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Scattering amplitudes for Kerr black holes 
and higher-spin symmetry



Classical BH dynamics – PN, PM, spin

(virial theorem)

Bound systems:

Binary black hole merger in three phases:

I will focus on the  
conservative potential (figure from 1610.03567)

expand in G and v Post-Newtonian (PN) expansion:

Post-Minkowskian (PM) expansion:

Gravitational scattering:

expand in G  à loop expansion

Spin-multipole expansion:

expand in S1 and S2

Rotating black holes

Methods
-- BH perturbation theory
-- Worldine EFTs
-- Quantum scattering ampl’s
-- higher-spin QFTs 

à Vanhove’s talk



Kerr BH Compton scattering

BHBH

• Eternal BHs = asymptotic states 
• Loops probe finite-size effects 
    (horizon, tidal effects, QNM, etc.)
• Tree-level = superextremal Kerr
• Point-particle approximation valid
• Compton à BH dynamics à BH EFT



Motivation

The AHH higher-spin amplitudes 

The problem of Compton scattering

Higher-spin gauge symmetry and EFTs

Chiral HS fields and Compton spin-s result

Conclusion
 

Outline



Higher-spin 3pt amplitudes &  Kerr BH 
Natural higher-spin gravitational 3pt amplitudes: 

Arkani-Hamed, Huang, Huang (‘17)

Linearized energy-momentum tensor for Kerr source Vines (’17)

Non-minimal worldline action for Kerr: Levi, Steinhoff (‘15)

(spin-multipole expansion)
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Figure2:PictorialformofthebasiccolorandkinematicLie-algebraicrelations:(a)theJacobi
relationsforfieldsintheadjointrepresentation,and(b)thecommutationrelationforfieldsina
genericcomplexrepresentation.

DuetotheLiealgebraofthegaugesymmetry,colorfactorsobeysimplelinearrelations

arisingfromtheJacobiidentitiesandcommutationrelations,

f̃d̂âĉf̃ĉ̂bê−f̃d̂b̂ĉf̃ĉâê=f̃âb̂ĉf̃d̂ĉê

(tâ)k̂
ı̂(tb̂)̂

k̂
−(tb̂)k̂

ı̂(tâ)̂

k̂
=f̃âb̂ĉ(tĉ)̂

ı̂

}

⇒ci−cj=ck,(2.3)

andthisisdepicteddiagrammaticallyinfigure2.Theidentityci−cj=ckisunderstoodto
holdfortripletsofdiagrams(i,j,k)thatdifferonlybythesubdiagramsdrawninfigure2,

butotherwisehavecommongraphstructure.

Thelinearrelationsamongthecolorfactorsciimplythatthecorrespondingkinematic

coefficientsni/Diareingeneralnotunique,asshouldbeexpectedfromtheunderlyinggauge
dependenceofindividual(Feynman)graphs.

ItwasobservedbyBern,Carrascoandoneofthecurrentauthors(BCJ)[3],thatwithin

the(gauge)freedomofredefiningthenumeratorsthereexistparticularlynicechoices,such

thattheresultingnumeratorfactorsniobeythesamegeneralalgebraicidentitiesasthe
colorfactorsci.Thatis,thereisanumeratorrelationforeverycolorJacobiofcommutation

relation(2.45)andanumeratorsignflipforeverycolorfactorsignflip(2.2):

ni−nj=nk⇔ci−cj=ck,(2.4a)

ni→−ni⇔ci→−ci.(2.4b)

Amplitudesthatsatisfytheserelationsaresaidtoexhibitcolor/kinematicsduality.An

importantpointisthatanumeratorfactornienteringdifferentkinematicrelationsmaynot

takethesamefunctionalforminallsuchrelations;rather,momentumconservationand
changesofintegrationvariablesmustbeusedtoallignthemomentumassignmentbetween

thethreegraphsparticipatingintherelation.

Therelationsineq.(2.4)defineakinematicalgebraofnumerators,whichissuggestive

ofanunderlyingkinematicLiealgebra.WhilenotmuchisknownaboutthisLiealgebra,
whichshouldbeinfinite-dimensionalduetothefunctionalnatureofthekinematicJacobi

relations,inthespecialcaseoftheself-dualsectorofYMtheorythekinematicalgebrawas

showntobeisomorphictothatofthearea-preservingdiffeomorphisms[13].
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Spin operator (QM)

Introduce projective 3-sphere coordinates 

parametrizes SU(2)  ßà  spin wavefn

Classical and quantum spin related as:

massive 
spinor-helicity 
formalism

Transversality of spin vector:

Properties:

Equals an expectation value:

Gives spin operator:



Massive spinor helicity

2.1 Massive spinor parametrization

Consider a four-dimensional momentum pµ that obeys the on-shell condition p2 = m2.
Let us decompose it in terms of the null vectors kµ, qµ,

pµ = kµ +
m2

2p · q q
µ , (2.1)

where we take qµ to be an arbitrary reference vector, and kµ is then defined by the
decomposition. Note that the decomposition implies the identity p · q = k · q.

Using the fact that k, q are null, we may now employ the massless spinor-helicity
formalism. First, we rewrite eq. (2.1) into bi-spinors by contracting the momenta
with σµ

αα̇ matrices,

σ · p = |k〉[k|+ m2

2p · q
|q〉[q| ≡ |pa〉[pa| . (2.2)

We intentionally suppress the (α, α̇) spinor indices of the Lorentz group SL(2,C) ∼
SO(1, 3). We then recognize that the two terms can be reinterpreted as the contrac-
tion of two massive spinors that carry a, b, . . . indices of the little group SU(2) ∼
SO(3). The massive spinors can be identified as

|pa〉 =
(

|q〉 m
〈k q〉

|k〉

)

, |pa] =
(

|k]
|q] m

[k q]

)

. (2.3)

The mirrored spinors 〈pa| and [pa| are obtained, as implied by the notation, by

transposing the massless spinors: |k〉→〈k|. Since the little group is SU(2), we lower
and raise those indices using the rules |pa〉 = εab|pb〉 and |pa〉 = εab|pb〉; that is, we
always multiply with the Levi-Civita symbols from the left. The antisymmetric Levi-

Civita symbols are normalized as ε12 = ε21 = 1. For real momentum p with E > 0,
m2 > 0, the angle and square spinors are complex conjugates of each other, up to

a similarity transform. More specifically, (|pa])∗ = Ω|pa〉, (|pa〉)∗ = ΩT |pa], where
Ω is a 2-by-2 unitary matrix. Because the massive on-shell spinors are related by

complex conjugation, one is justified to think of them as the two chiral components
of a massive Majorana spinor.

In general, we will consider amplitudes that depend on many momenta pµi , with

particle labels i = 1, . . . , n, which makes it convenient to simplify the notation by
only indicating the particle label inside the spinor

|ia〉 ≡ |pai 〉 , |ia] ≡ |pai ] . (2.4)

For each particle i we have the associated reference vector qµi and mass mi.

2.2 Bookkeeping of little-group indices, polarizations and projectors

It is convenient to define massive bosonic spinors that have no free little-group indices,

| i 〉 ≡ |ia〉zi,a , | i ] ≡ |ia]zi,a (2.5)
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Following AHH bold massive spinors ßà symmetrized little group indices

where zi,a = εab zbi are complex Grassmann-even auxiliary variables that transform

as spinors under the little group. Because we take the z variables to be complex,
the two chiral spinors are no longer related by complex conjugation, and thus the

spinors (2.5) can be interpreted as the chiral components of a massive Dirac spinor.
The spinor products are antisymmetric under label swaps,

〈12〉 = −〈21〉 , [12] = −[21] , (2.6)

implying that spinor products with repeated indices vanish, e.g. 〈11〉 = 0. Many

other identities familiar from the massless spinor-helicity formalism still hold, such
as Schouten and Fierz identities:

〈12〉〈34〉+ 〈23〉〈14〉+ 〈31〉〈24〉 = 0 , 〈1|σµ|2]〈3|σµ|4] = 2〈13〉[42] . (2.7)

Because all indices are absent and the spinors are bosonic, we can now take arbitrary
powers of the spinors, e.g.

〈12〉2s = degree-4s polynomial in (za1 , z
a
2) , (2.8)

which makes it possible to write down analytic functions with the spinors as ar-

guments. As a first example, consider the polarization vector for a massive vector
boson, which we define as

εµi =
〈i|σµ|i]√

2mi

=
[i|σ̄µ|i〉√

2mi

= (z1i )
2εµi,− −

√
2z1i z

2
i ε

µ
i,L − (z2i )

2εµi,+ . (2.9)

Here εi,± = εi,±(ki, qi) are standard (massless) polarization vectors for the null mo-

menta ki, with qi as the reference vector that appeared in eq. (2.1), and εi,L is a longi-
tudinal polarization. Explicit expressions can be given, e.g.

√
2εµi,+ = 〈qi|σµ|ki]/〈qiki〉

and εi,L = ki/mi − miqi/(2pi · qi). Note that the massive polarization εµi is still a

null vector, since ε2i ∝ 〈i i〉 [i i], and 〈i i〉 = [i i] = 0. Also, since the z variables are
complex, the polarization εµi naturally describes a complex massive vector boson. In

the massless limit, the longitudinal polarization will behave as εµL ∼ pµ/m and is thus
singular, whereas the transverse polarizations ε± are well defined. It is interesting
to note that the need of an arbitrary reference vector q to describe a massless polar-

ization vector is easy to understand from the ambiguity of the parametrization (2.1)
we used for the massive spinors.

To check the completeness relation for the polarization vectors, we need to in-
troduce polarizations that are complex conjugated,

ε̄µi =

(

[i|σµ|i〉
)∗

√
2mi

≡ −(z̄1i )
2εµi,− +

√
2z̄1i z̄

2
i ε

µ
i,L + (z̄2i )

2εµi,+ , (2.10)

where we have used (za)∗ = z̄a, (za)∗ = −z̄a and (εµi,−)
∗ = εµi,+. We then get the

following non-zero Lorentz product

εi · ε̄i = −(zai z̄i,a)
2 , (2.11)
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Analytic functions of spinors now possible:
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Massive polarizations are null vectors

Higher-spin states automatically symmetric, transverse, traceless 

where the sign can be traced to the mostly-minus metric ηµν = diag(1,−1,−1,−1).

If we contract the little-group indices using a derivative operator, we get the
completeness relation for the transverse part of the Lorentz group,

− 1

4

(

∂2

∂zi,a∂z̄ai

)2

εµi ε̄
ν
i = ηµν − pµi p

ν
i

m2
i

. (2.12)

The result should be familiar as the massive spin-1 projector, or as the tensor struc-
ture of the massive spin-1 propagator. We will see that a direct generalization of
the derivative operator introduced here will be convenient for computing state sums

that contribute to amplitude factorization residues or loop-level unitarity cuts, for
any spin states.

2.3 Bosonic higher-spin states

Polarization tensors for bosonic spin-s fields are simply products of s polarization
vectors

εµ1µ2···µs

i ≡ εµ1

i εµ2

i · · ·εµs

i = degree-2s polynomial in zai . (2.13)

Polarization tensors are automatically symmetric, traceless and transverse. Transver-
sality pi,µ1

εµ1µ2···µs

i = 0 follows from the fact that 〈ia|pi|ib] ∝ εab, which vanishes after

contracting with the symmetric object zai z
b
i .

Contracting two CPT-conjugate polarizations gives the little-group completeness

relation
εµ1µ2···µs

i ε̄i,µ1µ2···µs = (−1)s(zai z̄i,a)
2s , (2.14)

where again the sign is needed due to our mostly-minus signature. For spin 2, we
get the following completeness relation for the Lorentz structure:

1

(4!)2

(

∂2

∂zi,a∂z̄ai

)4

εµνi ε̄ρσi =
1

2

(

η̃µρη̃νσ + η̃µση̃νρ − 2

3
η̃µν η̃σρ

)

, (2.15)

where η̃µν ≡ ηµν− pµi p
ν
i

m2
i

is a shorthand notation for the spin-1 projector that appeared

in eq. (2.12). The above eq. (2.15) is the expected state projector for the five physical
degrees of freedom of a massive spin-2 field (e.g. massive graviton).

For general bosonic spin s, we have the following state sum to evaluate:

(−1)s

(2s)! 2

(

∂2

∂zi,a∂z̄ai

)2s

εµ1µ2···µs

i ε̄ν1ν2···νsi =
1

s!
(η̃µ1ν1 η̃µ2ν2. . .η̃µsνs + perms) + . . . ≡ P $µ$ν

(s)

(2.16)
Here P $µ$ν

(s) is a compact notation for the state projector of an on-shell symmetric and

traceless spin-s state. (See, e.g., ref. [143] for early work on projectors.) Considered
as a matrix, the projector should satisfy

P(s)P(s) = P(s) , P T
(s) = P(s) , trP(s) = 2s+1 , pµi

P(s) = 0 ,

P(s)

∣

∣

µi↔µj
= P(s) , ηµiµj

P(s) = 0 , ηµsνsP(s) =
2s+1

2s−1
P(s−1) , (2.17)
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Chiodaroli, HJ, Pichini

(spinors define maps:                              ) 

AHH



AHH amplitudes = Kerr BHs

(original argument: Guevara, Ochirov, Vines; see also Chung, Huang, Kim, Lee) 

Relate in/out states by Lorentz transf.

(b) (b)

−=

(a)

−=

Figure2:PictorialformofthebasiccolorandkinematicLie-algebraicrelations:(a)theJacobi
relationsforfieldsintheadjointrepresentation,and(b)thecommutationrelationforfieldsina
genericcomplexrepresentation.

DuetotheLiealgebraofthegaugesymmetry,colorfactorsobeysimplelinearrelations

arisingfromtheJacobiidentitiesandcommutationrelations,
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}

⇒ci−cj=ck,(2.3)

andthisisdepicteddiagrammaticallyinfigure2.Theidentityci−cj=ckisunderstoodto
holdfortripletsofdiagrams(i,j,k)thatdifferonlybythesubdiagramsdrawninfigure2,

butotherwisehavecommongraphstructure.

Thelinearrelationsamongthecolorfactorsciimplythatthecorrespondingkinematic

coefficientsni/Diareingeneralnotunique,asshouldbeexpectedfromtheunderlyinggauge
dependenceofindividual(Feynman)graphs.

ItwasobservedbyBern,Carrascoandoneofthecurrentauthors(BCJ)[3],thatwithin

the(gauge)freedomofredefiningthenumeratorsthereexistparticularlynicechoices,such

thattheresultingnumeratorfactorsniobeythesamegeneralalgebraicidentitiesasthe
colorfactorsci.Thatis,thereisanumeratorrelationforeverycolorJacobiofcommutation

relation(2.45)andanumeratorsignflipforeverycolorfactorsignflip(2.2):

ni−nj=nk⇔ci−cj=ck,(2.4a)

ni→−ni⇔ci→−ci.(2.4b)

Amplitudesthatsatisfytheserelationsaresaidtoexhibitcolor/kinematicsduality.An

importantpointisthatanumeratorfactornienteringdifferentkinematicrelationsmaynot

takethesamefunctionalforminallsuchrelations;rather,momentumconservationand
changesofintegrationvariablesmustbeusedtoallignthemomentumassignmentbetween

thethreegraphsparticipatingintherelation.

Therelationsineq.(2.4)defineakinematicalgebraofnumerators,whichissuggestive

ofanunderlyingkinematicLiealgebra.WhilenotmuchisknownaboutthisLiealgebra,
whichshouldbeinfinite-dimensionalduetothefunctionalnatureofthekinematicJacobi

relations,inthespecialcaseoftheself-dualsectorofYMtheorythekinematicalgebrawas

showntobeisomorphictothatofthearea-preservingdiffeomorphisms[13].
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AHH factor à exponential of spin operator:

Quantum Kerr and root Kerr 3pt à  Quantum Newman-Janis shift

with ring-radius operator:



Kerr Compton amplitudes

Let us check if the two contributions responsible for the quantum mismatch

between eq. (3.24) and eq. (3.26) are perhaps related. We find the relation

εs2 ·
( i

m2
p1 ·M · k

)

· εs1 = s(ε1 · ε2)s−1ε2 ·
( 1

m2
(k · Ŝ)2

)

· ε1 , (3.28)

and for s = 1 the two expressions indeed conspire in eq. (3.26) with numerical
coefficients 1/2− 1. However, this still does not add up to the unit coefficient of this
term in eq. (3.24), which through s ≤ 5/2 should give the unique theories that satisfy

tree-level unitarity. That said, the terms proportional to p1 ·M ·k or to ε2 · (k · Ŝ)2 ·ε1
are subleading in the classical limit and thus the quantum difference is irrelevant

for the purpose of describing astrophysical black holes. In conclusion, this analysis
confirms that eq. (3.26) and eq. (3.24) are classically equivalent and match the Kerr

black-hole dynamics.

4 Spinor-helicity Compton amplitudes for s ≤ 5/2

In ref. [99], three-point higher-spin amplitudes, which we discussed in Section 3, were

used together with BCFW recursion [56, 152] to construct candidates for the the
Compton amplitudes with opposite-helicity photons/gravitons. In a later reference
the equal-helicity Compton amplitudes were obtained in the same way [117]. Let us

start by inspecting the photon amplitudes

A(1φs, 2φ̄s, 3A+, 4A+) = i
〈12〉2s[34]2

m2s−2t13t14
, (4.1a)

A(1φs, 2φ̄s, 3A−, 4A+) = i
[4|p1|3〉2−2s([41]〈32〉+ [42]〈31〉)2s

t13t14
, (4.1b)

where s12 = (p1 + p2)2 and tij = (pi + pj)2 − m2. As was discussed in ref. [99],
the opposite-helicity amplitude is well behaved for s ≤ 1, and starting at s = 3/2

it develops a spurious pole corresponding to the factor [4|p1|3〉2−2s. This pole is
unphysical, and must be canceled by adding a contact interaction to the Compton

amplitude, such that it has a compensating spurious pole. Exactly how to do this
in a unique way has not yet been firmly established. In contrast, we see that the
equal-helicity Compton amplitude does not have a spurious pole for any spin. And

this suggests that it should not be corrected by contact terms, although a priori it
cannot be ruled out that it receives corrections that are manifestly free of momentum

poles.
Next, let us quote the corresponding candidate Compton amplitudes for gravity,

which can be obtained via BCFW recursion in the same way [99, 117],

M(1φs, 2φ̄s, 3h+, 4h+) = i
〈12〉2s[34]4

m2s−4s12t13t14
, (4.2a)

M(1φs, 2φ̄s, 3h−, 4h+) = i
[4|p1|3〉4−2s([41]〈32〉+ [42]〈31〉)2s

s12t13t14
. (4.2b)
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However, for             there is a spurious pole à need corrections 
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Ochirov, HJ

AHH

oppsite helicity case:

same helicity case:

Needed for NLO calculations:

Candidate Compton amplitudes via BCFW:



Gauge theory root-Kerr

Again, for             spurious pole                  à need corrections 

12

3 4

Ochirov, HJ

AHH

oppsite helicity case:

same helicity case:

Not needed for physics purposes, but provide useful toy model!

Higher-spin gauge-theory: root-Kerr amplitudes



Which quantum EFTs give Kerr amplitudes ?



EFTs behind root-Kerr

where in general there are additional terms of O(p2−m2) in the numerator that

contribute off shell. These terms depend on the details of the Lagrangian formulation
of the theory.

For the case of spin-1/2 and spin-3/2, additional terms are not expected, and
the propagators are

∆(1/2)(ε, ε̄) = i
/p+m

p2 −m2
,

∆(3/2)(ε, ε̄) = i
(/p +m) ε.ε̄+ 1

3(/ε+
p·ε
m )(/p−m)(/̄ε+ p·ε̄

m )

p2 −m2
, (2.37)

with ε.ε̄ = εµ(ηµν− pµpν
m2 )ε̄ν . The propagators with free Lorentz indices can be obtained

by taking an appropriate number of derivatives ∂
∂εµ and ∂

∂ε̄ν that act on ∆(s+1/2)(ε, ε̄).
This will automatically symmetrize the Lorentz indices on each side of the propagator

matrix.

3 Higher-spin three-point amplitudes

We now consider amplitudes for a pair of spin-s particles using the massive spinor-
helicity formalism. To avoid displaying unimportant overall normalization factors in

the spinor-helicity formulae, we denote amplitudes with either straight or calligraphic
symbols. The calligraphic ones, A(1, 2, . . . , n) for gauge theory andM(1, 2, . . . , n) for
gravity, are more suitable for covariant formulae that use polarization vectors. The

straight ones, A(1, 2, . . . , n) and M(1, 2, . . . , n), are more suitable for spinor-helicity
expressions. Their relative normalizations are

A(1, 2, . . . , n) = (−1)!s"
(√

2e
)n−2

A(1, 2, . . . , n),

M(1, 2, . . . , n) = (−1)!s"
(κ

2

)n−2
M(1, 2, . . . , n).

(3.1)

where e is the gauge theory (electric) coupling, κ is the gravitational coupling, with
κ2 = 32πGN . The ceiling function #s$ takes into account phases that depend on the
spin of the massive particle, which appear due to our mostly-minus metric signature

choice. Furthermore, sometimes it is convenient to set e = 1 or κ = 1, in which case
the two normalizations simply differ by powers of

√
2 and signs.

3.1 Spinor-helicity three-point amplitudes

It was proposed by Arkani-Hamed, Huang and Huang [99] that the most natural
three-point amplitudes between two massive higher-spin particles and a gauge boson
should be the following maximally-chiral objects:

A(1φs, 2φ̄s, 3A+) = mx
〈12〉2s

m2s
, A(1φs, 2φ̄s, 3A−) =

m

x

[12]2s

m2s
(3.2)
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spin-0:

spin-1/2:

spin-1:

Identify EFTs from covariant formulas:

(scalar)

(fermion)

(W-boson)

general spin-s given as a generating function:

For s > 1 à higher-derivative HS effective theories (no massless limit)

spin-3/2:

(gravitino)

Chiodaroli, 
HJ, Pichini



Kerr/root-Kerr double copy

spin-1/2 and spin-3/2, the covariant amplitudes are unique as will be discussed in

Section 5.1.2.
Let us now switch the discussion to gravitational higher-spin amplitudes. Arkani-

Hamed, Huang and Huang [99] gave the following three-point amplitudes:

M(1φs, 2φ̄s, 3h+) = im2x2 〈12〉2s
m2s

,

M(1φs, 2φ̄s, 3h−) = i
m2

x2

[12]2s

m2s
, (3.12)

It is clear from the spinor-helicity expressions that they are related to the gauge-
theory amplitudes by the double copy [61],

M(1φs, 2φ̄s, 3h±) = iA(1φsL, 2φ̄sL, 3A±)A(1φsR, 2φ̄sR, 3A±) , (3.13)

where s = sL + sR, and equivalent formulae are obtained for any sL, sR ≥ 0. Since
this relation is insensitive to the helicity of the massless state, it follows that the

covariant gravitational amplitudes are also given by a double copy of the covariant
gauge-theory amplitudes.

Using the double copy, it is a small step to show that a generating function for
the covariant gravitational amplitudes can be constructed out of the gauge-theory

generating functions. However, because the spin s can be decomposed into sL + sR
in multiple different ways, there is some ambiguity on how to write it. We find that
it is convenient to write a combined generating function for bosonic and fermionic

covariant gravitational amplitudes, which has the form

∞
∑

2s=0

M(1φs, 2φ̄s, 3h) = M0⊕1/2 + AWWA

(

A0⊕1/2 +
A1⊕ 3/2 − (ε1 · ε2)2A0⊕1/2

(1 + ε1 · ε2)2 + 2
m2ε1 · p2 ε2 · p1

)

,

(3.14)

where the sum runs over both integer and half-integer spin s. Here we use the short-
hands A0⊕1/2 = AφφA + AλλA, A1⊕ 3/2 = AWWA + AψψA and M0⊕1/2 = AφφAA0⊕1/2,
which combine the independent low-spin amplitudes that appeared in the bosonic

(3.7) and fermionic (3.11) generating functions. The reason for multiplying the gauge-
theory generating function by AWWA, rather than by AφφA, is that this way of writing

it exposes the correct maximal momentum power counting of the gravity amplitudes.
As an aside, it is interesting to note that we have already identified the gauge-

theory amplitudes AWWA andAψψA, as well-known three-point amplitudes in theories
with spontaneously-broken gauge symmetry (s = 1) and supersymmetry (s = 3/2),
respectively. From this we should expect that some of the low-spin gravitational

amplitudes also have an interesting physical interpretation. Indeed, it is known from
previous work on the double copy [144, 145] that these massive spin-1 and spin-

3/2 gravitational amplitudes, AφφA ×AWWA and AλλA ×AWWA, are precisely those
that appear in R-symmetry gauged supergravity, and the massive spin-2 amplitude
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From double-copy structure, we can infer: 

For s > 2  Kerr à higher-derivative HS EFTs (no massless limit)

Chiodaroli, 
HJ, Pichini

Cangemi, 
Chiodaroli,HJ, 
Ochirov, 
Pichini,
Skvortsov

The general spin-s 3pt amplitude à generating fn 



Higher-spin (HS) theories



What special about the low-spin EFTs ?
Kerr (root-Kerr) EFTs for

   

    à well-behaved massless limit
    à exhibits gauge symmetry (SSB)

 

Furthermore: satisfy a current constraint

(b) (b)

−=

(a)

−=

Figure2:PictorialformofthebasiccolorandkinematicLie-algebraicrelations:(a)theJacobi
relationsforfieldsintheadjointrepresentation,and(b)thecommutationrelationforfieldsina
genericcomplexrepresentation.

DuetotheLiealgebraofthegaugesymmetry,colorfactorsobeysimplelinearrelations

arisingfromtheJacobiidentitiesandcommutationrelations,

f̃d̂âĉf̃ĉ̂bê−f̃d̂b̂ĉf̃ĉâê=f̃âb̂ĉf̃d̂ĉê

(tâ)k̂
ı̂(tb̂)̂

k̂
−(tb̂)k̂

ı̂(tâ)̂

k̂
=f̃âb̂ĉ(tĉ)̂

ı̂

}

⇒ci−cj=ck,(2.3)

andthisisdepicteddiagrammaticallyinfigure2.Theidentityci−cj=ckisunderstoodto
holdfortripletsofdiagrams(i,j,k)thatdifferonlybythesubdiagramsdrawninfigure2,

butotherwisehavecommongraphstructure.

Thelinearrelationsamongthecolorfactorsciimplythatthecorrespondingkinematic

coefficientsni/Diareingeneralnotunique,asshouldbeexpectedfromtheunderlyinggauge
dependenceofindividual(Feynman)graphs.

ItwasobservedbyBern,Carrascoandoneofthecurrentauthors(BCJ)[3],thatwithin

the(gauge)freedomofredefiningthenumeratorsthereexistparticularlynicechoices,such

thattheresultingnumeratorfactorsniobeythesamegeneralalgebraicidentitiesasthe
colorfactorsci.Thatis,thereisanumeratorrelationforeverycolorJacobiofcommutation

relation(2.45)andanumeratorsignflipforeverycolorfactorsignflip(2.2):

ni−nj=nk⇔ci−cj=ck,(2.4a)

ni→−ni⇔ci→−ci.(2.4b)

Amplitudesthatsatisfytheserelationsaresaidtoexhibitcolor/kinematicsduality.An

importantpointisthatanumeratorfactornienteringdifferentkinematicrelationsmaynot

takethesamefunctionalforminallsuchrelations;rather,momentumconservationand
changesofintegrationvariablesmustbeusedtoallignthemomentumassignmentbetween

thethreegraphsparticipatingintherelation.

Therelationsineq.(2.4)defineakinematicalgebraofnumerators,whichissuggestive

ofanunderlyingkinematicLiealgebra.WhilenotmuchisknownaboutthisLiealgebra,
whichshouldbeinfinite-dimensionalduetothefunctionalnatureofthekinematicJacobi

relations,inthespecialcaseoftheself-dualsectorofYMtheorythekinematicalgebrawas

showntobeisomorphictothatofthearea-preservingdiffeomorphisms[13].

7

1

2

3

Connected to tree-level unitarity constraint;

Chiodaroli, 
HJ, Pichini

longitudinal modes suppressed in low-mass (high-energy) limit 
Porrati et al.



Using HS gauge invariance
Cangemi, Chiodaroli, HJ, 
Ochirov, Pichini, SkvortsovConsider spin-2 root-Kerr case:

physical field: Stückelberg fields:

Imposing a linearized massive higher-spin gauge transformation:

Makes sure that: 
à DOFs are correct, 
à small-mass limit better behaved than naively expected 

gauge parameter



Massive Ward identities
Cangemi, Chiodaroli, HJ, 
Ochirov, Pichini, SkvortsovWe write down ansatz for off-shell interactions:

and constrain them using Ward identities 

where the vertices corresponding to gauge parameters are: 

à 3pt amplitude:
unique after current constraint: 



General spin-s EFTs
Consider tower                            of HS fields and gauge parameters:

Gauge transformation:

Minimal Lagrangian:

Gauge-fixing fn:

Feynman-gauge Lagr:

Cangemi, Chiodaroli, HJ, 
Ochirov, Pichini, Skvortsov

Zinoviev (2001)

(traceless)(double-traceless)



Non-minimal interactions
Cangemi, Chiodaroli, HJ, 
Ochirov, Pichini, Skvortsov

3pt vertex:

Ward identities:

Constraints imposed: 

Gives unique Kerr and root-Kerr 3pt amplitudes (matching AHH) 



HS perturbation theory
Cangemi, Chiodaroli, HJ, 
Ochirov, Pichini, Skvortsov

Feynman-gauge propagator for any field obtained as generating fn:

Calculations expected to simplify in Feynman gauge:

e.g. for root-Kerr Compton amplitude, we obtain

with a polynomial:

and variables

contact term



Chiral fields  (2s,0)



Chiral higher-spin approach
Ochirov, Skvortsov;
Cangemi, et al.

Introduction Constructing HS Compton amplitudes Classical Analysis of Compton Outlook

Chiral Formalism for Higher Spins

[Ochirov, Skvortsov ’22]
Trade SO(1, 3) tensors �µ1...µs �! SL(2,C) chiral symmetric tensors �↵1...↵2s

• |�i := �↵1...↵2s ! correct dof's for a massive spin-s field: 2s + 1

• simple free Lagrangian:

L
(s)
0 = h@µ�|@

µ�i � m2
h�|�i ,

• chiral formulation maps spinor-helicity formulae to Lagrangians
=) external wavefunctions |�i ! 1

ms |1i
�2s

• L0 not parity invariant! needs to be enforced
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9

Chiral fields indices

Change Lorentz rep. 

Easier way to get correct DOFs:

Minimal Lagrangian

Gives ’’correct’’ all-plus helicity amplitudes:

However, breaks parity badly, and also naive renormalizability… 

to the action (4.1). This corresponds to multiplying the path integral by an irrelevant

Gaussian integral. The new Lagrangian can be integrated by parts and rewritten as

m
2

2
�↵��↵� +

m
2

2
(Wµ)

2
�

m
p
2
Wµ tr(�

µ⌫
@⌫�) , (4.3)

where the trace is over the SL(2,C) indices. We can now integrate out the original vector

field Wµ, which gives the new kinetic term �
1

4
tr(�µ⌫

@⌫�) tr(�µ⇢@⇢�) = �
1

2
@
µ�↵�

@µ�↵� .

We thus obtain a chiral spin-1 Lagrangian14

�
1

2
@
µ�↵�

@µ�↵� +
m

2

2
�↵��↵� =: �

1

2
h@

µ�|@µ�i+
m

2

2
h�|�i . (4.4)

where in the last step we converted to bra–ket notation, |�i := �↵� , instead of writing out

the spinor indices. This is convenient when the number of spinorial indices becomes high.

The chiral gauge-interacting Lagrangian for massive spin-1 was first introduced in

ref. [81] for the purpose of describing electroweak vector bosons. Adapting it to a general

non-abelian gauge group, with |�i transforming in a matter representation, we find the

chiral version of the action (2.5) to be given in the bra–ket notation by

L
(1) = h�|

⇢
|

 
D|

!
D|⌦

1

1� ig
m2 |F�|

�
|�i �m

2
h�|�i+O(�4) (4.5a)

= hDµ�|D
µ�i �m

2
h�|�i+ igh�|F�|�i+

ig

m2
h�|

n
|

 
D|

!
D|⌦ |F�|

o
|�i (4.5b)

�
g
2

m4
h�|

n
|

 
D|

!
D|⌦ |F�|F�|

o
|�i+O(F 3) +O(�4).

The arrows over the covariant derivatives

 
D↵�̇ =

 
@↵�̇ + igA↵�̇ ,

!
D

↵̇� = @
↵̇�

� igA
↵̇�

,

Aµ = A
c
µT

c
, T

c† = T
c
, trT c

T
c0 =

1

2
�
cc0
, (4.6)

indicate on which matter field they act, and this notation implicitly assumes that the

covariant derivatives do not act on the field strength factors |F�| of the massless gauge

boson. The minus label emphasizes that this is the anti-self-dual part of the field strength,

|F�| := F�↵
� := 1

2
(�µ

�̄
⌫)↵�Fµ⌫ , where the (anti-)self-dual parts satisfy 1

2
✏µ⌫⇢�F

⇢�
± =

±iF
±
µ⌫ . These labels are also correlated with the gluon helicities that are allowed to appear

in the tree-level amplitude. Hence, at leading order interaction terms with k factors of

|F
�
| only contribute to amplitudes that have k negative-helicity gluons.

The gauge-group indices are subsumed by the indexless bra–ket notation, and we can

assume without loss of generality that kets |�i belong to the fundamental representation

and bras h�| to the anti-fundamental representation of the gauge group. (The Lagrangian

is also valid for general complex or real representations.) Although the indexless notation

14The overall sign of the Lagrangian (4.1) comes from that of eq. (4.1), which includes the same overall

(�1)bsc oscillation that can be observed e.g. in the non-chiral action (3.4) and which comes from the

mostly-minus metric convention. In the chiral formulation, we choose to drop it starting from eq. (4.5).
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W-bosons in SM:

Chalmers, Siegel



Non-minimal chiral interactions
Cangemi, Chiodaroli, HJ, 
Ochirov, Pichini, SkvortsovRestore parity at 3pts à AHH 3pt amplitudes:

is convenient for dealing with SL(2,C) indices, it admittedly obscures the multiplication

order of the non-abelian gauge-group generators. To be more precise, let us write the

generic term in the expansion of eq. (4.5a) such that the non-abelian order is displayed, at

the expense of having explicit spinorial indices:

h�|
n
|

 
D|

!
D|⌦|F�| · · · |F�|| {z }

n

o
|�i := (D↵"̇�

↵�)?(F�
c1)�

⇣2 · · · (F�
cn)⇣n

�
T
c1 · · ·T

cn(D"̇����) , (4.7)

Here and below, the star is used to flip g ! �g and conjugate the gauge-group indices —

but without conjugating the spacetime indices (which would otherwise imply an unwanted

chirality switch). For instance,

(D��̇�
↵�)?|̄ =

�
@��̇�

↵�
� igA

c
��̇
T
c�↵�

�?
|̄
:= @��̇(�

?)↵�|̄ + ig(�?)↵�ı̄ T
c
i|̄A

c
��̇

. (4.8)

Note that the action (4.5) obeys the following reality condition:

Z
d
4
xL

? =

Z
d
4
xL, (4.9)

which we will always demand of a chiral Lagrangian, and this will imply that the theory

can be equivalently described in a conventional (i.e. non-chiral) formulation using a real-

valued Lagrangian.15 In particular, this condition allows for a consistent projection of the

theory to the case of real-valued generators,16 such as the adjoint representation of SU(Nc)

or the fundamental representation of SO(Nc), considered in ref. [79].

4.2 Cubic
p
Kerr Lagrangian for arbitrary spin

After having introduced the chiral framework in the familiar spin-1 context, it is now

straightforward to generalize it to the spin-s case. In particular, we combine the kinetic

terms and minimal cubic interactions of ref. [79], and then add appropriate cubic non-

minimal interactions to restore parity invariance of three-point amplitudes. The resulting

cubic Lagrangians are simple, and we give the new result without further ado.

The family of chiral spin-s Lagrangians that reproduce the three-point
p
Kerr gauge-

theory amplitudes (1.1) can be written compactly as

L
(s) = hDµ�|D

µ�i �m
2
h�|�i+

2s�1X

k=0

ig

m2k
h�|

n
|

 
D|

!
D|
�k

⌦ |F�|
o
|�i+O(F 2) . (4.10)

We have used the � symbol to denote symmetrized tensor product [42]. Here we addi-

tionally define it to symmetrize the internal spinor indices. In the higher-spin multi-index

15Strictly speaking, the equivalence between the chiral and the usual tensorial approaches has been shown

only for the lower spins and minimal interactions [80, 81]. However, given that we do not see any obstruction

in getting any consistent cubic and quartic amplitudes within the chiral approach, it seems plausible that

it covers all possible interactions at all orders.
16In our current conventions, which are tailored to hermitian generators, the real representations of

SU(Nc) or SO(Nc) actually have imaginary-valued generators.
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Root-Kerr non-minimal interactions:

Kerr non-minimal interactions:

Interactions behave as geometic series 



Omnipresent polynomials

Introduction Constructing HS Compton amplitudes Classical Analysis of Compton Outlook

Kerr Variables and Polynomials

• 4 local helicity-indep. spin-1/2 variables
&1 = U+V , &2 = U�V , &3 = �mh12i, &4 = �m[12],

• polynomials P(k)
n of degree k � n + 1

P(k)
n =

&k
1

(&1 � &2)(&1 � &3) . . . (&1 � &n)
+ perm(&1, &2, . . . &n) .

-n = 2 example:

P(2s)
2 =

&2s
1

&1 � &2
+

&2s
2

&2 � &1
=

2s�1X

i=0

& i
1&

2s�1�i
2

- complete homogeneous symmetric polynomials
- naturally generated by Lp

Kerr
- comes from factorisation properties for

p
Kerr

- generalises to Kerr

we will construct general spin contact terms out of P(k)
n 12

Complete homogenous symmetric polynomials:

Compton spin variables:

Cangemi, Chiodaroli, HJ, 
Ochirov, Pichini, Skvortsov

Consider geometric sums:

=

=
In general:



For the Compton amplitude (5.2), we only need P
(k)
n4

that depend on up to four

variables, and we globally identify them as

&1 := U + V = h1|4|2]�m[12] , &3 := �mh12i ,

&2 := U � V = �h2|4|1]�m[12] , &4 := �m[12] .
(5.5)

To be clear, let us write some of the relevant polynomials in various forms:

P
(2s)
1

= &
2s
1 = (U + V )2s ,

P
(2s)
2

=
&
2s
1

&1 � &2
+

&
2s
2

&2 � &1
=

(U + V )2s � (U � V )2s

2V
=

X

i+j=2s�1

&
i
1&

j
2
,

P
(2s�1)

4
=

X

i+j+k+l=2s�4

&
i
1&

j
2
&
k
3 &

l
4 .

(5.6)

In particular, note that the (U +V )2s factor in eq. (5.2) is simply the one-variable polyno-

mial P (2s)
1

, so every term in the Compton amplitude is multiplied by some polynomial P (k)
n .

Indeed, this observation, which was already made in ref. [68] for the case n = 2, is crucial

for constraining the contact term C
(s). The ubiquitous appearance of these polynomials

motivates us to conjecture that:

the complete spin-s Compton amplitude for
p
Kerr theory should be a finite

superposition of only the symmetric homogeneous polynomials P
(k)
n .

Constraints. Therefore, to determine C
(s) we assume that it is a linear combination of

these polynomials:

C
(s) = C

(s)[P (k)
n ] . (5.7)

Furthermore, we impose the following heuristic constraints on the complete amplitude:

• well-behaved classical limit s ! 1;

• amplitudes with s < 2 not modified: C(s<2) = 0 ;

• compatible with massive higher-spin gauge invariance;

• s-independent numerical coe�cients;

• parity invariance imposed, see eq. (4.21);

• all contact terms have spinor-helicity structure ⇠ h13ih32i[14][42];

• classical spin quadrupole fixed by s = 1 amplitude;

• no dissipation e↵ects, nor contributions from non-perturbative considerations.

We find that the simplest contact term C
(s) that satisfies all of the above constraints is

C
(s) =

h13ih32i[14][42]

2m4s�1
(h12i+ [12])

⇣
P

(2s)
4

� P
(2s�2)

2

⌘
. (5.8)
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Constraints for fixing R2 contact term
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&2 := U � V = �h2|4|1]�m[12] , &4 := �m[12] .
(5.5)

To be clear, let us write some of the relevant polynomials in various forms:
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In particular, note that the (U +V )2s factor in eq. (5.2) is simply the one-variable polyno-

mial P (2s)
1

, so every term in the Compton amplitude is multiplied by some polynomial P (k)
n .

Indeed, this observation, which was already made in ref. [68] for the case n = 2, is crucial

for constraining the contact term C
(s). The ubiquitous appearance of these polynomials

motivates us to conjecture that:

the complete spin-s Compton amplitude for
p
Kerr theory should be a finite

superposition of only the symmetric homogeneous polynomials P
(k)
n .

Constraints. Therefore, to determine C
(s) we assume that it is a linear combination of

these polynomials:

C
(s) = C

(s)[P (k)
n ] . (5.7)

Furthermore, we impose the following heuristic constraints on the complete amplitude:

• well-behaved classical limit s ! 1;

• amplitudes with s < 2 not modified: C(s<2) = 0 ;

• compatible with massive higher-spin gauge invariance;

• s-independent numerical coe�cients;

• parity invariance imposed, see eq. (4.21);

• all contact terms have spinor-helicity structure ⇠ h13ih32i[14][42];

• classical spin quadrupole fixed by s = 1 amplitude;

• no dissipation e↵ects, nor contributions from non-perturbative considerations.

We find that the simplest contact term C
(s) that satisfies all of the above constraints is

C
(s) =

h13ih32i[14][42]
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Apart from the matter derivatives |

 
D|

!
D|, that are already familiar from the cubic La-

grangian (4.10), the building blocks of Djkl can be written out with spinorial indices
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where |D+| acts only on the field |F+| and its derivatives via the adjoint-representation

action. For example, if we make all indices explicit, we can write

D
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Higher derivatives |D+|
�k

� |F+| are defined recursively in an analogous way. Most impor-

tantly, we define |D+| not to act on any of the other fields, |F�|, h�| and |�i, nor on the

matter derivatives |
 
D| and |

!
D|.

Let us consider an explicit operator and show how it is used. Taking F6 with abelian

generators T c = 1/
p
2 and assuming 2s � j + k + l + 2, the four-point matrix element is

h�|Djkl � F6|�i|(2,3�,4+,1) =
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(4.29)

Now that we have discussed the generic structure of operators that contribute to the

opposite-helicity Compton amplitude, we move on to studying a specific class of such

operators that are connected to the
p
Kerr amplitudes in the next section.

5 Quantum Compton amplitudes for
p
Kerr

In this section, we will present our final formulae for the opposite-helicity spin-s Compton

amplitudes in the
p
Kerr theory, which combine the results obtained in Sections 2 and 3

using the principle of massive gauge symmetry [18], and those obtained in Section 4 us-

ing the chiral formalism [79]. In addition, we constrain our Compton amplitudes using

ansätze based on observed patterns and classical-limit analysis. The latter is considered

in Section 6, whereas in this section we focus on the quantum Compton amplitudes.

In order to set the stage, we quote a chiral Lagrangian that is fully compatible with

the final spin-s Compton amplitudes, given later in this section. That is, the
p
Kerr theory

that we choose to work with in this section is

L = hDµ�|D
µ�i �m
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The second line involving F6 = 1

4
{T

c
, T

c0
}|F

c
�|� |

 
D|F

c0
+ |

!
D| corresponds to a chosen non-

minimal L4 completion in the opposite-helicity sector, which we will motivate in the follow-

ing. The fully negative-helicity sector needs further operators O(|F�|2) to restore parity,

however, we will not need them in this paper.
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Chiral spin-s Lagrangian (gauge theory)
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Field-strength dependence:

Classical root-Kerr amplitude: 

where E is the same entire function as in the [T c3 , T c4 ] sector. The corresponding classical

abelian amplitude is

A(1,2, 3�, 4+)|{T c3 ,T c4} = �
(p · �)2

2(p · q?)2

⇣
e
x cosh z � w e

xsinhc z +
w

2
� z

2

2
E(x, y, z)

⌘
,

(6.58)

where x = a · q?, y = a · q, z = |a| p · q?, w = (a · �)(p · q?)/(p · �). Once again the entire

functions Ẽ , Ẽ
0
, Ẽ

00 can be read o↵ from the amplitude and correspond to the functions

defined in (6.55) where Ẽ is set to 0.

As mentioned at the end of Section 5.1, the choice of quantum contact term C
(s) is

not unique, even after imposing classical consistency. An example of an alternative contact

term which is fully consistent is

C
0(s) =

h13ih32i[14][42]

m4s�2
h12i[12]

⇣
2P (2s�1)

4
+

m

2

�
h12i+ [12]

�
P

(2s�2)

4

⌘
.

However C
0(s), and all other valid quantum contact terms, contribute identically to C

(s)

in the classical limit, such that the Abelian amplitude is uniquely fixed to the result in

eq. (6.58). In Section 6.6 and Section 6.7 we weaken certain constraints in our contact term

construction and discuss how it introduces free parameters in the classical amplitude.

Color-dressed amplitude. We can now assemble the full, color-dressed classical am-

plitude

A(1,2, 3�, 4+) (6.59)
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�
. (6.60)

Before considering the spin multipole expansion of the full amplitude, we first note the

similarity in the expansion of the entire functions

E(x, y, z) = 1 +
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3
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1

12
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2 + z
2) +
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30
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120
(3x2 + y

2 + z
2) +

1

360
x(2x2 + y

2 + 2z2) +O(a4). (6.61)

The relationship between the monomials in the E and Ẽ expansions is captured by the

di↵erential equation

@

@�
�
3
Ẽ(�x,�y,�z)

���
�=1

=
1

2
E(x, y, z) . (6.62)

The classical amplitude in (6.59) has the first few spin multipoles

A(1,2, 3�, 4+) =

– 57 –
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where E and Ẽ are entire functions given by

E(x, y, z) =
e
y
� e

x cosh z + (x� y)ex sinhc z

(x� y)2 � z2
+ (y ! �y) (6.52)

Ẽ(x, y, z) =
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2)ex sinhc z + (x2 + y

2
� z

2) sinhc y�
(x� y)2 � z2

��
(x+ y)2 � z2

� .

The cancellation of the individual divergences also follows in the coherent state picture

where the superclassical pieces cancel and the classical term matches eq. (6.51).

The full [T c3 , T c4 ] sector of the classical amplitude, generated independently by (I) and

(II), is given by

A(1,2, 3�, 4+)|[T c3 ,T c4 ] = �
(p · �)2
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e
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where x = a ·q?, y = a ·q, z = |a| p ·q?, w = (� ·a)(p ·q?)/(p ·�). Note that the Levi-Civita

is not an independent variables and can be written as a function of x, y, z using eq. (6.8)

and the classical Gram determinant (6.7) such that

(w2
� z

2)
i✏(p, q, q?, a)
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= x(w2+ z

2)� w(x2� y
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One can read o↵ the entire functions in eq. (6.9) from the above expression

E(x, y, z)=e
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z
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2
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We will postpone further analysis of the expression until we have the full color-dressed

classical amplitude.

Abelian amplitude. The abelian amplitude shares many terms with the non-abelian

sector such that the first two terms of the classical abelian amplitude are identical those

in eq. (6.53) up to di↵ering pole structure. The di↵erence lies in the treatment of the

shared diverging term, term 4 in eq. (6.49). In the abelian sector the cubic Lagrangian

does not generate a term that cures the divergence in O(s), suggesting the amplitude is

only consistent if we add contact terms to cure the divergence.

Following the construction of contact terms laid out in Section 5.1, we find the simplest

consistent contact term to be
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which contributes classically as
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The classical helicity-conserving Compton amplitude can be written as an entire func-

tion in the following four spin-dependent, helicity-independent and dimensionless variables

x = a · q? , y = a · q ,

z = |a|
p · q?
m

, w =
a · � p · q?

p · �
.

(6.6)

The z variable is sometimes called the spheroidicity parameter [100]22, and it is not to be

confused with the SU(2) little-group wavefunction for which we use the same letter.

In addition to the four spin-dependent classical variables that can appear to any power,

the Compton amplitude can be a non-trivial function of a single dimensionless kinematic

variable, which we take to be the optical parameter ⇠. However, we need to account for a

Gram-determinant relation, G(p, q, q?, a,�) = 0, which in the classical limit gives a relation

between the optical parameter and the above spin-dependent variables

⇠
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m
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q
2
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2
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. (6.7)

In principle, ⇠ can be eliminated at the expense of introducing a spurious pole. But, in

order to capture positive powers of q2 without having spurious poles, we need to allow for

inverse powers of the optical parameter ⇠�I , with integers I � 0.

At intermediate steps we will encounter Levi-Civita tensors contracted with four of the

five vectors pµ, qµ, qµ?, a
µ, �µ. Since the ring radius is a pseudo-vector, certain contractions

involving it can be reduced to simple dot products. For example, we have the following

useful relations in the classical limit:23

i✏(p, q, q?, a)

p · q?
= w � x+

w

⇠
= x+

1

w

⇣
y
2
� x

2 +
z
2

⇠

⌘
,

i✏(p, q,�, a)

p · �
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(6.8)

where we divided by appropriate dot products so to make the right hand sides have classical

scaling and no helicity dependence.

Taking into account all of the above classical variables we can now assemble a generic

ansatz for a classical tree-level amplitude that is broad enough to capture every physi-

cal theory. A helicity-conserving Compton amplitude for a classical spinning non-abelian

massive object should have the form
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(6.9)

where the E , Ẽ , EI , ẼI are general functions that must be analytic at the origin (i.e. have

a Taylor series expansion around the spinless case). In fact, based on the structure of

22In our convention, z = 2!|a| has an extra factor of two compared to ref. [100].
23Using the notation ✏(p, q, q?, a) := ✏µ⌫⇢�p

µq⌫q⇢?a
� and the Levi-Civita tensor is normalized as ✏0123 = 1.
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Final classical results – Kerr BH

Classical root-Kerr amplitude: 

where E is the same entire function as in the [T c3 , T c4 ] sector. The corresponding classical

abelian amplitude is

A(1,2, 3�, 4+)|{T c3 ,T c4} = �
(p · �)2

2(p · q?)2

⇣
e
x cosh z � w e

xsinhc z +
w

2
� z

2

2
E(x, y, z)

⌘
,

(6.58)

where x = a · q?, y = a · q, z = |a| p · q?, w = (a · �)(p · q?)/(p · �). Once again the entire

functions Ẽ , Ẽ
0
, Ẽ

00 can be read o↵ from the amplitude and correspond to the functions

defined in (6.55) where Ẽ is set to 0.

As mentioned at the end of Section 5.1, the choice of quantum contact term C
(s) is

not unique, even after imposing classical consistency. An example of an alternative contact

term which is fully consistent is

C
0(s) =

h13ih32i[14][42]

m4s�2
h12i[12]

⇣
2P (2s�1)

4
+

m

2

�
h12i+ [12]

�
P

(2s�2)

4

⌘
.

However C
0(s), and all other valid quantum contact terms, contribute identically to C

(s)

in the classical limit, such that the Abelian amplitude is uniquely fixed to the result in

eq. (6.58). In Section 6.6 and Section 6.7 we weaken certain constraints in our contact term

construction and discuss how it introduces free parameters in the classical amplitude.

Color-dressed amplitude. We can now assemble the full, color-dressed classical am-

plitude

A(1,2, 3�, 4+) (6.59)

= �2g2(p · �)2
⇢✓

[T c3 , T c4 ]

q2(p · q?)
+

1

2

{T
c3 , T c4}

(p · q?)2

◆⇣
e
x cosh z � w e

xsinhc z +
w

2
� z

2

2
E(x, y, z)

⌘

�
[T c3 , T c4 ]

q2(p · q?)

⇣
x(w2+ z

2)� w(x2� y
2+ z

2)
⌘
Ẽ(x, y, z)

�
. (6.60)

Before considering the spin multipole expansion of the full amplitude, we first note the

similarity in the expansion of the entire functions

E(x, y, z) = 1 +
2

3
x+

1

12
(3x2 + y

2 + z
2) +

1

30
x(2x2 + y

2 + 2z2) +O(a4) ,

Ẽ(x, y, z) =
1

6
+

1

12
x+

1

120
(3x2 + y

2 + z
2) +

1

360
x(2x2 + y

2 + 2z2) +O(a4). (6.61)

The relationship between the monomials in the E and Ẽ expansions is captured by the

di↵erential equation

@

@�
�
3
Ẽ(�x,�y,�z)

���
�=1

=
1

2
E(x, y, z) . (6.62)

The classical amplitude in (6.59) has the first few spin multipoles

A(1,2, 3�, 4+) =
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Classical Kerr BH amplitude:

The z variable is sometimes called the spheroidicity parameter [Dolan(2008)]1 In
addition to the spin-dependent classical variables, the Compton amplitude can be a
function of a dimensionless kinematic variable known as the optical parameter ⇠. How-
ever, we need to account for a Gram determinant G(p, q, q?, a,�) = 0, which in the clas-
sical limit gives a relation between the optical parameter and the above spin-dependent
variables

⇠�1 =
m2q2

(p · q?)2
=

(w � x)2 � y2

z2 � w2
. (5)

In principle, ⇠ can be eliminated at the expense of introducing a spurious pole. But, in
order to capture positive powers of q2 without having spurious poles, we need to allow
for inverse powers of the optical parameter ⇠�I , with I > 0.

2 Classical Kerr Compton amplitude

The gravity amplitude (not including QFT contact terms) can be written as

M(1,2, 3�, 4+) =
(p · �)4

q2 (p·q?)2

⇣
ex cosh z � w exsinhc z +

w2
� z2

2
E(x, y, z)

⌘

+
(p · �)3

q2 (p·q?)2
w2

� z2

2
i✏(�, p, q, a)Ẽ(x, y, z) + contact terms (6)

where E(x, y, z) and Ẽ(x, y, z) are entire functions

E(x, y, z) =
ey � ex cosh z + (x� y)ex sinhc z

(x� y)2 � z2
+ (y ! �y) (7)

Ẽ(x, y, z) =
2x cosh y � 2xex cosh z + (x2

� y2 + z2)ex sinhc z + (x2 + y2 � z2) sinhc y�
(x� y)2 � z2

��
(x+ y)2 � z2

� .

After including the explicit QFT contact terms, and reexpressing the Levi-Civita
term into dot products, one can write the Kerr amplitude as

M(1,2, 3�, 4+) =
(p · �)4

q2 (p·q?)2

⇣
ex cosh z � w exsinhc z +

w2
� z2

2
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⌘
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⌘
+ ↵z (polygamma terms) ,

(8)

where ⌘ = ±1 controls the dissipative terms, and ↵ = 1 the polygamma terms. Note
that both vanish as z ! 0, hence they are related to some complicated behavior of the
spin-magnitude |a| dependence.

The entire function E is given by

E =
(x+ y)e�y

y((x+ y)2 � z2)2
+

ex+z

z

⇣ 1

2((x+ z)2 � y2)
�

x+ z

((x+ z)2 � y2)2

⌘
+ {y ! �y, z ! �z}

(9)

1In our convention, z = 2!|a| has an extra factor of two compared to [Dolan(2008)].

2

Matches explicit BH perturbation theory from GR  à  Teukolsky eqn. 
up to spin (ignoring polygamma terms) Bautista, Guevara, Kavanagh, Vines

Cangemi, Chiodaroli, HJ, Ochirov, Pichini, Skvortsov



Conclusion: Kerr dynamics from HS

Checks: à uniquely predicts previously known Kerr 3-4pt amplitudes 
                       à constrains             4pt contact terms, but not unique…

Kerr dynamics is non-trivially constrained by

-- massive higher-spin gauge symmetry
-- power counting, current constraint, …

Outlook: à classical loop corrections to Compton
   à implications for quantum BHs, 
              à including absorption and emission effects
 

Additional constraints imposed: 

 
-- chiral Lagrangian, 
-- symmetric homogeneous polynomials,…
-- classical limit consistency,
-- matching to Teukolsky BHPT  (mod. polygamma terms)  


