RESURGENCE IN CFT IN 2D

Minimal models and beyond?

TOMÁS REIS work with A. Bissi, N. Dondi, A. Piazza, M. Serone

2nd September 2024, University of Southampton

SISSA & INFN, Trieste

INTRODUCTION

INTRODUCTION

Resurgence in an instant 2d CFT at large charge Conclusion

Resurgence of resurgence

- Resurgence has been very successful in Quantum Mechanics and weak coupling expansions in Quantum Field Theory.
- A developing frontier for application of resurgence is CFTs. There have been developments in N = 4 SYM and SCFTs [Dorigoni et al., Perlmutter et al.], 3d sigma models [Reffert et al.], and two dimensional CFTs.
- We want to focus on the last case, CFT₂ in the large central charge *c* expansion. We expand the direction of [Benjamin Collier Maloney Merulyia '23], which is related to the work of [Fiztpatrick Kaplan et al. '14 '16]. Last week a new paper of [Benjamin et al.] came out which is also related.

It was quantum gravity all along

- A big motivation is AdS/CFT. The large charge expansion of the CFT is related to the weak coupling expansion (small G_N) in gravity. So by studying the more accessible CFT side we have a model for resurgence in the much harder graviton expansions in quantum gravity.
- We specialize to two dimensions because of many powerful exact techniques in CFT₂. Minimal models provide very simple cases where we can do the analysis thoroughly. The history of resurgence suggests that we should start from the simpler solvable models.
- Note that even though there are no gravitons in AdS₃, there is a small G_N perturbation theory from offshell virtual gravitons.

RESURGENCE IN AN INSTANT

INTRODUCTION RESURGENCE IN AN INSTANT

2D CFT AT LARGE CHARGE CONCLUSION

In Borel space nobody can hear you diverge

Many if not most series in QFT are asymptotic, i.e. divergent (Dyson 1953). Typically they are of the form:

$$F_N(g) = \sum_{k=1}^N a_k g^k, \qquad a_k \sim A^{-k} k! \quad k \gg 1.$$
 (2.1)

In Borel space nobody can hear you diverge

Many if not most series in QFT are asymptotic, i.e. divergent (Dyson 1953). Typically they are of the form:

$$F_N(g) = \sum_{k=1}^N a_k g^k, \qquad a_k \sim A^{-k} k! \quad k \gg 1.$$
 (2.1)

We can try **Borel (re)summation** (1899). The Borel transform of a series is given by

$$\varphi(z) \approx \sum_{k \ge 0} c_k z^k \to \widehat{\varphi}(\zeta) = \sum_{k \ge 0} \frac{c_k}{k!} \zeta^k$$
(2.2)

In Borel space nobody can hear you diverge

Many if not most series in QFT are asymptotic, i.e. divergent (Dyson 1953). Typically they are of the form:

$$F_N(g) = \sum_{k=1}^N a_k g^k, \qquad a_k \sim A^{-k} k! \quad k \gg 1.$$
 (2.1)

We can try **Borel (re)summation** (1899). The Borel transform of a series is given by

$$\varphi(z) \approx \sum_{k \ge 0} c_k z^k \to \widehat{\varphi}(\zeta) = \sum_{k \ge 0} \frac{c_k}{k!} \zeta^k$$
(2.2)

If φ is Borel summable, we recover a well defined function $\varphi(z)$ from the Borel sum

$$s(\varphi)(g) = \int_0^\infty e^{-\zeta} \widehat{\varphi}(g\zeta) d\zeta.$$
 (2.3)

But in most physical theories this is not enough.

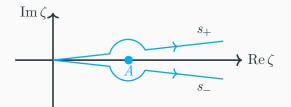
Ambiguity strikes back

If we Borel transform the example from before with A>0

$$F_p(g) \sim \sum_{k \ge 0}^{\infty} (A^{-k}k!)g^k \Rightarrow \widehat{F}(\zeta) = \frac{1}{1 - \zeta/A}$$
(2.4)

There's a pole on \mathbb{R}^+ ! We can deform the contour to go slightly above or below the real axis. But an ambiguity remains

$$s_{+}(F)(g) - s_{-}(F)(g) = 2\pi i A g^{-1} e^{-A/g}$$
 (2.5)



But the asymptotic series is not complete. There can be non-perturbative contribution which appear as suppressed non analytic terms, such as $e^{-1/g}$.

But the asymptotic series is not complete. There can be non-perturbative contribution which appear as suppressed non analytic terms, such as $e^{-1/g}$.

Incorporating these effects introduces trans-series

$$\Phi(z) = \sum_{k \ge 0} c_k g^k + \sum_i C_i^{\pm} e^{-A_i/g} g^{b_i} \sum_{k \ge 0} c_k^{(i)} g^k + \cdots$$
(2.6)

But the asymptotic series is not complete. There can be non-perturbative contribution which appear as suppressed non analytic terms, such as $e^{-1/g}$.

Incorporating these effects introduces trans-series

$$\Phi(z) = \sum_{k \ge 0} c_k g^k + \sum_i C_i^{\pm} e^{-A_i/g} g^{b_i} \sum_{k \ge 0} c_k^{(i)} g^k + \cdots$$
(2.6)

Furthermore the Borel sum can turn out to be discontinuous for physical values of the variables. This is compensated by the trans-series parameters C_i^{\pm} .

But the asymptotic series is not complete. There can be non-perturbative contribution which appear as suppressed non analytic terms, such as $e^{-1/g}$.

Incorporating these effects introduces trans-series

$$\Phi(z) = \sum_{k \ge 0} c_k g^k + \sum_i C_i^{\pm} e^{-A_i/g} g^{b_i} \sum_{k \ge 0} c_k^{(i)} g^k + \cdots$$
(2.6)

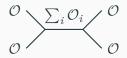
Furthermore the Borel sum can turn out to be discontinuous for physical values of the variables. This is compensated by the trans-series parameters C_i^{\pm} .

Resurgence helps both **make sense** of what we know and **explore** what we don't know.

2D CFT AT LARGE CHARGE

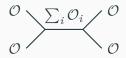
INTRODUCTION RESURGENCE IN AN INSTANT 2D CFT AT LARGE CHARGE CONCLUSION

Fantastic Four point functions



The four-point function in a CFT can be expanded as an OPE, $\langle \mathcal{O}(0)\mathcal{O}(z)\mathcal{O}(1)\mathcal{O}(\infty)\rangle = |\mathcal{F}_{\mathbb{I}}(c,z)|^2 + \sum_{i} C_{\mathcal{OO}i} |\mathcal{F}_{i}(c,z)|^2$ (3.7)

Fantastic Four point functions



The four-point function in a CFT can be expanded as an OPE, $\langle \mathcal{O}(0)\mathcal{O}(z)\mathcal{O}(1)\mathcal{O}(\infty)\rangle = |\mathcal{F}_{\mathbb{I}}(c,z)|^2 + \sum_{i} C_{\mathcal{OO}i} |\mathcal{F}_{i}(c,z)|^2$ (3.7)

And it is also known that (in certain setups), the blocks \mathcal{F}_i admit an expansion as an asymptotic series in 1/c

$$\mathcal{F}_i(c,z) \sim e^{cS_i(z)} \sum_{n \ge 0} \frac{f_n(z)}{c^n}$$
(3.8)

So the 4pt function has a trans-series structure. Can blocks "discover each other" through asymptotic behaviour?

minimalism

Minimal models are constructed with a finite number of (degenerate) operators constrained by Virasoro symmetry. For the simplest case we take the operator $\phi_{2,1}$, whose OPE is constrained to be $\phi_{2,1} \times \phi_{2,1} = \phi_{1,1} + \phi_{3,1}$ (where $\phi_{1,1} = \mathbb{I}$)

$$\langle \phi_{2,1}\phi_{2,1}\phi_{2,1}\phi_{2,1}\phi_{2,1}\rangle = |\mathcal{F}_{1,1}(c,z)|^2 + g(c) |\mathcal{F}_{3,1}(c,z)|^2$$
 (3.9)

The identity block is known exactly

$$\mathcal{F}_{1,1}(z,b^2) = z^{1+\frac{3b^2}{2}}(1-z)^{-\frac{b^2}{2}} {}_2F_1\left(-b^2, 1+b^2, 2+2b^2; z\right),$$
(3.10)

where $c = 13 + 6(b^2 + b^{-2})$. From now on, we change $b^2 = 1/\epsilon - 3/2$, keep in mind $\epsilon \sim \mathcal{O}(1/c)$.

While saddle point techniques are available, they are cumbersome. Instead, by using the BPZ differential equations one can find explicitly the asymptotic series at finite *z*,

$$\mathcal{F}_{1,1}(z,b^2) \sim z^{-\frac{5}{4} + \frac{3}{2\epsilon}} (1-z)^{\frac{3}{4} - \frac{1}{2\epsilon}} e^{(1-\frac{1}{\epsilon})S_0(z)} A_0(z) \sum_{n \ge 0} f_n(r(z)) \epsilon^n$$
(3.11)

where

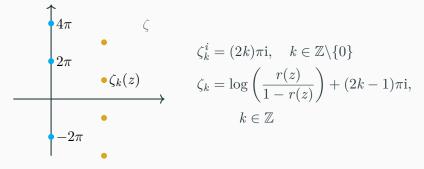
$$S_{0}(z) = \frac{1}{2} \left(\log \left(\frac{1 - r(z)}{r(z)} \right) + \log \left(\frac{z^{2}}{(z - 1)^{2}} \right) + \log \left(\frac{27}{16} \right) \right),$$

$$A_{0}(z) = (1 - (1 - z)z)^{-\frac{1}{4}}, \quad r(z) = \frac{1}{4} \left(\frac{(z - 2)(z + 1)(1 - 2z)}{((z - 1)z + 1)^{3/2}} + 2 \right).$$
(3.12)

And the Borel transform of the f_n series is

$$\widehat{\varphi}(r(z),\zeta) = \frac{5r\zeta}{36} \,_2F_1\left(\frac{7}{6},\frac{11}{6};2;r(z)(1-e^{-\zeta})\right). \tag{3.13}$$

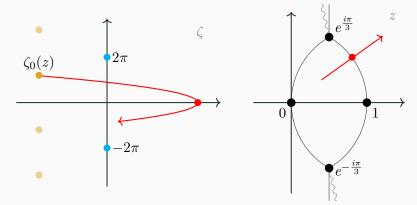
At any value of z, in the Borel plane dual to ϵ there are two families of singularities,



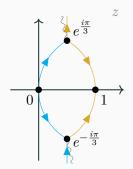
The Stokes jump at ζ_k give the same series with $z \to 1 - z$.

From \mathcal{B} to z

The map r(z) leads to non-trivial lines in the z-plane. These lines happen when the a singularity crosses the positive real line. Similar to WKB (see Aoki et al.).

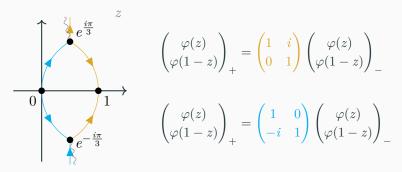


These jumps are Airy-like when appropriately normalized.



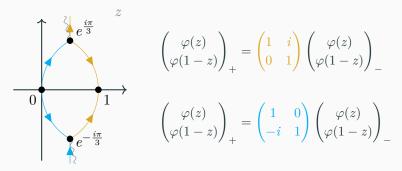
$$\begin{pmatrix} \varphi(z) \\ \varphi(1-z) \end{pmatrix}_{+} = \begin{pmatrix} 1 & i \\ 0 & 1 \end{pmatrix} \begin{pmatrix} \varphi(z) \\ \varphi(1-z) \end{pmatrix}_{-}$$
$$\begin{pmatrix} \varphi(z) \\ \varphi(1-z) \end{pmatrix}_{+} = \begin{pmatrix} 1 & 0 \\ -i & 1 \end{pmatrix} \begin{pmatrix} \varphi(z) \\ \varphi(1-z) \end{pmatrix}_{-}$$

These jumps are Airy-like when appropriately normalized.



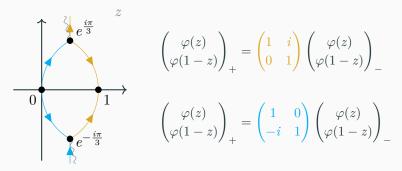
What is the physics of $\varphi(1-z)$?

These jumps are Airy-like when appropriately normalized.



What is the physics of $\varphi(1-z)$? If we take $z \to 0$, we have $\varphi(1-z) \sim z^{-\frac{1}{\epsilon}+\frac{3}{4}}$ which predicts the conformal weight of the (3,1) block!

These jumps are Airy-like when appropriately normalized.



What is the physics of $\varphi(1-z)$? If we take $z \to 0$, we have $\varphi(1-z) \sim z^{-\frac{1}{\epsilon}+\frac{3}{4}}$ which predicts the conformal weight of the (3,1) block! With the exact answer, we check that it is the perturbative series of the trans-series for $\mathcal{F}_{3,1}$, when z is small.

If we write the four point function in terms of the asymptotic series

$$\langle \phi_{2,1}\phi_{2,1}\phi_{2,1}\phi_{2,1}\phi_{2,1}\rangle = f(\epsilon) \begin{pmatrix} \varphi(z)\\ \varphi(1-z) \end{pmatrix}^T \cdot \mathcal{M} \cdot \begin{pmatrix} \varphi(z)\\ \varphi(1-z) \end{pmatrix}.$$
 (3.14)

The matrix \mathcal{M} can be fixed by demanding invariance under Stokes jump. This is a stronger requirement than single valuedness of the four-point function.

There are many ways of fixing this four-point function (e.g. crossing) but this suggests that we can constraint observables from resurgence.

CONCLUSION

INTRODUCTION RESURGENCE IN AN INSTANT 2D CFT AT LARGE CHARGE CONCLUSION

Future directions

- We still have more to do! More complicated minimal model (e.g. φ_{3,1}) where not all is analytically available, unitary non-minimal models (numerically through Zamolodchikov recursion relations, an analysis already initiated in Benjamin et al. for z → 0).
- A more specific holographic interpretation of this relation (particularly in unitary non-minimal models) could give insights into resurgence in quantum gravity. In Benjamin et al., they identify a Borel singularity which they associate to unphysical excess angle geometry. Could there be more? Can black holes be seen?
- Are some of these insights valuable for higher dimensions?

Thank you!