the twisted index

This Bethe-vacua formalism only works for 3d gauge theories with gauge group G = G
simply-connected and/or unitary — that is, with:

™ (G) 2 Z"T
For instance, it works for G = U(N) or SU(N) but not for PSU(N) = SU(N)/Zn:
T (SU(N)) =0, m(PSU(N)) =Zn
In particular, it works for SU(2) but not SO(3) = PSU(2).

To extend the A-twist formalism to any GG, we need to: [CC, Furrer, Khlaif, 2024]
1. Study the one-form (center) symmetry Fgﬁ) of the G theory as it acts on Hgu.
2. Explicitly gauge I‘ég in the A-model formalism.

Previous works along those lines: [Willett, 2019 (unpublished)]
[Eckhard, Kim, Schafer-Nameki, Willett, 2019; Gukov, Pei, Reid, Shehper, 2021]



Higher-form symmetries in the 2d description

The one-form symmetry operators U” (C) are one-dimensional. They can themselves be
charged under 'V ('t Hooft anomaly).

Upon compactification to 2d, we have:
1 _ 1) ~ 0) ~
ry) =r — r~rp, r=r.

with the topological point and line operators:

— =Y (Sh), u.




One-form symmetry I'") and decomposition

The two-dimensional I'?) s necessarily preserved by the 2d vacua. (F(m cannot be
spontaneously broken in dimension d < p + 2. [Gaiotto, Kapustin, Seiberg, Willett, 2014])

In fact, II” for v € I'®D acts as:
I |a) = xa(y)]d) xa € TV = Hom(r™", U(1))

Inserting the topological line I17 is equivalent to inserting a background G = G/F bundle
over ¥ which is not a G bundle:

AGLE S AS, W =~ AST/AS, .

This topological point operator is then a flux operator, which is known to be governed by
the effective twisted superpotential: [CC, Kim, Willett, 2017]

oW
[(u)” = (2 j —)
(u) exp | 2miy— -
Note that the Bethe vacua satisfy:

@)™ =1, VYmeAS,



One-form symmetry I'") and decomposition

[Hellerman et al, 2009; Sharpe et al, 2022]
The existence of a one-form symmetry in 2d implies decomposition in ‘universes':

Hor = €D 13 . #3, = Spanc{ [4) ‘ i€ Sk},

xer )

r® s always non-anomalous. Gauging it is exceedingly simple, and projects us onto a
specific ‘universe’:

7 /71 ANg— _
Z[Zq/jsl](ﬂ): > H@)? 1:Terl MO .
\ aesy=’

Here ¥ is a background gauge field for the dual (—1)-form symmetry.



Zero-form symmetry I'¥) and twisted sectors

Note that, off-shell, u ~ u + m and

u € gc , 7+m€A§CVFCgc

The action of I'®) on Bethe vacua is more interesting. It acts by permutations:
U (C)la) = [a+ )
Hence, in each vacuum 4, the symmetry I'© is (generically) spontaneously broken to a

subgroup:
r® 5  Stab(a) @

Ahead of gauging (a.k.a. ‘orbifolding’), we should also consider the twisted sectors:

etS(7,9)

1Y) §Spanc{|ﬁ;5> ’aeSBE,mawa}. ﬁﬁ

~



Zero-form symmetry I'¥) and twisted sectors

The twisted sectors exist for Bethe vacua with non-zero stabiliser:

Sé’é) = {’ﬁ, € Sge

a+7~a}, yer®

Given an orbit & = Orb(@) under T, the number of twisted sector is:

o)

Stab(i)| = g

In the KK theory under consideration, I'*) is non-anomalous. We can then gauge it and
get the gauged Hilbert space:

(0)
W Spunc ) | € S0 =1, b}



Zero-form symmetry I'¥) and twisted sectors

On X4, we can do the gauging explicitly, summing over topological line insertions, using
the TQFT structure:

1 =S HE|a)(a;6|(a; 6
@ =Z<ﬂ|H‘5 ¢. Xu: @) (@; 61(a; 4
= ZH‘% |a) =i 6) (i 4] = layalu

SN



't Hooft anomalies and orbit structure

In 3d, there can be a non-trivial anomaly for Fgg, which becomes a mixed anomaly in
the 2d A-model:

SEmem(pBl — 97q /

BUB ~ S;}g"m[B]:Qm/ BUC
My

RUEY
This anomaly implies that the two types of topological operators don't commute:
A:TO 1™ L R/Z IOYY©O = 2mA00) (1)) 1470) [TV

The anomaly coefficients can be extracted from W, and only depend on the
Chern-Simons levels of the 3d gauge theory.

One interesting implication of A is that it constrains the orbit structure under I'°). For
instance, there can exist 4 fixed by the full I'() iff the anomaly vanishes. (‘Larger’
anomaly means larger orbits.)

Example: ' = Zx, anomaly a € Zy: All orbits are of size:

N
— <N Z
ngcd(m Ny =7 n € £>0

|of =



Topologically twisted index for general G

For any non-anomalous Fg?, we can now compute the topologically twisted index for:

G=G/T

namely:

7/ py 1 i(0,Bs) 2mi(CP,Cy) /1767 7
27750 0,C") = 1 > > 0P (wru), .
ser@) [y]eH1 (24, 0(®)

Turning off background gauge fields for the dual symmetries, we obtain:

(1)
T/Tgq

Z =Tr_em (HS'
£, x 81 MG (He)

with the trace over the Hilbert space
”Hﬁ/rl = Spanc{ |5 sa) ‘ QeSsE T sy =1,--- ,|Stab((21)\} .

and the action:

H()

Ha | so) = o |5 50) H(©) = H(a) Vi € &



3d N =2 SU(N)g Chern-Simons (revisited)




Chern-Simons theories with gauge algebra su(N) — G = SU(N)

Consider the SU(N)x N = 2 Chern-Simons theory. For K > N, this is equivalent to
the pure SU(N); Chern—Simons theory at level k = K — N.

The twisted superpotential is simply:

K
W= —(u,u)
2
It is well-known that the (ordinary) Witten index is: [Witten, 1999; Ohta, 1999]

I = Zpa o1 [SUN)x] = (ﬁ - })

More generally, the index on X, is given by the Verlinde formula: [Verlinde, 1988]

K\ emH=1) (= 2-29
ZZ)gxsl [SU(N)K] - Ng (27]\7) Z H SIDT

leIN, Kk 1<a<bSN

with the indexing set for the Bethe vacua:

INK = {(l1,~~- Jnil) € ZR @ Ly,

a=1

N
ogzl<---<zN§K,Zza—zeKz} ,



Chern-Simons theories with gauge algebra su(N) — G = SU(N)

The SU(N)k theory has one-form symmetry and anomaly:
r'V’=—zy, a=-K(mod N)

In particular, we can gauge any non-anomalous subgroup Z, for r|N and obtain the CS
theories:

(SUN)/Zo)k  with “3 €

By direct computation, we find the Witten index:
1 N K K _1
Zro i [(SUN)/Zo) k) = = > 75" (d) < K >
e a1
which is given in terms of Jordan's totient .J3 function as:

NK () = 1J5(d) for N even, & odd, & even,
? J3(d)  otherwise .

This was known in the literature only when the % subtlety can be ignored (see [Beauville,

1998; Oprea, 2010]). General result is (apparently) new. Non-trivial number-theoretic
conjecture (fact, from physics): the index is an integer!



Chern-Simons theories with gauge algebra su(N) — G = SU(N)

Explicit numbers for the Witten index of PSU(N).n:

[sN[2]3] a5 ] 6 [ 7 [ 8 ] 9 10

1 [2]3[ 4] 5 6 7 8 9 10
2 14 4] 10 16 42 108 312 930
3 [[3]6] 16 46 | 186 798 3860 19305 100235
4 |[2]9 32160 | 942 6048 41144 290592 2119200
5 |4]13] 68 | 430 | 3328 | 27454 | 240448 | 2188095 | 20545320
6 ||3]18]116| 955 | 9030 | 91770 | 982884 | 10942308 | 125656965
7 | 5|24 [192| 1860 | 20868 | 250446 | 3171084 | 41742027 | 566724020
8 || 4312883205 42628 | 591633 | 8645360 | 131347320 | 2058115980
9 ||'6]39]420 | 5435 | 79794 | 1254589 | 20780280 | 357870942 | 6356282290
10 | 5|48 | 580 | 8480 | 139092 | 2446486 | 45204044 | 871916841 | 17310311600

Similar explicit results for higher-genus partition functions — i.e. Verlinde formula for any
G:
1 g
Zsxst (SUN)/Z)) = o5 D Jg(d) D H@T
d|r

@) =17,
wWESEE



Chern-Simons theories with gauge algebra su(N) — G = SU(N)

Explicit numbers for the Witten index of PSU(N).n:

Log[ /w1
ol . N=10
30} Neg
25; RN < et N=8
20" e R N=7
[ : L ceett T N6
B e N=5
L et
5 . N=3
[ I R R R R L N=2
k=KIN

Similar explicit results for higher-genus partition functions — i.e. Verlinde formula for any

G:
Tt (SUN)/Z)k) = s 3 lald) Y H(@)"!
d|r

@) =17,
wWESEE



A simple example: SU(2)x versus SO(3)

For N = 2, we have the SU(2)x theory with W = Ku? and K — 1 Bethe vacua:

L
2K

U =

with w )" —u (Weyl symmetry). The Verlinde formula gives:

Zs,x51[SU(2)k] = 3 [\/7s1n(ﬂ-l)‘|

=1

2—2g

The action of T® = Z, on the Bethe vacua is:

UC) ) = |ar—1) -

We can gauge the 3d one-form symmetry only if K is even, and we then find:

Zrsr[S0G)) =7 > (U@ U@ ) |

n,n’ ,n'' €%Ls
1 K—2
=12 (K—1+3+1+3(—1) 2 ) —{

This can be checked using anyon condensation in 3d TQFT as in [Hsin, Lam, Seiberg, 2018].

for odd ,
for even .

+3

A=
M‘N N‘N



Future directions




The 3d A-twist on Seifert manifolds

For G = G, there is a well-developed formalism for 3d V' = 2 gauge theories on any
Seifert manifold: [CC, Kim, Willett, 2018]

M3 = [d; g5 (q1,p1), - 5 (Qns Pn)]

For instance:
05g;] =%y x S, [d;0;] 2 S°/Za -

A more fun example is the Poincaré homology sphere:
S%/Bl = [—1;0;(2,1),(3,1), (5,1)] 71(S?/BI) = Bl (binary icosehedral group).
Using the Seifert fibration over a Riemann surface orbifold:
St — Mz 53,
we can compute the partition function as the insertion of a Seifert fibering operator:

T [T) = Tragy (KO 'Gagy) = > H(@)* Gy (1)

4ESEE

For G = G/P, we should now compute Gaz, in the Fgg—gauged theory. In the A-model,
we must wrap topological lines around orbifold points. [cC, Furrer, Keyes, Khlaif, to appear]



The 4d A-twist on elliptic quasi-bundles

We can similarly consider the 4d A-model — that is, the 2d A-model obtained from a 4d
N =1 gauge theory with U(1)r on:

T2 x B,
The most general half-BPS geometries are complex manifolds called elliptic quasi-bundle:
My = [d,d'; g; (qi, pi, 7)) T? = My — Sy

The partition functions on such manifolds can also be computed by fibering operator
techniques. [CC, Keyes, arXiv:24xx.xxoox]

The gauging of four-dimensional one-form symmetries become rather intricate. In the 2d
language, we have:
ry) — rer®er®erty

The gauging can be performed similarly to 3d. Many new questions arise due to intricate
interplay with O-form symmetries and their anomalies.



Summary and outlook

Summary:

@ We generalised the 3d A-model formalism for 3d A/ = 2 supersymmetric partition
functions to the case of generic gauge group — that is, generic global structure.

@ Equivalently, we studied in detail the insertion of topological defect operators for
higher-form symmetries in these 3d A/ = 2 gauge theories.

o We computed partition functions explicitly. Even for pure Chern—Simons theories
without matter, this formalism subsumes and generalises many previous results.
Outlook:

o The 4d N = 1 theories can be treated similarly. Lots of exciting question linked to
e.g. higher-groups.

@ How can one treat non-invertible symmetry operators in the A-model formalism?

@ Similar questions can be asked about partition functions with 8 supercharges, e.g.
for 5d SCFTs.

o {generalised symmetry} N {SUSY localisation} # 0 — lots more to do!
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