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Motivation
Set-up

Stueckelberg
trick

Charges . . Ward . )

g asymptotic symmetries ———  subleading/loop corrections for soft theorems
id.
Recursion !
relations
[Campliglia,Ladha,Strominger,Lysov, Pasterski,Peraza, Donnelly,Freidel, Speranza, Geiller, Pranzetti, Ciambelli, Leigh,

Infinite Pai,Oliveri,Speziale,Raclariu,Zwikel,Sahoo,Sen,Krishna,Pasterski,Donnay,Nguyen, Ruzziconi,Agrawal, Choi,Puhm,
algebras Bhatkar,Bianchi,He,Huang,Wen,Mitra,Conde,Mao,Wu,Bern,Davies,Di Vecchia,Nohle.....]

Qe ® Important ingredient for flat space holograph

universal soft P g P graphy

limits
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Motivation

Strange symmetries

. . Ward .
asymptotic symmetries ——  subleading soft theorems
id.

lim Appy = (5@ 4+ 50 1 )A,
Jim An1 (58 +s%+..) +

universal +  non-universal

Example: subleading order gauge theory extracted via

(1 + wdy)Ans1 = SMA,

lim
w—0

was shown to arise as a Ward identity for an overleading gauge parameter

[Campiglia,Laddha]
/\(f, u, 272) = I’/\]_(Ll, Zz, 2) + AO(U7272)
Violates the fall-off of the fields

A (r,u,z,z) = A(ZO)(u, 2,Z) + ...
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Motivation

Goals

. . Ward .
asymptotic symmetries ——  subleading soft theorems
id.

lim Apiq =(15@+s®M 4 Ha,  +
w—0

universal 4+  non-universal

® Goal 1: extend phase space such that symmetries act canonically (at all
orders)

® Goal 2: consequences for soft theorems
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® Work in Yang-Mills
Set-up D'u]:“y = Jy (= O)
® Arbitrary gauge choice, coordinates x = (t,¥), usually Bondi (r, u, z, Z).

® Very general expansion for
k
— k), log T
Ap =Y ATE)
nk

with n, k such that lim, o A, at most O(1).

® Phase space

o= {QLO\With 2A° constrained by e.o.m. and gauge choice }
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Set-up

Divergent gauge parameter

Standard large gauge transformations give leading order soft theorems
A©) = AO)(y)

General divergent gauge parameter

A(x) =) e"loghe AH(g) |

n,k

May also be field dependent Ay = A4 (AL (x), Ay (x))
Violates gauge field fall-off
Need new objects on which these symmetries act canonically.

Helps to think of problem as a symmetry breaking...
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® Stueckelberg trick: originally introduced to restore broken local symmetry
in e.g. massive theories
tsrtizECke'be'g ® Promote gauge parameter of symmetry we want to restore to a field

A(x) = W(x),

with
V(x) = Zt"logkt vk (g).

n,k

® the phase space is now
ret =10 x {w(x)}

® VY is Goldstone-type field
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Stueckelberg
trick

Consistency relation

WV comes from the bulk

Dressed gauge field
-A~[l4 — ei‘UAHe—ilU + I-ei“laue—ilu
Consistency condition: ~ -
oAy = Dy

where
A=AO 4 A,

The transformation of A, is unchanged, and the overleading
transformations only transform W.
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Stueckelberg
trick

Stueckelberg field transformation

The Stueckelberg (Goldstone) field transforms as
W = 01 (A— eVAQ e V)

with
(e o)

1— e 3% (—1)*
Ox = =
adX (k —+ 1)

!(adx)k

and its inverse

-1 oo
1— e*adX B'*'ad’”
-1 _ — me=X
(OX) - ( adyx > Z m!

m=0

where B;f are the Bernoulli numbers

10/28



Extended
phase space
for
sub”-leading
soft theorems

Silvia Nagy

Stueckelberg
trick

Stueckelberg field transformation

The Stueckelberg (Goldstone) field transforms as
AW =08 (A— eVAQ e V)

Perturbatively

m B
oW = = (ad_ i)™ [N+ (—1+ 26 1)AO]
m! ’
at Oth order in the field, it transforms via a shift
SO = A =A@ = A,

i.e. Goldstone modes for the symmetry breaking in the bulk.

recall that
sz+1 =0, for k>0

i.e. only even powers of the fields will contribute to the transformation
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® The bulk action,
S[AL = / tr (]—N'W,]?“”) dvol,
D

s where FH is constructed from ./LL, and takes the form
ﬁuy = 6,U,Au — ayﬂu - i[A#,Au] = eiw]:uueiiw

® same as without W, but apply covariant phase space formalism on the
tilded objects

QPuk[sy, 8] = — / tr (51#” A 52A,,) ds, — (1 + 2),
X
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Silvia Nagy ® Covariant phase space formalism gives:

Qa =/ay tr(AFH)dS,,.
X

Charges

Figure: Cauchy Surfaces ¥, ¥, with to < t1, and constant u ray.
Reach Z% by taking r — 400 with u fixed.
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n = / tr(AF) /B2 dzdz.
S2
® We can now define the charge density
Charges

an = tr (vEsiAFn)

In terms of the original field strength, the charge density is

an =tr (Vashe Fre ™)

=tr (Jg?e"’w/\e"w}'m) ©

® Charge algebra
{@n,, 80, } = @—ifag 0]
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Silvia Nagy _ -~ 1
‘AH(uv r,z, Z) = ZA(H n)(u7 z, Z)Fa

nez

® Further expand in u (dual of energy)
k
_ —nk),_ =\ U

Au(u,r,z,z) = Z AL n )(z,z)ﬁ,

n,kEZ

Recursion
relations ® The overleading gauge parameter and Stueckelberg field also have a simpler

expansion in this case

Ap(u,r,z,2) = Z rk/\(f)(u7 2,7)

o0
V(u,r,z,z) = Z rk\Il(k)(u7 2,2)

® Work in radial gauge
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Recursion
relations

Recursion relations to all orders

® Using e.o.m. and Bianchi idenities, we find

AEf") depends on

{A

AE_") depends on A

Ao

A( k)}k< and A(fn’o)

N AAT AR A, and ALO),

ach

—-n—1

-n+1 n+2 —n+3
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® the standard u — —oo fall-offs for the radiative data A(ZO),
A(ZO)(LI, z,Z) = A(ZO’O)(Z,E) + o(u™°),
translates to
vl ow>) | FY F9
o | FzY FGY RGP FD
O(u) F;? F? .Y FCD FCY FC2
ow) | FGY FLYEGY PR SV FLY
O(U") FL(’Z—n—l) FLE;H_I) F£|_|_"_2) Fz(;n) Fr(z—n—l) F,(;n_l)

Table: fall-offs in u
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Recursion
relations

® on the celestial sphere (i.e., If), the charge is the limit r — 400 and

Charges revisited

u — —oo in the quantity

Sub”-
leading

charge

@A:/ tr(AF ) r?v,zdzdz.
S2

Truncation

A 4
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® Explicitly, recursion for charges
9 (n) p(~2-n)
q/\(") = Tr (A Fru
n—j _ 0
a0 = 1w (AG)y{n}
Recursion ® Truncated charge algebra : for 0 < j, k < n,
relations

. —k—j
n—k n—j n . ; ifj+k<n
{'a \w, a0t = 9 A0 TSRS
AT 0 otherwise.

With this result, we have a closed Poisson algebra, p, such that the action
of the charges is canonical and we have the following chain

Ppo C ... CPn—1 C Ppn-

® Truncation of
{Gn> 80y} = Gifng g
® match previous results for n =1 YM and electromagnetism [Campiglia,Peraza]
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Infinite algebras

® infinite dimensional YM version of the wy, algebra

[$5°(2). S3°(2)] = —i F228010714(2)

c~m+n

® Following procedure from [Freidel,Pranzetti,Raclariu], construct

s
1+5,a _ S _,_5
5,,,7,,2 P = | dzdzz™ 22" 2 re

where
renormalised

T ¢—— Rs

and the charges Rs satisfy some recursion relations which are a subset of

out recursion relations, corresponding to the self-dual sector.

20/28



Extended
phase space
for
sub”-leading
soft theorems

Silvia Nagy

Infinite
algebras

Infinite algebras
® infinite dimensional YM version of the wy . algebra

c~m+n

[SP a( ) SL‘I, (z)} _j fabgpta— 1C( )
® Following procedure from [Freidel,Pranzetti,Raclariu],

14+2,a
3
Sm,n — 1

where we have restricted to the self-dual sector via
0
=AY
r2 = r2(A0, AY)
0 0 0
2 =AY, 4D, AD)

s

where A, corresponds to the positive helicity, and Az to the negative
helicity modes.
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Infinite
algebras

Infinite algebras to boring algebras

infinite dimensional YM version of the wi; algebra

Recall that including all the charges we just get the gauge algebra

[S5°(2). S5°(2)] = ~i F2SE10< ()

{Gnys An} = G—ijng 0]

Anything in between ?

Similar for gravity.

oo algebra

gauge algebra

self-dual

full
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Quasi-
universal soft
limits

Back to soft limits

Soft theorems

lim Aps1 = (15O + s+ H)A
wIE:O +1 (w + + ) n + ,

universal +  non-universal

universal terms come from symmetries
in some simple cases non-universal terms vanish

Focus on subleading via

lim (14 wdw)An1 = SWA, +
w—0

take a more interesting scenario

lim (1 4+ wdyw)Ant1 = S(I)A,, + quasi-universal
w—0
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universal soft
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Quasi-universal terms from symmetries

QED with higher derivative interactions, e.g. ¢F? [Elvang,Jones Naculich]

lim (1 + wd)An1 = SWA, + ZD[A,]
w—0

where S() is the usual

5(1) = —iez Qk
k=1

and 5 is an operator

pt'el
P -

Tk
ps Y

where Fy is a particle changing operator.
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lim (14 wdw)An1 = SPA, + SW[A,]
w—0
® [Laddha Mitra] showed that both S() and 5! follow as a Ward identity for an
gauge symmetry which violates the fall-off of the fields
Nu,r, z,2) = rN(z,Z) + g(o2 +2)A(z, zb)
and, schematically, the symplectic potential
Q i-
unuiizlrsal soft 9(907 690) = gold((Pv 6@) + enew(@, 590)
limits

® Oo(p, d¢p) gives the universal soft factor
® Onew(p, d¢p) is subleading relative to 6,4(p, d¢) for a standard dj,

® it becomes of the same order when we allow §,5 and gives the
quasi-universal term
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universal soft
limits

Quasi-universal terms in extended phase

space

Jim (14 w8.,)Ani1 = sWa, + 504,

Overleading part of gauge parameter acts on the Stueckelberg field
Nu,r,2,2) = r\(z,2) + g(D2 +2)A(z, zb)

the symplectic potential is dressed with the Stueckelberg fields

0(p,6B) = bota (B, 6P) + Onew (P, 63)

Universal and (mildly) non-universal terms arising from symmetries acting
canonically on an extended phase space

Different gauge choices can simplify things !
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Future directions

More structure from symmetries
. _ Ward identit . . .
E t"logke AR (§) e e, universal+(mildly non-universal) terms
n,k

Loop corrections

Procedure is quite general, currently extending to gravity
[Geiller,SN,Peraza,Pizzolo].

= L

g=e"Vg.

where we have a Stueckelberg vector coming from the diffeo parameter

FER VL
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Quasi-
universal soft
limits

Thank You !
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