Exploring thermal CFTs

Elli Pomoni

Eurostrings 2024

Southampton 03/09/24

[2306.12417 & 2312.13030 Marchetto, Miscioscia, EP] [2407.14600 Barat, Fiol, Marchetto, Miscioscia, EP]

Motivation

***** Quantum critical points: nonzero temperature in the lab.

Study of Black Holes through AdS/CFT.

***** Study CFTs on non-trivial manifolds.

Thermal effects are captured by placing the QFT on a circle

$$S^{1}_{\beta} \times \mathbb{R}^{d-1} \qquad \qquad \beta = \frac{1}{T}$$

With periodic boundary conditions for the bosons

and anti-periodic for the fermions.

In this talk assume we know the zero temperature CFT data:

$$\Delta_{\mathcal{O}}$$
 , $f_{\mathcal{O}_1\mathcal{O}_2\mathcal{O}_3}$

and are interested in computing <u>new</u> finite temperature data: the non-zero *thermal one-point functions*:

$$\langle \mathcal{O}(x) \rangle_{\beta} = \frac{b_{\mathcal{O}}}{\beta^{\Delta_{\mathcal{O}}}}$$

for neutral scalar operators.

And more generally for all traceless symmetric tensors:

$$\langle \mathcal{O}^{\mu_1 \dots \mu_J}(x) \rangle_{\beta} = \frac{b_{\mathcal{O}_J}}{\beta^{\Delta_{\mathcal{O}_J}}} (e^{\mu_1} \dots e^{\mu_J} - traces)$$

We can still use the OPE:

$$\mathcal{O}_{1}(x) \times \mathcal{O}_{2}(0) = \sum_{\mathcal{O}} f_{\mathcal{O}_{1}\mathcal{O}_{2}\mathcal{O}} |x|^{\Delta_{\mathcal{O}} - \Delta_{\mathcal{O}_{1}} - \Delta_{\mathcal{O}_{2}} - J} x_{\mu_{1}} \dots x_{\mu_{J}} \mathcal{O}^{\mu_{1} \dots \mu_{J}}(0)$$

But now the radius of convergence is finite: $|x| < \beta$

$$\cdot \varphi \qquad \cdot \varphi \qquad |x| = \sqrt{r^2 + \tau^2}$$

[Iliesiu, Kologlu, Mahajan, Perlmutter, Simmons-Duffin 2018]

The two-point function of identical scalars, using the OPE

$$\left\langle \phi(\tau, r)\phi(0) \right\rangle_{\beta} = \sum_{\mathcal{O}} f_{\phi\phi\mathcal{O}} \left(\sqrt{r^2 + \tau^2} \right)^{\Delta_{\mathcal{O}} - 2\Delta_{\phi} - J} x_{\mu_1} \dots x_{\mu_J} \left\langle \mathcal{O}^{\mu_1 \dots \mu_J} \right\rangle_{\beta}$$

and the definition of the Gegenbauer polynomials:

$$\begin{split} \langle \phi(\tau, r)\phi(0) \rangle_{\beta} &= \sum_{\mathcal{O}} \frac{a_{\mathcal{O}}}{\beta^{\Delta_{\mathcal{O}}}} \left(\sqrt{r^2 + \tau^2} \right)^{\Delta_{\mathcal{O}} - 2\Delta_{\phi}} C_J^{(\nu)} \left(\frac{\tau}{\sqrt{\tau^2 + r^2}} \right) \\ a_{\mathcal{O}} &= b_{\mathcal{O}} f_{\mathcal{O}\phi\phi} \frac{J!}{2^{J}(\nu)_J} \quad (\nu)_J = \frac{\Gamma(\nu + J)}{\Gamma(\nu)} \quad \nu = \frac{d - 2}{2} \end{split}$$

New Finite Temperature data

Periodicity of the two-point function is captured by [Kubo 1957] the KMS condition: [Martin,Schwinger 1959]

$$\langle \phi(\tau, r)\phi(0,0) \rangle_{\beta} = \langle \phi(\tau+\beta, r)\phi(0,0) \rangle_{\beta}$$

The OPE expression does not manifestly satisfy KMS, thus imposing it gives a nontrivial **"thermal crossing equation"**.

Variations of KMS:

$$\left\langle \phi\left(\beta/2+\tau\right)\phi(0)\right\rangle_{\beta} = \left\langle \phi\left(\beta/2-\tau\right)\phi(0)\right\rangle_{\beta}$$

[El-Showk, Papadodimas 2011]

 $\langle \phi(\tau)\phi(0) \rangle_{\beta} = \langle \phi(-\tau)\phi(0) \rangle_{\beta}$ [lliesiu, Kologlu et al 2018]

Plan of the talk

***** Derive and test thermal Sum Rules.

***** Heavy operators: asymptotic OPE density.

* Setting up the numerical thermal bootstrap.

***** Temporal line defects (Polyakov loops).

Sum Rules

Expand both sides of the El-Showk - Papadodimas formula using the OPE

(KMS is outside of OPE regime)

$$\left\langle \phi\left(\beta/2+\tau\right)\phi(0)\right\rangle _{\beta}=\left\langle \phi\left(\beta/2-\tau\right)\phi(0)\right\rangle _{\beta}$$

***** Then further expand the result in powers of τ and r.

***** Use the definition of Gegenbauer polynomials and the binomial theorem.

$$\sum_{\substack{\emptyset \in \phi \times \phi \text{ New } Known \text{ data}}} \underbrace{b_{\emptyset} f_{\emptyset \phi \phi} F_{\ell,n}(h,J) = 0}_{\substack{n \in \mathbb{N}, \ell \in 2\mathbb{N} + 1 \\ h = \Delta - J}}$$

$$respective Temperature Temperature Temperature$$

$$F_{\ell,n}(h,J) = \frac{1}{2^{h+J}} \binom{\frac{h-2\Delta_{\phi}}{2}}{n} \binom{h+J-2\Delta_{\phi}-2n}{\ell} {}_{3}F_{2} \left[\frac{\frac{1-J}{2}, -\frac{J}{2}, \frac{h}{2} - \Delta_{\phi} + 1}{\frac{h}{2} - \Delta_{\phi} - n + 1, -J - \nu + 1} \right]$$

Similar to the **Gliozzi method** in standard zero temperature conformal bootstrap:

$$\frac{\partial^{2\ell+1}}{\partial \tau^{2\ell+1}} \frac{\partial^n}{\partial r^n} \langle \phi(\tau, r) \phi(0, 0) \rangle_{\beta} \bigg|_{\tau = \frac{\beta}{2}, r = 0}$$

The problem we are solving is **simpler**: we know the zero Temperature data.

We have an infinite set of linear equations for the combinations $a_{\mathcal{O}} \propto b_{\mathcal{O}} f_{\mathcal{O}\phi\phi}$

Difficulty: Thermal one-point functions not sign-definite.

Which is crucial for linear programming methods (standard numerical bootstrap).

The infinite set of linear equations for $a_{\mathcal{O}} \propto b_{\mathcal{O}} f_{\mathcal{O}\phi\phi}$

further simplify for r = 0 (zero spatial coordinates)

$$\frac{\Gamma\left(2\Delta_{\phi}+\ell\right)}{\Gamma\left(2\Delta_{\phi}\right)} = \sum_{\Delta\neq0} \frac{a_{\Delta}}{2^{\Delta}} \frac{\Gamma\left(\Delta-2\Delta_{\phi}+1\right)}{\Gamma\left(\Delta-2\Delta_{\phi}-\ell+1\right)}$$
$$\ell \in 2\mathbb{N}+1$$

$$a_{\Delta} = \sum_{\mathcal{O} \in \phi \times \phi} a_{\mathcal{O}} C_J^{(\nu)}(1) \quad \text{for fixed } \Delta$$

Operators of same Δ but different J cannot be distinguished because of r=0. Generically this does not happen, only when there is extra symmetry like for free theory.

KMS sum rules: test & learn

4-dim free theory

O(N) model at large N

Dashed straight lines: the LHS of the sum rule (identity contribution). The RHS plot adding operators.

 $\frac{\Gamma\left(2\Delta_{\phi}+\ell\right)}{\Gamma\left(2\Delta_{\phi}\right)} = \sum_{\Delta\neq0} \frac{a_{\Delta}}{2^{\Delta}} \frac{\Gamma\left(\Delta-2\Delta_{\phi}+1\right)}{\Gamma\left(\Delta-2\Delta_{\phi}-\ell+1\right)}$

Observation: for small ℓ only few light operators contribute.

Bigger ℓ the more operators we need.

Heavy Operators

We want to bound the OPE density for $\Delta \rightarrow \infty$.

Inspired by [Qiao, Rychkov 2017]

Consider the two-point function at r=0 (zero spatial coordinates):

$$\langle \phi(\tau)\phi(0)\rangle_{\beta} = \tau^{-2\Delta_{\phi}} \sum_{\mathcal{O}\in\phi\times\phi} \frac{a_{\mathcal{O}}}{\beta^{\Delta_{\mathcal{O}}}} \tau^{\Delta_{\mathcal{O}}} = \tau^{-2\Delta_{\phi}} \int_{0}^{\infty} d\Delta \rho(\Delta) \frac{\tau^{\Delta}}{\beta^{\Delta}}$$

via introducing the spectral density

$$\rho(\Delta) = \sum_{\Delta'} \delta(\Delta' - \Delta) a_{\Delta}$$

 $a_{\Delta} = \sum_{\mathcal{O} \in \phi \times \phi} a_{\mathcal{O}} C_J^{(\nu)}(1) \text{ for fixed } \Delta.$

We will need:

The locations of the poles of the two-point function on the real axis:

$$-3eta$$
 $-2eta$ $-eta$ 0 eta $2eta$ $3eta$

due to periodicity.

$$\langle \phi(\tau)\phi(0) \rangle_{\beta} \stackrel{\tau \to k\beta}{\sim} \left(k\beta - \tau\right)^{-2\Delta_{\phi}}$$

Make an **Ansatz** for the asymptotic behaviour of the density

$$\rho(\Delta) \stackrel{\Delta \to \infty}{\sim} A \Delta^{-\alpha}$$

Sensible due to Tauberian theory

Doing the integral

$$\langle \phi(\tau)\phi(0) \rangle_{\beta} \stackrel{\tau \to \beta}{\sim} A \Gamma(2-\alpha)\tau^{-2\Delta_{\phi}} \left(1-\frac{\tau}{\beta}\right)^{\alpha-2}$$

Comparing with the poles of the two-point function

$$\alpha = -2\Delta_{\phi} + 2$$
, $A = \frac{1}{\Gamma(2\Delta_{\phi})}$

$$\rho(\Delta) \stackrel{\Delta \to \infty}{\sim} \frac{1}{\Gamma(2\Delta_{\phi})} \Delta^{2\Delta_{\phi}-1}$$

Interpretation: the asymptotic density of OPE of Heavy operators.

$$\rho(\Delta) \stackrel{\Delta \to \infty}{\sim} \frac{1}{\Gamma(2\Delta_{\phi})} \Delta^{2\Delta_{\phi}-1}$$

Keep in mind, the physical spectrum is discreet $\rho(\Delta) \stackrel{\Delta \to \infty}{\sim} \sum_{\Delta'} \delta(\Delta' - \Delta) a_{\Delta}$

More correctly: average density of OPE of Heavy operators

$$\int_{0}^{\Delta} \rho(\tilde{\Delta}) d\tilde{\Delta} \stackrel{\Delta \to \infty}{\sim} \frac{\Delta^{2\Delta_{\phi}}}{\Gamma(2\Delta_{\phi} + 1)} \left(1 + \mathcal{O}\left(\frac{1}{\Delta}\right) \right)$$

This result is the correct formal math result (Tauberian theorems) with an error.

This was a heuristic derivation (nonetheless captures the intuition).

In the paper we give a rigorous derivation using **Tauberian theorems** under the assumptions:

✤ Unitarity (reality of the OPE coefficients)

*** Boundedness** of the OPE from below (we proved)

 $\bigstar \Delta_{\phi} > 1/2$ which is correct because of unitarity

 a_{Λ}

Free theory in 4d

The exact two-point function:

Tauberian approximation:

$$\langle \phi(\tau)\phi(0) \rangle_{\beta} = \left(\frac{\pi}{\beta}\right)^2 \csc^2\left(\frac{\pi}{\beta}\tau\right)$$

$$\langle \phi(\tau)\phi(0) \rangle_{\beta} \simeq \begin{cases} \int_{0}^{\infty} d\Delta \frac{\Delta^{2\Delta_{\phi}-1}}{\Gamma(2\Delta_{\phi})} \frac{(\beta-\tau)^{\Delta-2\Delta_{\phi}}}{\beta^{\Delta}} & \tau/\beta \ll 1 \\ \\ \int_{0}^{\infty} d\Delta \frac{\Delta^{2\Delta_{\phi}-1}}{\Gamma(2\Delta_{\phi})} \frac{\tau^{\Delta-2\Delta_{\phi}}}{\beta^{\Delta}} & \tau/\beta \sim 1 \end{cases}$$

3d O(N) model at large N

Lagrangian description :

 $\mathscr{L} = \frac{1}{2} (\partial \phi_i)^2 + \frac{1}{2} \sigma \phi_i^2 - \frac{\sigma^2}{4\lambda}$

Hubbard-Stratanovich field

Wilson-Fisher expansion $\epsilon = 4 - d \ll 1$ weakly coupled in large N: $\lambda_* = \frac{8\pi^2}{N+8}\epsilon$

d=3 non-trivial IR fixed point.

The two-point function:

$$\langle \phi_i(\tau, r)\phi_j(0, 0) \rangle_{\beta} = \delta_{ij} \sum_{m=-\infty}^{\infty} \int \frac{d^2k}{(2\pi)^2} \frac{e^{-i\vec{k}\cdot\vec{x} - i\omega_m\tau}}{\omega_n^2 + \vec{k}^2 + m_{th}^2} = \delta_{ij} \sum_{m=-\infty}^{\infty} \frac{e^{-m_{th}\sqrt{(\tau + m\beta)^2 + r^2}}}{\sqrt{(\tau + m\beta)^2 + r^2}}$$

 $\langle \sigma \rangle_{\beta} = m_{th}^2 = \frac{4}{\beta^2} \log^2 \left(\frac{1 + \sqrt{5}}{2} \right)$

Planar 3d O(N) model

$$\langle \phi_i(\tau)\phi_j(0)\rangle_{\beta} = \delta_{ij} \left(\frac{e^{m_{th}(\tau-\beta)}}{\beta-\tau} \,_2F_1\left(\left\{ \begin{array}{c} 1 \ , \frac{\beta-\tau}{\beta} \\ \frac{2\beta-\tau}{\beta} \end{array} \right\} \right| \, e^{-m_{th}\beta} \right) + \frac{e^{-m_{th}\tau}}{\tau} \,_2F_1\left(\left\{ \begin{array}{c} 1 \ , \frac{\tau}{\beta} \\ \frac{\beta+\tau}{\beta} \end{array} \right\} \right| \, e^{-m_{th}\beta} \right) \right)$$

Planar 3d O(N) model

Setting up the Numerics

Numerical method for sum rules

Our current approach (working well for all theories tested):

Inspired by [Gliozzi 2013] [Poland, Prilepina, Tadic' 2023] [W. Li 2023]

- 1. Input: zero Temperature spectrum and Output: $a_{\Delta} \& c_i$.
- 2. Truncate the sum + improved Tauberian asymptotic:

$$f(\ell) = \sum_{\Delta < \Delta_H} a_{\Delta} F(\Delta, \ell) + \sum_{\Delta > \Delta_H} a_{\Delta}^T F(\Delta, \ell)$$
$$a_{\Delta}^T \sim \frac{\Delta^{2\Delta_{\phi} - 1}}{\Gamma(2\Delta_{\phi})} \delta \Delta \left(1 + \frac{c}{\Delta} + \dots \right)$$

3. Numerically minimize with "random" coefficients the square of the sum rules. Γ

$$\min\left[\sum_{\ell\leq\ell_{max}}r_{\ell}\ f^{2}(\ell)\right]$$

Random coefficients

Free theory in 4d

2D Ising $\langle \sigma \sigma \rangle_{\beta}$

²⁷

Planar O(N) model

The Ising fixed points

Temporal line defects

Polyakov loops

Polyakov loops are temporal Wilson loops wrapping the thermal circle

They were introduced as a criterion for confinement. [Polyakov 1978]

- * In the weak coupling using standard Feynman diagram techniques.
- * In the strong coupling using holography (early days of AdS/CFT).

Can use the thermal bootstrap to compute them?

Temporal line defects

The line defects can be studied using "thermal" 1d defect CFT methods.

OPE from bulk to defect
Zero temperature data

$$\mathcal{O}(\tau, \vec{x}) = \sum_{\hat{\mathcal{O}}^{i_1...i_s}} \mu_{\mathcal{O}\hat{\mathcal{O}}} |\vec{x}|^{\hat{\Delta} - \Delta - s} x_{i_1}...x_{i_s} \hat{\mathcal{O}}^{i_1...i_s}(\tau)$$

"Thermal" 1d defect CFT, non-perturbative exact result: $\langle \mathscr{O}(\tau, \vec{x}) \mathscr{P} \rangle_{\beta} = \sum_{\hat{\mathcal{O}}^{i_1 \dots i_s}} \underline{b}_{\hat{\mathcal{O}}} \mu_{\mathcal{O}\hat{\mathcal{O}}} \frac{|x|^{\hat{\Delta} - \Delta}}{\beta^{\hat{\Delta}}}$ New finite Temperature vevs of 1d defect CFT Zero temperature data

 $\langle \phi(\beta/2 - \tau, \overrightarrow{x}) \phi(0, \overrightarrow{x}) \mathscr{P} \rangle_{\beta} = \langle \phi(\beta/2 + \tau, \overrightarrow{x}) \phi(0, \overrightarrow{x}) \mathscr{P} \rangle_{\beta}$

The sum rules obtained are of the form:

New finite Temperature vevs of 1d defect CFT

Zero temperature data

 $|\vec{x}|$

Defect thermal sum rules are very similar to their bulk counterparts.

Where we currently are

***** Derived and tested thermal Sum rules.

***** Heavy operators: asymptotic OPE density.

***** Setting up the numerical bootstrap.

Temporal line defects (Polyakov loops).

Where are we going?

***** More theories 3D Ising, $\mathcal{N}=4$ SYM, ...

***** Study the $S^1 \times S^{d-1}$ geometry.

***** Black holes, hydro and CFT data.

* Numerical approach for temporal line defects.

Thank you!