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Motivation

• The study of integrated correlators of primary operators in 4d
superconformal gauge theories has received an increasing attention as
one the most suitable framework to explore non-perturbative physics.

• Various interesting tools: supersymmetric localization, conformal
bootstrap, modularity, resurgence.

• In N = 4 SYM theory they have been deeply investigated: large-N
expansion, exact and modular properties, general gauge groups,
large-charge limit, in the presence of a Wilson line, . . .

∂4
m logZN=2∗|m=0 =

∫ 4∏
i=1

dxi µ({xi}) ⟨O2(x1) . . .O2(x4)⟩N=4

[Chester, Pufu, 2020] . . .

• Holography: scattering of closed strings in Type IIB string theory on
AdS5 × S5.
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Motivation

• Much progress has also been made in N = 2 superconformal gauge
theories.

• In particular, integrated correlators were studied in a N = 2 SCFT
with Sp(N) gauge group, one anti-symmetric hypermultiplet and four
fundamental ones with SO(8) flavor symmetry. [Behan, Chester, Ferrero, 2022]

• This theory is dual to N D3 branes, 4 D7 branes, and an O7 plane in
Type IIB string theory.

• Specifically, in the large-N limit the four-point function of flavour
multiplets is dual to the scattering of SO(8) open string gluons on
AdS5 × S3. [Alday, Chester, Hansen, Zhong, 2024]

[Alday, Hansen, 2024]
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The D theory

• We consider a N = 2 SCFT, dubbed D theory, with SU(N) gauge
group, two anti-symmetric hypers, four fundamental and U(4)
flavour symmetry.

• In Type IIB string theory this model can be engineered with N
fractional D3-branes in a Z2-orbifold probing an O7-orientifold
background and with four D7 branes plus their orientifold images.

• Flavour group of the four fundamental hypers
• Gauge group of the D7 branes world-volume theory

U(4)

• Also in this case the D7-sector consists of open string states which in
the large-N limit propagate on AdS5 × S3. Among these states there
are the U(4) gluons.
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The D theory

• The U(4) gluons are dual to operators of dimension 2 quadratic in the
scalars of the fundamental hypers of the SCFT, i.e. moment-map
operators J belonging to the flavor current multiplet.

• Integrated 4-point functions can be studied exploiting localization

∂mA
∂mB

∂mC
∂mD

logZD∗ |m=0 =

∫ 4∏
i=1

dxi µ′({xi}) ⟨J A(x1) . . .J D(x4)⟩D

µ′({xi}) fixed by superconformal symmetry [Chester, 2022]

Holographically similar to Sp(N) theory, but different SCFTs. We expect a
similar behaviour at strong coupling for these correlators, but this is very
tough to verify : much more involved matrix model!
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The massless matrix model

In the large-N limit at fixed λ ≡ g2
YMN we have

ZD =

∫
da e−tr a2−Sint����XXXX|Zinst |2

[Pestun, 2007]

where a are N × N Hermitian matrices and

Sint = 4
∞∑
k=1

(
− λ

8π2N

)k+1
(22k − 1)

ζ2k+1

k + 1
tr a2k+2 ⇐= Sp(N) theory

+ 2
∞∑
k=1

k−1∑
ℓ=1

(−1)k
( λ

8π2N

)k+1
(

2k + 2
2ℓ+ 1

)
ζ2k+1

k + 1
tr a2ℓ+1tr a2k−2ℓ+1

︸ ︷︷ ︸
SE
int ⇒ N = 2 SU(N) SCFT with 1 symm+1 antisymm hypers
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The massless matrix model

In this case an efficient strategy is to perform the change of basis

trak =

(
N

2

) k
2
⌊ k−1

2 ⌋∑
ℓ=0

√
k − 2ℓ

(
k
ℓ

)
Pk−2ℓ︸ ︷︷ ︸

orthonormal for N→∞

+ ⟨trak⟩0︸ ︷︷ ︸
VEV in free matrix model

[Beccaria, Billò, Galvagno, Hasan, Lerda, 2020]

so that one gets an exact expression for Sint for all values of λ

Sint = −1
2

∞∑
k,ℓ=1

P2k+1 X2k+1,2ℓ+1 P2ℓ+1 −
∞∑
k=1

Y2k P2k

Xk,ℓ = −8(−1)
k+ℓ+2kℓ

2
√
k ℓ

∫ ∞

0

dt

t

et

(et − 1)2
Jk

( t√λ

2π

)
Jℓ

( t√λ

2π

)
Y2k = (−1)k+1 2

√
2k

∫ ∞

0

dt

t

et

(et + 1)2
J2k

(√λ t

π

)
− δk,1

√
2 log 2
4π2 λ
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1- and 2-point functions

This result allows us to find

〈
P2n

〉
D = Y2n +

√
2n

2N

(
Y 2 − 2λ∂λ FE

)
+ O

( 1
N2

)
〈
P2n P2m

〉
D −

〈
P2n

〉
D

〈
P2n

〉
D = δn,m +

√
2n

√
2m Y
N

+ O
( 1
N2

)
with

Y ≡
∞∑
k=1

√
2k Y2k =

∫ ∞

0

dt

t

et

(et + 1)2

[√
λ t

π
J1

(√λ t

π

)]
− log 2

2π2 λ

FE =
1
2
tr log

(
1 − X

)
+ O

( 1
N2

)
They will be useful in a moment!
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The massive matrix model

We consider a mass-deformation of the D theory, giving mass to the four
fundamental hypers. The small-mass expansion of the massive matrix
model in the large-N limit becomes

ZD∗ =

∫
da e−tra2

e−Sint−
∑4

i=1 m
2
i S2−

∑4
i=1 m

4
i S4+O(m6)

where S2 and S4 are single-trace deformations. We can have three different
mass combinations for the fourth order derivatives of FD∗ = − logZD∗

−∂4
mi
FD∗

∣∣∣
m=0

= −24
〈
S4
〉
D + 12

〈
S 2

2
〉
D − 12

〈
S2
〉2
D

−∂2
mi
∂2
mj
FD∗

∣∣∣
m=0

= 4
〈
S 2

2
〉
D − 4

〈
S2
〉2
D

−∂m1∂m2∂m3∂m4FD∗

∣∣∣
m=0

= 0
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The massive matrix model

We need to compute the r.h.s. of these equations : write S2 and S4 in
terms of the P operators. We find exact expression in the coupling λ for
the first three 1/N orders

S4 = −N

12
4π√
λ

Z(3)
1 − 1

12

∞∑
k=1

(−1)k
√

2k Z(4)
2k P2k

− 1
24N

[√
λ

4π
Z(5)

1 +
1
6

( √
λ

4π

)2
Z(6)

2

]
+ O

( 1
N3

)
S2 =

∞∑
k=1

(−1)k
√

2k Z(2)
2k P2k

with

Z(p)
n =

∫ ∞

0

dt

t

et t p

(et − 1)2
Jn
(√λ t

2π

)
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Results

We finally evaluate their VEVs and get

−∂4
mi
FD∗

∣∣∣
m=0

∼
λ→∞

16π2

λ
N + 3 log λ+ 6γ − 6 log(4π)− 3 ζ3 + 11

+
3

4N

(
1 − 2 log 2

π2 λ
)
+ O

( 1
N2

)
−∂2

mi
∂2
mj
FD∗

∣∣∣
m=0

∼
λ→∞

log λ+ 2γ − 2 log(4π)− 2 ζ3 +
11
3

+
1

4N

(
1 − 2 log 2

π2 λ
)
+ O

( 1
N2

)
[Billò, Frau, Lerda, Pini, PV, 2024]

• Weak coupling =⇒ Completely different from Sp(N) theory
• Strong coupling =⇒ Similar to Sp(N) theory (the asymptotic

expansion of Z(p)
n cancels out the double-trace effect)

These results furnish constraints for the dual gluon amplitudes in AdS
[Alday, Chester, Hansen, Zhong, 2024]
[Alday, Hansen, 2024]
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Conclusions and outlook

We studied the derivatives of the free energy of the D∗ theory in the
large-N expansion, obtaining exact expressions in λ and derived their strong
coupling limit.

• It would be interesting to find a systematic way to compute higher
orders in the 1/N expansion.

• It would be important to explore the large-N limit at fixed
Yang-Mills coupling, where the instantons cannot be neglected. It
would be very interesting to check whether they provide the
completion of the perturbative results into modular functions.

• Studying the strong coupling expansions in terms of Bessel functions
we have shown that they include only a finite number of terms. It
would be interesting to apply the Cheshire cat resurgence methods
to determine the non-perturbative corrections O

(
e−

√
λ
)
.
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Thanks for your attention!
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Backup slides
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U(4) flavour group

Let us show how the Z2-orbifold projection acts on the initial SO(8) gauge
group of the eight D7-branes in the orientifold background. Let Λ be a
Hermitian anti-symmetric 8 × 8 Chan-Paton matrix in the so(8) algebra.
Under the Z2-orbifold it transforms as

Λ → γ Λ γ−1 with γ =

(
0 −i 1
i 1 0

)
[Gimon, Polchinski, 1996]

where we have written the matrix in 4 × 4 blocks. Thus, Λ is invariant
under the orbifold only if it takes the form(

A i S
−i S A

)
with At = −A , A∗ = −A , St = S , S∗ = S

Matrices of this form represent the embedding into so(8) of a u(4)
Hermitian matrix A + S.
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U(4) mass combinations

In the D∗ theory we restrict the masses to be along the four Cartan
directions of U(4) labeled by i = 1, . . . , 4. To find the U(4) invariant mass
combinations, recall that the four Cartan generators λi in the defining
representation of U(4) must be embedded into 8 × 8 matrices as(

0 iλi

−iλi 0

)
So we can consider the combination of these embedded Cartan generators

M =



0

im1 0 0 0
0 im2 0 0
0 0 im3 0
0 0 0 im4

−im1 0 0 0
0 −im2 0 0
0 0 −im3 0
0 0 0 −im4

0
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U(4) mass combinations

This matrix satisfies

trM2k+1 = 0 trM2k = 2
4∑

i=1

m2k
i Pfaff(M) = m1 m2 m3 m4

From this we see that at order 4 in the masses, there are three independent
U(4)-invariant structures, which we can take to be

4∑
i=1

m4
i =

1
2

trM4

4∑
i<j=1

m2
i m

2
j = −1

4
trM4 +

1
8
(
trM2)2

m1 m2 m3 m4 = Pfaff(M)
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Matrix model E theory

At leading order in the large-N expansion

•
〈
P2n

〉
E = −

√
2k λ∂λFE

N

•
〈
P2nP2m

〉
E = δn,m

•
〈
P2n+1P2m+1

〉
E = D2n+1,2m+1 Dn,m ≡

(
1

1−X

)
n,m

[Beccaria, Billò, Frau, Lerda, Pini, 2021]

•
〈
P2n+1P2m+1P2n+2m+2

〉
E =

√
2n + 2m + 2

N
d2n+1d2m+1

dk =
∑

k ′

√
k ′Dk,k ′ [Billò, Frau, Lerda, Pini, PV, 2022]
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Evaluate VEVs in the D theory matrix model

For instance for the 1-point functions

〈
P2n

〉
D =

〈
P2n exp

(∑
k Y2k P2k

)〉
E〈

exp
(∑

k Y2k P2k

)〉
E

Expanding in Y2k , we get

〈
P2n

〉
D =

〈
P2n

〉
E +

∞∑
k=1

Y2k
〈
P2n P2k⟩cE +

1
2

∞∑
k,ℓ=1

Y2k Y2ℓ
〈
P2n P2k P2ℓ⟩cE + . . .

Same strategy for 2-point functions.
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Details on the strong coupling

Let us present an example. Z(p)
n is defined as

Z(p)
n =

∫ ∞

0

dt

t

et t p

(et − 1)2
Jn
(√λ t

2π

)
for n ≥ 1 and p > 1. In order to study its strong coupling expansion, we
use the Mellin-Barnes integral representation of the Bessel function

Jn(x) =

∫ +i∞

−i∞

ds

2πi
Γ(−s)

Γ(s + n + 1)

(x
2

)2s+n

and obtain

Z(p)
n =

∫ ∞

0

dt

t

et t p

(et − 1)2

∫ +i∞

−i∞

ds

2πi
Γ(−s)

Γ(s + n + 1)

(√λ t

4π

)2s+n
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Details on the strong coupling

Evaluating the t-integral, we get

Z(p)
n =

∫ +i∞

−i∞

ds

2πi
Γ(−s) Γ(2s + n + p) ζ2s+n+p−1

Γ(s + n + 1)

(√λ

4π

)2s+n

When λ → ∞ this integral receives contributions from poles on the
negative real axis of s. Summing the residues over such poles, one finds

Z(p)
n ∼

λ→∞
−1

2

∞∑
k=0

(2k − 1)B2k

(2k)!
Γ
(n+p

2 + k − 1
)

Γ
(n−p

2 + 2 − k
) ( 4π√

λ

)p+2k−2

where B2k are the Bernoulli numbers. When n and p are both even or
both odd, this asymptotic expansion terminates after a finite number of
terms or even disappears as for example in Z(5)

1 or Z(6)
2 .
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Strong coupling expansions

The log 2 terms can be removed by introducing a shifted ’t Hooft coupling
defined as

1
λ′ =

1
λ
+

log 2
2π2N

.

In terms of λ′ we have

−∂4
mi
FD∗

∣∣∣
m=0

∼
λ′→∞

16π2

λ′ N + 3 log λ′ + 3f (N)− 8 log 2 + 3 ζ3

−∂2
mi
∂2
mj
FD∗

∣∣∣
m=0

∼
λ′→∞

log λ′ + f (N)

where

f (N) = 2γ − 2 log(4π)− 2 ζ3 +
11
3

+
1

4N
+ O

( 1
N2

)
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