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Motivation

X Quantum critical points: nonzero temperature in the lab.
3 Study of Black Holes through AdS/CFT.

3 Study CFTs on non-trivial manifolds.



Thermal QFTs

Thermal effects are captured by placing the QFT on a circle
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With periodic boundary conditions for the bosons

and anti-periodic for the fermions.



Thermal CFTs

In this talk assume we know the zero temperature CFT data:
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and are interested in computing new finite temperature data:
the non-zero thermal one-point functions:
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for neutral scalar operators.

And more generally for all traceless symmetric tensors:
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Thermal CFTs

We can still use the OPE:
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But now the radius of convergence is finite: | x| < f#

[lliesiu, Kologlu, Mahajan, Perimutter, Simmons-Duffin 2018]



Thermal CFTs

The two-point function of identical scalars, using the OPE

Ay—2A,—]
D@Dy = Y fpgo (VPP+T) T x, o, (08,
)

and the definition of the Gegenbauer polynomials:
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New Finite Temperature data



Thermal CFTs

Periodicity of the two-point function is captured by [Kubo 1957]
the KMS condition: [Martin,Schwinger 1959]

(d(z, NPO,0))5 = (¢(z + B, NP(0,0)),

The OPE expression does not manifestly satisfy KMS, thus
Imposing it gives a nontrivial “thermal crossing equation”.

Variations of KMS:

(@ (pr2+7) 90 = (4 (p12-7) ¢(0)>ﬁ [El-Showk, Papadodimas 2011]
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Plan of the talk

3 Derive and test thermal Sum Rules.
3 Heavy operators: asymptotic OPE density.
3 Setting up the numerical thermal bootstrap.

X Temporal line defects (Polyakov loops).



Sum Rules



Sum rules from KMS

3k Expand both sides of the ElI-Showk - Papadodimas formula using the OPE

(¢ (#1242 90) =(9(p2-7)90))

3 Then further expand the result in powers of Tand .

3%k Use the definition of Gegenbauer polynomials and the binomial theorem.
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Sum rules from KMS

Similar to the Gliozzi method in standard zero temperature conformal bootstrap:
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The problem we are solving is simpler: we know the zero Temperature data.

We have an infinite set of linear equations for the combinations d45 X b@f@¢¢

Difficulty: Thermal one-point functions not sign-definite.

Which is crucial for linear programming methods (standard numerical bootstrap).




Sum rules from KMS

The infinite set of linear equations for d 5 X b@f@¢¢

further simplify forr = 0 (zero spatial coordinates)

r(2a,+¢) 0 T(8-28,+1)

=22A

r(2a,) s»%r(a-2a,-¢+1)

€2N+1
a, = Z ap C(1) for fixed A

Oepxgp
Operators of same A but different J cannot be distinguished because of r=0.

Generically this does not happen, only when there is extra symmetry like for free theory.



KMS sum rules: test & learn

4-dim free theory O(N) model at large N
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Observation: for small Z only few light operators contribute.

Bigger £ the more operators we need.



Heavy
Operators



Asymptotic OPE density

We want to bound the OPE density for A — o0.

Inspired by [Qiao, Rychkov 2017]

Consider the two-point function at r=0 (zero spatial coordinates):
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via introducing the spectral density p(A) = Z O(A"— A)ay,
A/

a, = Z ae C(1)  for fixed A.
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Asymptotic OPE density

We will need:

The locations of the poles of the two-point function on the real axis:
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due to periodicity.
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Asymptotic OPE density

Make an Ansatz for the asymptotic behaviour of the density

A— 00 —a Sensible due to
p(A) 4 AA Tauberian theory
Doing the integral
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Comparing with the poles of the two-point function
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Asymptotic OPE density

Interpretation: the asymptotic density of OPE of Heavy operators.
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Keep in mind, the physical spectrum is discreet p(a) *<~ Z 6(A" = Aa,
N

More correctly: average density of OPE of Heavy operators
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This result is the correct formal math result (Tauberian theorems) with an error.



Asymptotic OPE density

This was a heuristic derivation (nonetheless captures the intuition).

In the paper we give a rigorous derivation using Tauberian
theorems under the assumptions:
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n=0

The exact two-point function:
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3d O(N) model at large N

_ o Hubbard-Stratanovich field
Lagrangian description :
/ Wilson-Fisher expansione =4 —d < 1

0d.)? 2 o’ weakly coupled in large N: A« = =
——(¢)+—¢—H ’ T TNT 8

d=3 non-trivial IR fixed point.
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The two-point function:
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(0)5 = mt% = 4 log? < 1+ \/§> [Sachdev, Ye 1992]
[lliesiu, Kologlu et all 2018]



Planar 3d O(N) model
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Planar 3d O(N) model

Tauberian approximation:
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Setting up the
Numerics




Numerical method for sum rules

Our current approach (working well for all theories tested):
Inspired by [Gliozzi 2013] [Poland, Prilepina, Tadic’ 2023] [W. Li 2023]

1. Input: zero Temperature spectrum and Output: a, & ¢; .

2. Truncate the sum + improved Tauberian asymptotic:
&)=Y aFAO)+ ) al F(A )
A<Ay A>Ay ) A28, )
Ay ~ 5A<1+—+...>
I'2A,) A

3. Numerically minimize with “random” coefficients the square of the
sum rules. - .

min [ ) 7 fX0)
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Free theory in 4d
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Planar O(N) model
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The Ising fixed points
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Temporal
line defects




Polyakov loops

Polyakov loops are temporal Wilson loops wrapping the thermal circle

—

T

QO

z=0

They were introduced as a criterion for confinement. [Polyakov 1978]

* |In the weak coupling using standard Feynman diagram techniques.

* In the strong coupling using holography (early days of AdS/CFT).

Can use the thermal bootstrap to compute them?




Temporal line defects

The line defects can be studied using “thermal” 1d defect CFT methods.

OPE from bulk to defect 5, ) — Z pop| X A-ds @’1 (1)

Zero temperature data
@ll g

“Thermal” 1d defect CFT, non-perturbative exact result:

A-A
(02, F)P) = @Z bakos— 3

New finite Temperature
vevs of 1d defect CFT
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Zero temperature data
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Sum rules from KMS

(P12 =7, X0, X)P) 5 = (P(BI2 + 7, X)p(0, X)P) 5

The sum rules obtained are of the form: <> O ) >
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New finite Temperature
vevs of 1d defect CFT

Zero temperature data

Defect thermal sum rules are very similar to their bulk counterparts.




Where we currently are

3 Derived and tested thermal Sum rules.
3 Heavy operators: asymptotic OPE density.
3 Setting up the numerical bootstrap.

3 Temporal line defects (Polyakov loops).
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Where are we going?

3k More theories 3D Ising, V=4 SYM, ...

kK Study the S' x S4=! geometry.
3 Black holes, hydro and CFT data.

3k Numerical approach for temporal line defects.
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Thank you!



