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Understanding gravity and black holes from the holographic principle.

Start modestly: AdS spacetime and conformal field theories (CFT).

Holographic CFTs: minimal ingredients for a holographic description.

CFT correlation functions & Gravitational amplitudes
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Consistency conditions (unitarity, causality, KMS condition, ...)

Crossing Equations & OPE:

⟨O1(x1)O1(x2)O2(x3)O2(x4)⟩

O1 ×O1 → 1 +O3 + · · · → O2 ×O2, direct-channel

O1 ×O2 → O1 ×O2, cross-channel
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Holographic CFTs:

Energy-momentum operator Tµν .

⟨TµνTρσ⟩ ∝ cT . Focus on the large cT expansion.

⟨O1O1O2O2⟩ = ⟨O1O1⟩ ⟨O2O2⟩+
1

cT
(· · · )

Another characteristic scale: ∆gap.

Focus on ∆gap = ∞: the CFT contains only a finite number of
primary single-trace operators with spin j ≤ 2.
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“single-trace” primaries: O1,O2, · · · , Jµ, · · · , Tµν .

“double-trace” primaries:

M2 : O1∂µ1···∂µℓ
(∂2)nO2, O1∂µ1···∂µℓ

(∂2)nJµ, · · ·

“multi-trace” primaries:

[O1O1O2 · · · J ]{a,··· ,b},{m,··· ,m} : O1∂µ1···∂µa∂
2nO2 · · · ∂µ1···∂µb

∂2mJµ

⟨O1O1⟩ ∼ 1 + · · · , ⟨[O2O2][O2O2]⟩ ∼ 1 + · · ·

⟨O2O2[O2O2]n,ℓ⟩ ∼ 1 + · · · , ⟨O1O1[O2O2]n,ℓ⟩ ∼
1

cT
+ · · · ,

⟨O1O1 T ⟩ ∼
1√
cT

+ · · ·
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Results:

Crossing equation and locality/unitarity of the holographic
description.

Unitarity (causality) imply that Einstein’s theory of general
relativity is the only consistent description.

Correlation functions in certain kinematic regimes.

Higher order CFT-data (OPE coefficients, anomalous dimensions
etc).

Thermal CFT structure.

· · · · · · · · · · · ·

[huge list of authors many of whom are present]

Manuela Kulaxizi (Trinity College Dublin)Phase shift and two-sided geodesics 06.09.2024 6 / 28



Multi-stress tensors: a class of operators present in generic CFTs.

Tµν t = d− 2, s = 2

: Tµ1µ2∂ν1∂ν2 · · · ∂νmTµ3µ4 : tmin = 2d− 4, s = 4 +m

· · · · · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · · · · ·

: Tµ1µ2Tµ3µ4 · · · ∂ν1∂ν2 · · · ∂νmTµ2k−1µ2k
: tmin = kd− 2k, s = 2k +m
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Multi-stress tensors play an important role in HHLL correlators:

HHLL ≡ ⟨OH(∞)OL(1)OL(z, z̄)OH(0)⟩

OH : characterised by ∆H ∼ O(cT ) with
∆H
cT

= fixed.

OL: with ∆L ∼ O(1).

Manuela Kulaxizi (Trinity College Dublin)Phase shift and two-sided geodesics 06.09.2024 8 / 28



When the state created by OH is thermal:

⟨OH(∞)OL(1)OL(z, z̄)OH(0)⟩ ∼ ⟨OL(1)OL(z, z̄)⟩T

Via the AdS/CFT dictionary the thermal two-point function can be
obtained from the study of fluctuations around a black hole geometry.

In the dual gravitational description (e.g. d = 4):

µ ≡ r2H
R2

AdS

=
MBHℓ

3
p

R3
AdS

= (MBHRAdS)
ℓ3p

R3
AdS

∼ ∆H

c

Manuela Kulaxizi (Trinity College Dublin)Phase shift and two-sided geodesics 06.09.2024 9 / 28



!(μ0) ΔH

c

1
c

!(μ)

ΔH

c

ΔH

c

1
c

1
c

!(μ2)
ΔH

c

ΔH

c

1
c1

c

Manuela Kulaxizi (Trinity College Dublin)Phase shift and two-sided geodesics 06.09.2024 10 / 28



∆t = π
OL(x3)

x0

ϕ

OL(x2)

Fig. 1: Positions of the light operators on the cylinder. The states at both ends of

the cylinder are created by the heavy operators OH .

and n̂3 = n̂. The kinematics are summarized in Fig. 1.

The cylinder correlator (3.1) can now be transformed to the plane Rd via the usual

map from the euclidean time on the cylinder to the radial polar coordinate r = eτ . We

can now use this to go from τ1 = −∞, τ4 = +∞ to x1 = 0, x4 = ∞ and write

〈Ocyl
H |Ocyl

L Ocyl
L |Ocyl

H 〉 = (r2r3)
∆L lim

x4→∞
(x2

4)
∆H 〈Oplane

H (x4)Oplane
L (x3)Oplane

L (x2)Oplane
H (0)〉 ,

(3.4)

where the factor (r2r3)
∆L appears due to the conformal transformation from the cylinder

to Rd. This can be further written as

A(x) ≡ 〈Ocyl
H |Ocyl

L (x3)Ocyl
L (x2)|Ocyl

H 〉 = (r2r3)
∆L × A(u, υ)

x2∆L
32

(3.5)

where we have defined the partial amplitude A(u, υ) which only depends on cross-ratios

and can be expanded in conformal blocks. In our conventions and setup, the cross-ratios

are

zz̄ = u =
x2

2

x2
3

= e2(τ2−τ3) = e2iδt = e2ix0

(3.6)

11

A physically relevant kinematic limit is the Regge/Eikonal limit.

z → z e2πi, (z, z̄) → (1, 1) with
1− z

1− z̄
= fixed,

where
z = ei∆t+∆φ, z̄ = ei(∆t−∆φ).

[Fitzpatrick, Huang, Karlsson, MK, Li, Ng, Parnachev, Sen,Tadić, ..]
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The object of interest here is the bulk phase-shift.

eiδ(p) ∼
∫
dxeipx⟨OH(∞)OL(1)OL(z, z̄)OH(0)⟩

What does the bulk phase shift compute in gravitaty?

Consider first high energy (large s, finite t) two-to-two scattering in flat
space. The amplitude is well described by the eikonal phase:

A ∼ eiδ(s, b)

with b the impact parameter. A is the result of the summation of an
infinite number of diagrams, which exponentiate the graviton exchange:
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The eikonal phase can also be computed from the time-delay a particle
experiences when traversing a shock-wave.Introduction

A particle creates a shockwave localized at u = 0. A proble particle propagates on

the geometry and experiences a time delay �v . The two particles are separated

along the transverse directions.

Manuela Kulaxizi (Trinity College Dublin) Einstein Gravity from Conformal Field Theory
MITP at Wits, Johannesburg, 09-01-2018 6

/ 45

 

AdSd+1/CFTd

eiδ ∼
∫
dx3dx4e

ip3x3eip4x4 ⟨O1(x1)O1(x2)O2(x3)O2(x3)⟩

δ = −pv · (∆v) ∼ sΠd−1(L)
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So the bulk phase shift here is the eikonal phase induced when one
particle is much heavier than the other.

CFT:

eiδ(p) ∼
∫
dxeipx⟨OH(∞)OL(1)OL(z, z̄)OH(0)⟩

In holographic CFTs this regime is dominated in the direct channel by
an infinite tower of spinning operators: the stress-tensor sector and
double-traces.

OL ×OL → 1 + µ(Tµν + · · · ) + · · · → OH ×OH ,

Their contribution can in principle be computed with Regge conformal
theory order by order in µ.

Manuela Kulaxizi (Trinity College Dublin)Phase shift and two-sided geodesics 06.09.2024 14 / 28



The Fourier transform is expected to eliminate the double-traces. Only
the stress-tensor sector contributes.

The leading order phase shift is fixed by the stress-tensor contribution,

δ(1) ∼
√
−p2Πd−1(L)

where Πd−1(L) is the propagator in the transverse Hd−1 space of a
particle with m2 = (d− 1)2. The result nicely matches the AdS eikonal
phase.
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AdS-black hole

ds2 = −f(r)dt2+f(r)−1dr2 + r2
(
dφ2 + sin2 φdΩ2

d−2

)

f(r) = 1 +
r2

R2
− µ

rd−2
,

A highly energetic particle exhibits a phase-shift δ:

δ ≡ −p · (∆x) = pt(∆t)− pφ(∆φ)

with time-delay and deflection

∆t = 2

∫ ∞

r0

dr

f
√

1− α2

r2
f
, ∆φ = 2α

∫ ∞

r0

dr

r2
√
1− α2

r2
f
, α ≡ pφ

pt
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Null geodesics are labelled by the impact parameter, b:

1

b2
=

1

α2
− 1

R2

For µ = 0 it reduces to the standard pure AdS definition of impact
parameter. For R≫ α, b ;eads to the flat space expression.

δ = 2|pt|
∫ ∞

r0

dr

f(r)

√
1− α2

r2
f(r)

To match the CFT result (alternative parametrisation):

e2L ≡ pt + pφ

pt − pφ
, b = RsinhL
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Integrals reduce to hypergeometrics with many variables, solvable in
principle.

δ =

∞∑

k=1

µkδ(k), δ(k) ∼
√
−p2Πkd−2k+1(L)

O(µk) contribution as if produced by a spin-2 conserved operator with
twist equal to the minimal twist of the corresponding multi-stress
tensor operator at each order: ∆ = kd− 2k + 2, s = 2

The radius of convergence of the series for Lc corresponds with the null
geodesic approacing the circular null orbit.
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For values of the impact parameter beyond Lc, the particle does not
return to the boundary but rather falls into the black hole.

This is inelastic scattering. The phase shift develops an imaginary part
related to the absorption cross section.

It is possible to compute the imaginary part by analytically continuing
the exact result for the phase shift obtained.

This was in fact computed and shown to reproduce the correct
geometric absorption cross-section in the small impact parameter,
equivalently, in the asymptotically flat space limit. [Sen, Parnachev]
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An alternative approach: re-evaluate δ for the bouncing geodesic.

Recall what happens when pφ = 0.

∆t = 2

∫ ∞

0

dr

f(r)
= −iβ

2
+ real part

 

T

X

VU

r = 0

8r = 

T

X

VU

8

(a) (b)

r = 0

r =

Fig. 3: Radial null geodesics on Kruskal diagram, a) for d = 3, and b) for
d > 3 (radial null lines lie at 45 degrees, the horizons are represented by
dashed lines, and the boundaries and singularities by the solid hyperbolas).
In order for radial null geodesics to meet at the singularity at X = 0, they
have to start at a) t = 0 for the d = 3 case, and b) t = −tc < 0 for the d > 3
case.

singularity. This will play an important role later. Denoting such a time by tc, we see that

tc = −π
4

= −β
4

. (2.9)

In general dimension d, one finds that tc = −π
(
(d − 1) tan π

(d−1)

)−1

, which vanishes

only for d = 3. Thus we see that, with the exception of the d = 3 BTZ black hole, all

singularities in the Penrose diagrams of AdS Schwarzschild are bowed in as in Fig.2b.

In Kruskal coordinates (T, X), the future and past singularities of the black hole

are the hyperbolas T 2 − X2 = 1, while the AdS boundaries are given by T 2 − X2 =

−eπ . (By contrast, in the d = 3 BTZ geometry, the singularities are at T 2 − X2 = 1

and the boundaries are at T 2 − X2 = −1.) The curved nature of the boundary of the

Penrose diagram is reflected in these coordinates by the asymmetry in the radii of the

two hyperbolas. This asymmetry allows a null geodesic starting at tc to “bounce off” the

singularity. This is illustrated in Fig.3, where the d = 3 case (Fig.3a) is contrasted with

the higher-dimensional case (Fig.3b). In Appendices A and B we explain this in further

detail, and construct the Penrose diagram explicitly. (The latter will be used in the next

subsection to produce the Penrose diagrams in Fig.5.) These issues are also discussed in

[46] .

8

β/4Im(t) = −i

β/2Im(t) = −i Im(t) = 0

Im(t) = i β/4

r > 1 r > 1

r < 1

r < 1

II

IV

III I

Fig. 1: Complexified coordinates for the AdS black hole: the time coordinate
is complex in the extended spacetime, but with constant imaginary part in
each wedge, as indicated above. The wedges are separated by the horizons
at r = 1, where t diverges. Note that the real part of t increases upward in
wedge I, downward in wedge III, and to the right (left) in wedge II (IV).

where r+ is the horizon radius and R is the AdS radius. We work in the limit of the

infinitely massive black hole r+/R → ∞, where the metric simplifies. In particular, if we

rescale the coordinates r → r+

R r, t → R
r+

t, measure lengths in AdS units so R = 1, and

suppress the angular coordinates Ω that will not concern us here, the metric in the t-r

plane becomes

ds2 = −f(r) dt2 +
dr2

f(r)

f(r) = r2 − 1

r2
.

(2.2)

There is a genuine curvature singularity at r = 0, and the boundary of the spacetime is

approached as r → ∞. The Schwarzschild coordinates used in (2.2) also have a coordinate

singularity at the horizon r = 1. This is not a big obstacle, since one can pass to Kruskal

coordinates (T, X) which cover the full globally extended spacetime. (The Kruskal coordi-

nate chart is constructed explicitly for this geometry in Appendix A). However, the global

extension can be discussed more conveniently for our purposes by using four Schwarzschild

coordinate patches (corresponding to the two asymptotic regions (I and III) with r > 1,

plus the regions inside the black hole (II) and the white hole (IV) with 0 < r < 1; cf.

Fig.1).

These four patches can be embedded in complexified Schwarzschild time,

t = tL + i tE (2.3)

5
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The imaginary part is fixed and the particle “appears” on the other
boundary.

Evaluated on the thermo-field double state

|ψ⟩ ≡ 1√
Z

∑

n

e−
1
2
βEn |En⟩1 |En⟩2

the thermal correlator computed is really

〈
ψ|O(1)

L (0)O(2)
L (t)|ψ

〉
=

〈
O(1)

L (0)O(1)
L

(
−t− i

β

2

)〉

T

[Fidkowski, Hubeny, Kleban, Shenker]
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It is not difficult to incorporate angular momentum.

For values of L < Lc, the expression under the square root is always
positive definite. A singularity appears in ∆t when crossing the horizon
in the same way as for pφ = 0.

∆t = 2

∫ ∞

0

dr

f
√
1− α2

r2
f
,

The imaginary part of the phase shift is then fixed:

Im(δ) = −ptβ
2

Are both analytic continuations meaningful?
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d = 2

For µ < 1: AdS3 with conical deficit. Geodesics return to the boundary
and the phase shift is:

δ = π
√
−p2e−L

(
1√
1− µ

− 1

)

CFT reproduces this result. The Virasoro vacuum block captures the
stress-tensor sector of the correlator.

⟨OH(0)OH(∞)OL(1)OL(z)⟩ ∝
1

sin
[√

1− µ(π + ∆t±∆φ
2 )

]

The Fourier integral picks up the pole where the argument of the sine
function vanishes reproducing the gravitational result.
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For µ > 1: all null geodesics fall into the black hole.

∆t = 2

∫ ∞

0
= −iβ

2

CFT appears to reproduce the result from the Virasoro vacuum block.

Additional evidence that the phase shift is sensitive only to the
stress-tensor sector.
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The contribution of the stress-tensor sector of the correlator was
recently studied [C̆eplak, Liu, Parnachev, Valach].

G(τ) = GT (τ) +G[OLOL](τ), τ = tE + itL, 0 ≤ tE ≤ β

GT (τ) =
1

τ2∆

∞∑

k=0

Λk

(
τ

β

)dk

The stress-tensor sector of the correlator behaves as the “naive”
spacelike geodesic solution, which at τ ∼ τc approaches the null.

GT (τ ∼ τc) ∼τ→τc (τc − τ)−(2∆L−2), τc =
β√
2
ei

π
4
+i kπ

2

It appears as if the stress-tensor sector contains information about the
black hole singularity.
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The contribution from double-traces is expected to restore the
periodicity and smoothness of the correlator.

For ∆L ≫ 1, GT (τ) is identified with a complex geodesic (order of
limits issue).

The impact parameter representation of the correlator should confim
the story.
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Summary:

It is worth exploring the bulk phase shift in holographic CFTs and
beyond.

Stress-tensor sector.

Singulaity.

Inelastic scattering: is there more than one way?
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Thank you.
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