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Aim: explain the core structures of the SM in terms of structures present in the fabric of space-time:


• explain the particle content, e.g. why there are three generations of quarks and leptons


• explain the hierarchy of masses


                                   mtop = 173 ⋅ 103 MeV, me = 0.511 MeV, mν < 2.2 ⋅ 10−6 MeV





Three steps:


• identify string models that have the correct gauge group and particle content


• compute Yukawa couplings (quark and lepton masses and mixing parameters) as functions of the moduli 


• stabilise all moduli



Three steps:


• identify models that have the correct gauge group and particle content


• compute Yukawa couplings (quark and lepton masses and mixing parameters) as functions of the moduli 


• stabilise all moduli


 Heterotic string - from 10d to 4d


• 


• 


• matter fields: 


E8 × E8

X10 = X6 × M4

E8 → Gbundle × GGUT GGUT → Gfinite × GSM

248 → (1, AdGGUT
) ⊕ ⨁

i

(Ri, ri) nri
= h1(X, VRi

)

keep N=1 SUSY in 4d:


•  Calabi-Yau, 


•  holomorphic and poly-stable,





• matter fields: cohomology, 


harmonic forms

X6 Rab̄ = 0

V

Fab = Fāb̄ = gab̄Fab̄ = 0



A heterotic line bundle example

will break the GUT group to the Standard Model group times S(U(1)5). These additional U(1)

symmetries are usually Green-Schwarz anomalous with super-heavy associated gauge bosons and,

therefore, do not constitute a phenomenological problem. Upon quotienting by �, the number 3|�|

of 10 � 5 families which we have required for our GUT models, automatically become 3 standard

model families. From the additional 5 � 5 multiplets we should keep one pair of Higgs doublets and

ensure that all Higgs triplets are projected out. This can frequently be achieved by a suitable choice

of equivariant structure and Wilson line. Then, we have a standard model charged spectrum precisely

as in the MSSM plus additional moduli fields – the bundle moduli 1a,b and gravitational moduli –

which are uncharged under the standard model group. Our experience is that many such models can

be found relatively easily and in this paper we focus on the examples on the tetra-quadric.

3 Heterotic line bundle models on the tetra-quadric

In this section, we focus on the tetra-quadric manifold, discuss its specific properties and present the

scan for phenomenologically interesting models on this manifold.

3.1 The tetra-quadric

A detailed discussion of the tetra-quadric, particularly of its Kähler cone, is provided in Appendix A.

Here we summarise the most important points. Tetra-quadric Calabi-Yau hypersurfaces are embedded

in a product of four CP
1 spaces, defined as the zero locus of some homogeneous polynomial that is

quadratic in the homogeneous coordinates of each CP
1 space. Manifolds in this class have Euler number

⌘ = �128 and Hodge numbers h1,1(X) = 4 and h2,1(X) = 68. This information is summarised by the

following configuration matrix:

X =

CP
1

CP
1

CP
1

CP
1

2

6664

2

2

2

2

3

7775

4,68

�128

(3.1)

At certain loci in the complex structure moduli space, the tetraquadric hypersurface admits free

actions of finite groups of orders |�| = 2, 4, 8, 16. Specifically, these groups are � = Z2, Z2 ⇥ Z2, Z4,

Z2⇥Z4, Z8, H, Z4⇥Z4, Z4oZ4, Z8⇥Z2, Z8oZ2, H⇥Z2. Being at one or another of these special loci

corresponds to di↵erent choices of coe�cients for the monomials composing the defining polynomial,

as discussed in Refs. [?, ?]. In other words, saying that the tetraquadric manifold X admits free

quotients by a finite group � implies a partial fixing of the complex structure of X. In due course,

when we consider line bundle models on the tetra-quadric, some of the Kähler moduli will also be

fixed by virtue of the slope zero conditions (2.7).

The tetra-quadric is “favourable” in the sense that its entire second cohomology is spanned by

the Kähler forms J1, . . . , J4 of the four CP1 factors, restricted to the hypersurface. Its cone of Kähler

forms J =
P4

i=1 t
iJi is given by

Ct =
�
t 2 R

4
�� ti � 0, 1  i  4

 
(3.2)
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Model number 8, Identifier {7862, 4, 3}

Basic properties
standard model? True massless U(1): 1 number of 5 5 pairs: 3 c2(V) = {24, 8, 20, 12}

V: (kia) =

-1 -1 0 1 1
0 -3 1 1 1
0 2 -1 -1 0
1 2 0 -1 -2

Cohomology of V:

L2 = {-1, -3, 2, 2} h[L2] = {0, 8, 0, 0} h[L2,R] = {{0, 0, 0, 0}, {2, 2, 2, 2}, {0, 0, 0, 0}, {0, 0, 0, 0}}
L5 = {1, 1, 0, -2} h[L5] = {0, 4, 0, 0} h[L5,R] = {{0, 0, 0, 0}, {1, 1, 1, 1}, {0, 0, 0, 0}, {0, 0, 0, 0}}
L2×L4 = {0, -2, 1, 1} h[L2×L4] = {0, 4, 0, 0} h[L2×L4,R] = {{0, 0, 0, 0}, {1, 1, 1, 1}, {0, 0, 0, 0}, {0, 0, 0, 0}}
L2×L5 = {0, -2, 2, 0} h[L2×L5] = {0, 3, 3, 0} h[L2×L5,R] = {{0, 0, 0, 0}, {0, 1, 1, 1}, {0, 1, 1, 1}, {0, 0, 0, 0}}
L4×L5 = {2, 2, -1, -3} h[L4×L5] = {0, 8, 0, 0} h[L4×L5,R] = {{0, 0, 0, 0}, {2, 2, 2, 2}, {0, 0, 0, 0}, {0, 0, 0, 0}}
L1×L2* = {0, 3, -2, -1} h[L1×L2*] = {0, 0, 12, 0} h[L1×L2*,R] = {{0, 0, 0, 0}, {0, 0, 0, 0}, {3, 3, 3, 3}, {0, 0, 0, 0}}
L1×L5* = {-2, -1, 0, 3} h[L1×L5*] = {0, 0, 12, 0} h[L1×L5*,R] = {{0, 0, 0, 0}, {0, 0, 0, 0}, {3, 3, 3, 3}, {0, 0, 0, 0}}
L2×L3* = {-1, -4, 3, 2} h[L2×L3*] = {0, 20, 0, 0} h[L2×L3*,R] = {{0, 0, 0, 0}, {5, 5, 5, 5}, {0, 0, 0, 0}, {0, 0, 0, 0}}
L2×L4* = {-2, -4, 3, 3} h[L2×L4*] = {0, 12, 0, 0} h[L2×L4*,R] = {{0, 0, 0, 0}, {3, 3, 3, 3}, {0, 0, 0, 0}, {0, 0, 0, 0}}
L3×L5* = {-1, 0, -1, 2} h[L3×L5*] = {0, 0, 4, 0} h[L3×L5*,R] = {{0, 0, 0, 0}, {0, 0, 0, 0}, {1, 1, 1, 1}, {0, 0, 0, 0}}

Wilson line: {{0, 0}, {0, 1}} Equivariant structure: {{0, 0}, {0, 0}, {0, 0}, {0, 0}, {0, 0}} Higgs pairs: 1

Downstairs spectrum: 2 102, 105, 52,4, 2 54,5, H2,5, H2,5, 3 S2,1, 3 S5,1, 5 S2,3, 3 S2,4, S5,3 Phys. Higgs: H2,5, H2,5

Transfer format: {{6, 1, 1, 4, 6, 5, 9, 9, 8, 10, 1, 7, 17}, {6, 6, -1, -1, -1, -1}}

rk(Y(u)) = {2, 2} rk(Y(d))) = {0, 0} dim. 4 operators absent: {True, True} dim. 5 operators absent: {True, True}
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and with � = Z2⇥Z2 we have such a symmetry available on the tetra-quadric. Before we discuss this

in detail we should be more precise on how the GUT spectrum is split up into the various line bundle

sectors. For this we compute the following relevant line bundle cohomologies

h
•
(X,L2) = (0, 8, 0, 0) , h

•
(X,L5) = (0, 4, 0, 0)

h
•
(X,L2 ⌦ L4) = (0, 4, 0, 0) , h

•
(X,L2 ⌦ L5) = (0, 3, 3, 0)

h
•
(X,L4 ⌦ L5) = (0, 8, 0, 0) , h

•
(X,L1 ⌦ L⇤

2) = (0, 0, 12, 0)

h
•
(X,L1 ⌦ L⇤

5) = (0, 0, 12, 0) , h
•
(X,L2 ⌦ L⇤

3) = (0, 20, 0, 0)

h
•
(X,L2 ⌦ L⇤

4) = (0, 12, 0, 0) , h
•
(X,L3 ⌦ L⇤

5) = (0, 0, 4, 0)

(5.5)

Here, we have dropped all entirely zero cohomologies. This gives rise to the following spectrum

8102 , 4105 , 452,4 , 352,5 , 854,5 , 352,5 , 1212,1 , 1215,1 , 2012,3 , 1212,4 , 415,3 . (5.6)

5.3 The Standard Model spectrum at the Abelian locus

The relevant � = Z2⇥Z2 symmetry for the above model is the one whose generators are given by the

action of the matrices
 

1 0

0 �1

!
,

 
0 1

1 0

!
(5.7)

simultaneously on the coordinates of all four CP1 ambient space factors. For an appropriate choice of

equivariant structure and Wilson line, forming the quotient by this symmetry leads to the downstairs

spectrum 2

2102 , 105 , 52,4 , 254,5 , H2,5 , H2,5 , 312,1 , 315,1 , 512,3 , 312,4 , 15,3 . (5.8)

Hence, we have precisely three standard model families (which we have listed in GUT notation but

should be thought of as being broken up as 10a ! (Qa, ua, ea) and 5a,b ! (da,b, La,b) into standard

model multiplets), one pair of Higgs doublets and 15 bundle moduli singlets. We note that the U(1)

charges are the same for all standard model multiplets originating from the same GUT multiplet

and, hence, for the purpose of discussing the implications of S
�
U(1)5

�
invariance, keeping the GUT

notation is adequate.

2Our notation is slightly judicious in that, strictly, we cannot decide at this stage which linear combination of the
four available doublets is the down Higgs H and which ones are the three lepton doublets.

16

E8 →

SU(5) × S(U(1)5) →

GSM × S(U(1)5)

[AC, Fraser-Taliente, Harvey, Lukas, Ovrut ’24]

      [Buchbinder, AC, Lukas ’13]
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Operators
basic superpotential terms:

H10p10q: Y(u) =
( 0 ) ( 0 ) ( 1 )
( 0 ) ( 0 ) ( 1 )
( 1 ) ( 1 ) ( 0 )

H5p10q: Y(d) =
( 0 ) ( 0 ) ( 0 )
( 0 ) ( 0 ) ( 0 )
( 0 ) ( 0 ) ( 0 )

HH: μ = {1}

Wsing = {0}

R-parity violating terms in superpotential:

HLp: ρ =
0
S2,4
S2,4

10p5q5r: λ = {{{{0}, {0}, {0}}, {{0}, {0}, {0}}, {{0}, {0}, {0}}}, {{{0}, {0}, {0}}, {{0}, {0}, {0}}, {{0}, {0}, {0}}}, {{{0}, {0}, {0}}, {{0}, {0}, {0}}, {{0}, {0}, {0}}}}

Dimension 5 operators in superpotential:

5p10q10r10s: λ' = {{{{{0}, {0}, {0}}, {{0}, {0}, {0}}, {{0}, {0}, {0}}}, {{{0}, {0}, {0}}, {{0}, {0}, {0}}, {{0}, {0}, {0}}}, {{{0}, {0}, {0}}, {{0}, {0}, {0}}, {{0}, {0}, {0}}}},

{{{{0}, {0}, {0}}, {{0}, {0}, {0}}, {{0}, {0}, {0}}}, {{{0}, {0}, {0}}, {{0}, {0}, {0}}, {{0}, {0}, {0}}}, {{{0}, {0}, {0}}, {{0}, {0}, {0}}, {{0}, {0}, {0}}}},

{{{{0}, {0}, {0}}, {{0}, {0}, {0}}, {{0}, {0}, {0}}}, {{{0}, {0}, {0}}, {{0}, {0}, {0}}, {{0}, {0}, {0}}}, {{{0}, {0}, {0}}, {{0}, {0}, {0}}, {{0}, {0}, {0}}}}}

D-terms:

FI-terms: kiaκi =

4 t1 t2 + 4 t1 t3 - 4 t2 t4 - 4 t3 t4
16 t1 t2 - 4 t1 t3 + 4 t2 t3 - 4 t1 t4 + 4 t2 t4 - 16 t3 t4

-4 t1 t2 + 4 t1 t3 - 4 t2 t4 + 4 t3 t4
-8 t1 t2 + 8 t3 t4

-8 t1 t2 - 4 t1 t3 - 4 t2 t3 + 4 t1 t4 + 4 t2 t4 + 8 t3 t4

singlet D-terms: qαaSαS
β
_

=

-S2,1 S†
2,1 -S5,1 S†

5,1

S2,1 S†
2,1 +S2,3 S†

2,3 +S2,4 S†
2,4

-S2,3 S†
2,3 -S5,3 S†

5,3

-S2,4 S†
2,4

S5,1 S†
5,1 +S5,3 S†

5,3

Kinetic terms:

GM term: μ = {0}

5p5q
_
†: K5

_
 = {1}, S2,1 S†

5,1, S2,3 S†
5,3, S2,1 S†

5,1, S2,3 S†
5,3, S5,1 S†

2,1, S5,3 S†
2,3, {1}, {1}, S5,1 S†

2,1, S5,3 S†
2,3, {1}, {1}

10p10q
_
†: K(10) = {1}, {1}, S5,1 S†

2,1, S5,3 S†
2,3, {1}, {1}, S5,1 S†

2,1, S5,3 S†
2,3, S2,1 S†

5,1, S2,3 S†
5,3, S2,1 S†

5,1, S2,3 S†
5,3, {1}

LpH†: ρ =
S2,4 S5,1 S†

2,1, S2,4 S5,3 S†
2,3

S2,4

S2,4

16 Z2Z2SMs.nb
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simultaneously on the coordinates of all four CP1 ambient space factors. For an appropriate choice of

equivariant structure and Wilson line, forming the quotient by this symmetry leads to the downstairs
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Hence, we have precisely three standard model families (which we have listed in GUT notation but

should be thought of as being broken up as 10a ! (Qa, ua, ea) and 5a,b ! (da,b, La,b) into standard
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16

E8 →

SU(5) × S(U(1)5) →

GSM × S(U(1)5)

• correct spectrum

• up-Yukawa: rank 2 (perturbatively)

• vanishing lepton and down-Yukawas

• right-handed neutrinos

• no proton decay operators



Heuristic searches for models with the correct

particle spectrum



Overview:


• Situation about 10 years ago: only a handful of models that recovered the correct spectrum were known


• Systematic searches: in 2013 we undertook a massive search, scanning essentially over some  -pairs; 


this resulted in several million heterotic line bundle models with the correct particle content


[Anderson, AC, Gray, Lukas, Palti ‘13]


• Heuristic searches: more recently (in the last two years), we used Genetic Algorithms and Reinforcement Learning


to search in even larger regions of the string landscape. Viable models can now be generated on demand


(at a rate of hundreds or thousands per day).

1040 (X, V )

Heterotic line bundle models: searches



Genetic Algorithms

Genotype: for fixed , encode the line bundle integers into a binary sequence

Phenotype: three generations, no exotics, Higgs field, absence of gauge and gravitational anomalies, 


supersymmetry, equivariance 


Bonus: GAs perform better when enhanced with a Quantum Annealing ‘intrinsic’ mutation

X

[Abel, AC, Harvey, Lukas, Nutricati ’23]



Reinforcement Learning

Mathematical structure: (Stochastic) Markov Decision Processes. 

Simplest version: policy-based RL. The policy is controlled by a NN and learnt without any prior

knowledge of the environment. 

[Abel, AC, Harvey, Lukas ’21]



Some results

[Abel, AC, Harvey, Lukas '21] [Abel, AC, Harvey, Lukas, Nutricati ’23]

4

which means that the fittest individual in every genera-
tion is copied to the next generation without modifica-
tion.

The genetic quantum annealing algorithm (GQAA) de-
scribed in Ref. [22] makes a further step by realising the
genotype of individuals in a quantum mechanical way,
that is, as quantum reads on a system of spins on a quan-
tum annealer. This approach uses quantum annealing
to enhance the GA but maintaining the same topology
for the algorithm. This sidesteps the difficulty of encod-
ing the problem directly onto the annealer (for recent
discussions in the Physics context see Ref. [25] and also
Ref. [26]).

The manner in which such a GQAA enhances the clas-
sical GA is motivated by the way that classical GAs
work. To understand this we can use the schema the-
orem of Holland as a rough guide (notwithstanding its
still controversial status). According to the theorem, the
classical GA works by propagating favourable sets of im-
portant alleles (i.e. the schema in question) throughout
the population, such that the number of individuals with
a good schema will grow exponentially with time. How-
ever there is clearly some redundancy in the mechanism,
because the only way that the fitness gifting abilities of
a particular schema can be represented is through the
number of individuals in the population that carry it.
The GQAA works by instead representing individuals in
terms of continuous biases and couplings on a quantum
annealer. These continuous allele values are called the
classical genotype. In order to extract the phenotypes
of all the individuals, the first step is to produce a so-
called quantum genotype for them all by reading off the
corresponding discrete spin values produced in a quan-
tum anneal. The quantum genotypes that emerge from
the quantum anneal are isomorphic to those in the classi-
cal GA. Thereafter the calculation of the phenotype and
fitness, the selection and the breeding is all performed
classically in the usual way, with the result being used to
define the next generation of biases and couplings.

The advantage of this arrangement is that now the
fitness can be represented continuously in the spin bias-
ing of each individual. Thus, for example, the classical
genotype of a very fit individual will strongly bias its
preferred quantum genotype, while a weaker individual
is more likely to be influenced by the stronger individ-
uals to which it couples. In this way the represention
of the fitness yielding advantage of a particular schema
is enhanced beyond simply counting the number of indi-
viduals in the population that carry it. This quantum
annealing step can then be thought of as a form of di-
rected mutation, namely a mutation in which the prior
fitness of the parents influences the offspring that are
produced, as does the presence of much fitter individu-
als in the population. Indeed, it completely replaces the
classical mutation step. There are several other aspects
of the GQAA (especially regarding the preferred format
of the couplings between individuals in the population)
which are further described in Ref. [22].

Note that in the limit in which there is no coupling
between the spins on the annealer such that there are
only biases, and in which the annealing is carried out
perfectly adiabatically, the classical genotype determines
the quantum genotype exactly, and the GQAA becomes a
classical GA in this limit. This allows a direct comparison
of the potential enhancement conferred by the GQAA
using an otherwise identical system.

IV. RESULTS

Let us begin with the classical GA. We have imple-
mented the classic genetic algorithm and the line bundle
environment (performing the binary encoding and the
computation of the fitness function) in C, and the code is
available here [27, 28]. We performed 7 different searches,
as summarised in Table I. Each search was divided into
a large number of genetic episodes, with every episode
containing 300 generations of 300 individuals each. The
mutation rate was set to 0.5%, and the selection proba-
bility factor to ↵ = 3.

Table I. Summary of results for the 7 GA searches. The ta-
ble compares the number of models found here (GA) with
numbers found in previous comprehensive searches (Scan) for
manifolds with h < 7, both as actual numbers and as per-
centages. For the first three manifolds these numbers refer to
the models that pass a sufficient criterion for poly-stability,
performed after the GA search. The last column indicates the
fraction of the environment explored in the GA search.

Manifold h |�| Range GA Scan Found Explored

7862 4 2 [-7,8] 5 5 100% 10�10

7862 4 4 [-7,8] 30 31 97% 10�10

7447 5 2 [-7,8] 38 38 100% 10�14

7447 5 4 [-7,8] 139 154 90% 10�14

5302 6 2 [-7,8] 403 442 93% 10�19

5302 6 4 [-7,8] 722 897 80% 10�19

4071 7 2 [-3,4] 11,937 N/A N/A 10�14

A. The manifolds X7862, X7447 and X5302

Systematic and comprehensive scans on these mani-
folds have been previously carried out in Ref. [18]. On
the manifold X5302 a search using reinforcement learning
was carried out in Ref. [21]. Our purpose here is to gauge
the GA performance as a heuristic method of search.
The results are surprising. For the manifold X7862 with
h1,1(X) = 4, the environment contains ⇠1019 line bundle
sums1. All Z2-models and 97% of the Z4-models were

1 The comprehensive scan of Ref. [18] on environments of this size
was only possible due to the split nature of the bundle, which

(a) Fitness histogram: number of individuals as a
function of generation and fitness.

(b) Fraction of perfect models vs generation.

Figure 1: Performance measures for a typical GA initialisation on the bicubic.

size of the search space is
814 ' 4.4⇥ 1012 .

By comparison, the number of states visited in the above run, namely 50, 000, represents only a tiny
fraction of the space. However, the GA was capable of finding 48 perfect states, while a random
search over millions of states would typically lead to no perfect states at all.

Secondly, as already noted, the GA has a tendency of visiting the same states multiple times. It is
interesting to plot the total number of perfect states found after n generations as a function of n.
For our illustrative run such a plot is shown in Figure 2, which suggests that there is no additional
benefit in letting the population evolve beyond a certain generation (n ' 150).

Figure 2: Saturation of the number of perfect states found in a typical GA run on the bicubic.

Finally, it is useful to compute the degeneracy of the 18 states that remain after removing redun-
dancies. By performing all the allowed permutations a number of 19, 080 states are obtained. This
should be compared with the product 18 ⇥ 2800 = 50, 400 which turns out to be an overestimate
by more than a factor of 2. Moreover, what this computation indicates is that a single run of the
GA is not enough if the aim was to find all the perfect states available in the environment and that
1, 000 further runs, which would take about 1 day on a single machine, would be just about enough
to find the other redundant representations of the 18 states found in the first run. Of course, many
more new states, not related to the 18 by permutations, would be expected to arise in such a search,
which implies that a comprehensive search would require several, possibly tens of thousands of GA
runs. With 10, 000 runs this would amount to exploring ⇠ 0.01% of the environment.

14

Comparison with systematic scans: virtually the same results while scanning only a fraction of 

Comparison between GA and RL: very different philosophies, similar results

∼ 10−20



Particle spectra and 

cohomology computations



Particle content and cohomology: recap
Compactification data for the  heterotic string:  


Want manifolds and bundles that can be given very explicit presentations. 

Best choice:  CICY in product of projective spaces and 


This leads to  GUTs. Further breaking to the SM gauge group using discrete Wilson lines. 





E8 × E8 (X, V )

X V = L1 ⊕ L2 ⊕ L3 ⊕ L4 ⊕ L5, c1(V ) = 0

SU(5) × S(U(1)5)

We note that a line bundle L (other than the trivial bundle) with vanishing slope, µ(L) = 0,

has vanishing zeroth and third cohomology, H0(X,L) = H3(X,L) = 0 so that

ind(L) = �h1(X,L) + h1(X,L
⇤
) . (2.8)

2.2 The Spectrum

For a bundle structure group S(U(1)5) ⇢ SU(5) ⇢ E8 the low-energy gauge group, given by the

commutant of the structure group within E8, is SU(5) ⇥ S
�
U(1)5

�
. The matter multiplets present

in the four-dimensional theory can be obtained by decomposing the adjoint 248E8 of E8 under the

SU(5)⇥ S
�
U(1)5

�
sub-group which leads to

10a , 10a , 5a,b , 5a,b , 1a,b , (2.9)

Here the number indicates the SU(5) representation and the indices a, b, . . . = 1, . . . 5 indicate which

of the five U(1) symmetries the multiplet is charged under. Specifically, the 10a (10a) multiplets carry

charge +1 (�1) under the ath U(1) symmetry while being uncharged under the others. The 5a,b (5a,b)

multiplets carry charge +1 (�1) under U(1) charges a and b while the singlets 1a,b carry charge +1

under the ath and charge �1 and the bth U(1). The multiplicity of each of these multiplets can be

computed from line bundle cohomology, as summarised in Table 1. The cohomology of line bundles

repr. cohomology total number required for MSSM

1a,b H1(X,La ⌦ L
⇤
b
)

P
a,b

h1(X,La ⌦ L
⇤
b
) = h1(X,V ⌦ V

⇤
) -

5a,b H1(X,L
⇤
a ⌦ L

⇤
b
)

P
a<b

h1(X,L
⇤
a ⌦ L

⇤
b
) = h1(X,^2V

⇤
) nh

5a,b H1(X,La ⌦ Lb)
P

a<b
h1(X,La ⌦ Lb) = h1(X,^2V ) 3|�|+ nh

10a H1(X,La)
P

a
h1(X,La) = h1(X,V ) 3|�|

10a H1(X,L
⇤
a)

P
a
h1(X,L

⇤
a) = h1(X,V

⇤
) 0

Table 1: The spectrum of SU(5) GUT models derived from the heterotic line bundle construction. In the
final column, |�| stands for the order of the fundamental group of X and nh represents the number of 5 � 5
Higgs fields.

is usually easier to compute than that of non-Abelian bundles and this constitutes another major

technical advantage of line bundle models. The phenomenological requirements on the GUT particle

spectrum – essentially the three-family constraint plus having an additional 5� 5 pair to account for

the Higgs doublets – are summarized in the last column of Table 1.

In order to arrive at a standard-like model, we need a freely-acting symmetry � on X, with

order |�|, which can be lifted to the bundle V , that is, the bundle V needs to have a �– equivariant

structure. Then, performing the quotient by � and including a Wilson line in the hypercharge direction

6



Line bundles on Pn. Cohomology dimensions given by the Bott formula:

h0(Pn,OPn (k)) =

 
k + n
n

!
=

1
n!

(1 + k) . . . (n + k) , if k � 0, and 0 otherwise.

hi (Pn,OPn (k)) = 0 , if 0 < i < n .

hn(Pn,OPn (k)) =

 
�k � 1

�n � k � 1

!
=

1
n!

(�n � k) . . . (�1� k) , if k  �n � 1,

and 0 otherwise.

h0(Pn,OPn (k)): the number of degree k homogeneous polynomials in the n + 1

variables x0, x1, . . . xn. The result for the top cohomology can be obtained by

Serre duality, hi (X , L) = hn�i (X ,KX ⌦ L⇤), with KPn = OPn (�n� 1). The Bott

gap result can be argued, e.g. using the Čech complex. Note that for projective

spaces, line bundle cohomology can be nonzero in at most one degree.

It is straightforward to generalise Bott’s formula to products of projective

spaces – Künneth formula.

A good starting point



Writing

Pn =
U(n + 1)

U(1)⇥ U(n)
,

Bott’s formula can be regarded as a special case of the Borel-Weil-Bott

theorem which deals with flag varieties. Using this, it is possible to represent

the cohomology groups of line bundles over products of projective spaces as

irreducible representations of unitary groups. This technique provides a simple

and computationally useful representation for the cohomology groups.

On toric varieties there is an algorithm due to Blumenhagen, Jurke, Rahn,

Thorsten, Roschy which allows the computation of line bundle cohomology.

A good starting point

Line bundle cohomology on CICYs.

The computation of line bundle cohomology on X ⇢ A = Pn1 ⇥ Pn2 ⇥ . . .⇥ Pnm

proceeds in three steps. Say X is defined by K polynomials; these are sections

of line bundles, whose direct sum forms the normal bundle N . Suppose the

embedding X ⇢ A is favourable, in the sense that all the line bundles on X

descend from line bundles on A.

Let L ! X be a line bundle over X and LA the corresponding line bundle.

Step 1. Write the Koszul complex associated with L:

0 ! LA ⌦ ^KN ⇤ ! LA ⌦ ^K�1N ⇤ ! . . . ! LA ! L ! 0

Step 2. Compute all ambient space cohomologies involved in the above

sequence.

Step 3. Use the Leray spectral sequence machinery to infer the cohomology

of L. The computation of di↵erentials is facilitated by the Borel-Weil-Bott

representation of cohomology groups in terms of irreps of unitary groups.
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descend from line bundles on A.

Let L ! X be a line bundle over X and LA the corresponding line bundle.

Step 1. Write the Koszul complex associated with L:

0 ! LA ⌦ ^KN ⇤ ! LA ⌦ ^K�1N ⇤ ! . . . ! LA ! L ! 0

Step 2. Compute all ambient space cohomologies involved in the above

sequence.

Step 3. Use the Leray spectral sequence machinery to infer the cohomology

of L. The computation of di↵erentials is facilitated by the Borel-Weil-Bott

representation of cohomology groups in terms of irreps of unitary groups.



We automatised the Leray spectral sequence machinery. 

[CIPro package, Anderson, AC, Gray, He, Lee, Lukas - to become publicly available later in ’24]


[pyCICY by Larfors & Schneider ‘19]


Computational cost of line bundle cohomology (using spectral sequences):





Example: for a line bundle of (multi)-degree 10 on a Calabi-Yau threefold


with  Kähler parameters, the estimate is


 elementary operations


which reaches the limits of a standard machine 


∼ O ((ρ(X )dim(X)deg(L)dim(X))3)

h1,1(X ) = ρ(X ) = 4

∼ 1014



An exercise in pattern recognition
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region in e↵. cone h0(X , L = OX (D = k1D1 + k2D2))

blue 2k1(1 + k2
2 ) +

5
6k2(5 + k2

2 )

green 2k1(1 + k2
2 ) +

5
6k2(5 + k2

2 ) +
8
3k1(1� k2

1 )

yellow 2k1(1 + k2
2 ) +

5
6k2(5 + k2

2 ) +
8
3k1(1� k2

1 )+

+ 1
2 (1� (4k1 + k2)2)

l
4k1+k2
�3

m

k1 > 0, k2 = 0 k1 + 1

�k1 = k2 � 0 1

Note that inside the e↵ective cone, this defines a continuous function on the

real Neron-Severi space.



look at patterns in the

data for


Example. Consider a fairly innocent example of a Picard number 2 CICY

three-fold (that is h1,1(X ) = 2), defined by the configuration matrix

X =
P1

P4

"
1 1

4 1

#2,86

L = OX (k1D1 + k2D2)

[Larfors, Schneider, 1906.00392], [Brodie, AC, Lukas 2010.06597]

For string model building, this is far too slow.

h0(X, L), L ∈ Pic(X )



It is possible to train a neural network (supervised learning) to identify the

di↵erent regions and the formulae that hold within each.

(W1,b1)k (W2,b2)� �
Rn1 Rn1 Rn2

Rn2

x = (ki, kikj , . . .) (W3,b3)

Rn2 · R

g�

Zh

ZN

[Brodie, AC, Deen, Lukas, 1906.08730]

see also: [Klaewer, Schlechter, 1809.02547]

The training data consists of pairs (k, hi (X ,OX (k))).

Drawback: the amount of training data is limited by the slow algorithmic

computation. For larger Picard number manifolds it is not feasible to generate

enough training data. Nevertheless, this ML exercise was useful to generate

conjectures.
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Conjecture 4. Let X be a smooth hypersurface in P1
◊P3 defined as the zero locus of a homogeneous polynomial

f = x
2
0f0+x

2
1f2 where [x0, x1] are homogeneous coordinates on P1 and f0, f2 are general homogeneous polynomials

of degree 4 in the P3 coordinates. A generating function for all line bundle cohomology dimensions is given by

CS
0(X, OX) =

Q

a (1 ≠ t
4
2)2

(1 ≠ t1)2(1 ≠ t2)4(1 ≠ t
≠2
1 t

4
2)

,
t2 t1

0 0

R

b

CS
1(X, OX) =

Q

a (1 ≠ t
4
2)2

(1 ≠ t1)2(1 ≠ t2)4(1 ≠ t
≠2
1 t

4
2)

,
t2 t1

0 Œ

R

b

≠CS
2(X, OX) =

Q

a (1 ≠ t
4
2)2

(1 ≠ t1)2(1 ≠ t2)4(1 ≠ t
≠2
1 t

4
2)

,
t2 t1

Œ 0

R

b

≠CS
3(X, OX) =

Q

a (1 ≠ t
4
2)2

(1 ≠ t1)2(1 ≠ t2)4(1 ≠ t
≠2
1 t

4
2)

,
t2 t1

Œ Œ

R

b .

(1.15)

Complete intersection examples. The fact that the varieties covered by Conjectures 3 and 4 correspond
to hypersurfaces is not essential for the existence of a universal generating function that can encode both the
zeroth and the higher cohomology dimensions. The same is case in the following.

Conjecture 5. Let X be a general complete intersection of two hypersurfaces of bi-degrees (1, 1) and (1, 4) in
P1

◊ P4, belonging to the deformation family with configuration matrix

P1

P4

S

U 1 1
1 4

T

V . (1.16)

The e�ective, movable and nef cones of X are given by

E�(X) = RØ0H1 + RØ0(H2 ≠ H1), Mov(X) = RØ0H1 + RØ0(4H2 ≠ H1)

Nef(X) = RØ0H1 + RØ0H2 ,

(1.17)

where H1 = OP1◊P4(1, 0)|X and H2 = OP1◊P4(0, 1)|X . We propose the following generating functions for all line
bundle cohomology dimensions in the entire Picard group of X:

CS
0(X, OX) =

Q

a (1 ≠ t2)2 !
1 ≠ t

4
2
"2

(1 ≠ t1)2 (1 ≠ t2)5 !
1 ≠ t

≠1
1 t2

" !
1 ≠ t

≠1
1 t

4
2
" ,

t2 t1

0 0

R

b

CS
1(X, OX) =

Q

a (1 ≠ t2)2 !
1 ≠ t

4
2
"2

(1 ≠ t1)2 (1 ≠ t2)5 !
1 ≠ t

≠1
1 t2

" !
1 ≠ t

≠1
1 t

4
2
" ,

t2 t1

Œ 0

R

b

CS
2(X, OX) =

Q

a (1 ≠ t2)2 !
1 ≠ t

4
2
"2

(1 ≠ t1)2 (1 ≠ t2)5 !
1 ≠ t

≠1
1 t2

" !
1 ≠ t

≠1
1 t

4
2
" ,

t2 t1

0 Œ

R

b

CS
3(X, OX) =

Q

a (1 ≠ t2)2 !
1 ≠ t

4
2
"2

(1 ≠ t1)2 (1 ≠ t2)5 !
1 ≠ t

≠1
1 t2

" !
1 ≠ t

≠1
1 t

4
2
" ,

t2 t1

Œ Œ

R

b

(1.18)
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Figure 3: Zeroth and first line bundle cohomology data (left plot and, respectively, right plot) for a general Calabi-
Yau complete intersection in the deformation family (1.16). The numbers indicate cohomology dimensions while
their locations indicate first Chern classes of line bundles.

The generating function (1.18) has been constructed by adding up the Hilbert-Poincaré series associated with
the coordinate rings of the two birational models of X and subtracting a correction term, as discussed in
Example 3.11:

CS
0(X, t1, t2) =

Q

a (1 ≠ t1t2)(1 ≠ t1t
4
2)

(1 ≠ t1)2(1 ≠ t2)5 ,
t2 t1

0 0

R

b +

Q

a (1 ≠ t
≠1
1 t

5
2)2

(1 ≠ t
≠1
1 t2)2(1 ≠ t2)5(1 ≠ t

≠1
1 t

4
2)

,
t2 t1

0 0

R

b ≠

Q

a 1 + t
5
2

(1 ≠ t2)5 ,
t2

0

R

b ,

where the correction term is such that:
(1 ≠ t1t2)(1 ≠ t1t

4
2)

(1 ≠ t1)2(1 ≠ t2)5

----
t1=0

+ (1 ≠ t
≠1
1 t

5
2)2

(1 ≠ t
≠1
1 t2)2(1 ≠ t2)5(1 ≠ t

≠1
1 t

4
2)

----
t1=Œ

≠
1 + t

5
2

(1 ≠ t2)5 = HS(P4[5], t2) (1.19)

which is the Hilber-Poincaré series HS(P4[5], t2) associated with the singular threefold involved in the flop. The
generating function in (1.18) should be interpreted as the Hilbert-Poincareé series associated with the Cox ring
of X, represented as a complete intersection in a toric variety, as detailed in Example 3.11. Figure 3 displays a
part of the cohomology data on which Conjecture 5 is based.

The bicubic Calabi-Yau threefold. The above Calabi-Yau threefold examples suggest a certain pattern
for constructing the cohomology series, namely to combine the Hilbert-Poincaré series associated with each of
the birational models of the variety, while keeping track of the way in which the various Mori chambers attach
to each other in the movable cone, and then subtract suitable correction terms, such that along every wall
separating two Mori chambers the relevant contributions restrict to the Hilbert-Poincaré series of the singular
variety involved in the small modification in question. While confirming this pattern for the zeroth cohomology
series, the following example shows that this prescription is not general enough, if the aim is to obtain a universal
generating function that encodes both the zeroth and the higher cohomology series.

Conjecture 6. Let X be a general hypersurface of bidegree (3, 3) in P2
◊ P2. The e�ective, movable and nef

cones coincide
E�(X) = Mov(X) = Nef(X) = RØ0H1 + RØ0H2 ,
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Significance of cohomology formulae/generating functions

The existence of line bundle cohomology formulae / generating functions greatly simplifies the analysis 

of heterotic line bundle models. Calculations that would otherwise take minutes or hours, are now 

virtually instantaneous. 


Moreover, these expressions are of mathematical interest in themselves. I have examples in arbitrary 

dimension  including varieties of Fano, semi-Fano, CY and general type, including non-Mori dream spaces and 

complex structure dependence. Aim: convert geometry into algebraic data.


Two surprises: 

           1. evidence that such generating functions exist 

           2. the same generating function, expanded around different points, encodes the zeroth and higher

                       cohomology of all line bundles. 


Generating functions carry a lot of numerical information about the variety. Do they uniquely determine the variety?


A similar question has been asked for the regularised quantum period of Fano varieties, 

which is a generating function for certain Gromov-Witten invariants.   [Coates, Kasprzyk, Pitton, Tveiten ‘21]

≥ 2



Computation of Yukawa

couplings 



Low-energy Lagrangian with chiral matter multiplets , corresponding to harmonic forms 





The holomorphic Yukawa couplings and the matter field Kähler metric can be computed from the geometry:





 is quasi-topological - can be calculated without the CY metric, bundle metric and harmonic forms


 calculation - requires full knowledge of the geometry 


CI = (cI, χ I) νI

ℒ = − KIJ̄∂μcI∂μc̄J̄ − iKIJ̄ χ̄ J̄ σ̄μ∂μ χ I + eK/2(λIJKcIχ J χK + c . c.) + …

λIJK ∼ ∫X
νI ∧ νJ ∧ νK ∧ Ω KIJ̄ ∼ ∫X

νI ∧ ⋆ (HV ν̄J̄)

λIJK

KIJ̄



Computation of CY metric

Idea: use neural networks as universal approximators to solve PDEs on curved spaces.  

Advantage: the solutions are known to exist and are smooth 

By using NNs, one can avoid discretisation problem on the manifold


Naively, one would like to solve


  

This is a terrible 4-th order non-linear PDE (with particularly unpleasant non-linearities in the highest derivatives)

in six dimensions. That’s not how Yau proved the theorem. 


1.3 Calabi-Yau manifolds

With the definitions above, we can now understand better the definition of a Calabi-Yau manifold: a
complex, Kähler manifold with c1(X) = 0. In 1978, by studying complex Monge-Ampere equations
(see Section 1.3.1 below), Yau proved a conjecture of Calabi (posed in 1954). This and other important
work led to Yau’s Fields medal in 1982.

Theorem 1.1. ( [Yau78, Yau86]): If X is a complex, Kähler manifold with c1(X) = 0 and some

Kähler form J , then there exists a unique, Ricci-Flat metric on X whose Kähler form J
0
is in the

same cohomology class as J (i.e. J
0 = J + @@̄�).

This definition is useful, but as Yau also noted in the proof of his famous theorem, we will see
that packaging the condition of a Ricci-flat metric in other terms can simplify the problem. Much
of the structure of a Calabi-Yau manifold is encoded in two canonical forms. The first of these, the
Kähler form, we have encountered already in (7). The next is called the “holomorphic top form”.
An n-dimensional Calabi-Yau manifold admits a nowhere vanishing, covariantly constant (n, 0) form,
denoted by ⌦. In the case of a CY 3-fold (our primary interest in these lectures) the holomorphic
3-form can be constructed from the single covariantly constant spinor, ✏, which defines a manifold of
SU(3)-holonomy [Ber55]

⌦ijk = ✏
T
�ijk✏ (14)

with �ijk the anti-symmetric product of �-matrices satisfying

{�i, �j} = {�ī, �j̄} = 0 , {�i, �j̄} = 2gij̄ (15)

The fact that ⌦ is holomorphic (i.e. that @̄j̄⌦i1,...in = 0) follows from ⌦ being covariantly constant.
The three-form ⌦ is essentially unique. Given ⌦, assume that there exists another 3-form ⌦0 with

the same properties. Then since top forms must be proportional ⌦0 = f⌦ with a f a non-singular
function. But since @̄⌦0 = 0 by assumption, it follows that f must be a holomorphic function. However,
on a compact manifold this implies that f is a constant. Later in this lecture we’ll see an explicit form
for the 3-form ⌦ for certain algebraic constructions of Calabi-Yau threefolds.

1.3.1 Kähler geometry and the Monge-Ampere equations

The central goal of this lecture series is to use machine learning algorithms to attack this equation

Rij̄ = �@i@̄j̄ log(det(g)) = 0 (16)

with gij̄ = @i@̄j̄K defined by a Kähler potential K. Observe that this is a 4-th order, very non-
linear partial di↵erential equation for K in six (real) dimensions. As far as numerically solving PDEs
goes, this is fairly awful. To make this tractable (both analytically and numerically) it is worth re-
formulating this problem by following the approach used by Yau in his famous proof. Namely, to
utilize the canonical di↵erential forms (J, ⌦) available on a Calabi-Yau manifold. Here is a sketch of
the idea.

By the Calabi-Yau conjecture, start with any Kähler metric g on the CY 3-fold, X and its associated
Kähler form Jg. Then the Ricci-flat metric, gCY and its Kähler form J can be written as

J = Jg + @@̄� . (17)

Observe then that there exists two ways of building a volume form on X:

J ^ J ^ J = ⌦ ^ ⌦̄ ( 2 C) (18)

where the LHS of the equation above was defined in (7) and the RHS follows from the properties of ⌦
outlined above. Using (17) we are lead to (18), a complex equation of Monge-Ampere type for � which
is (only) second order. This equation was attacked using tools of di↵erential geometry and analysis by
Yau [Yau78]. As we will see in subsequent lectures, it is also precisely this equation that provides us
a handy foothold into machine implementation.

5

1.3 Calabi-Yau manifolds

With the definitions above, we can now understand better the definition of a Calabi-Yau manifold: a
complex, Kähler manifold with c1(X) = 0. In 1978, by studying complex Monge-Ampere equations
(see Section 1.3.1 below), Yau proved a conjecture of Calabi (posed in 1954). This and other important
work led to Yau’s Fields medal in 1982.

Theorem 1.1. ( [Yau78, Yau86]): If X is a complex, Kähler manifold with c1(X) = 0 and some

Kähler form J , then there exists a unique, Ricci-Flat metric on X whose Kähler form J
0
is in the

same cohomology class as J (i.e. J
0 = J + @@̄�).

This definition is useful, but as Yau also noted in the proof of his famous theorem, we will see
that packaging the condition of a Ricci-flat metric in other terms can simplify the problem. Much
of the structure of a Calabi-Yau manifold is encoded in two canonical forms. The first of these, the
Kähler form, we have encountered already in (7). The next is called the “holomorphic top form”.
An n-dimensional Calabi-Yau manifold admits a nowhere vanishing, covariantly constant (n, 0) form,
denoted by ⌦. In the case of a CY 3-fold (our primary interest in these lectures) the holomorphic
3-form can be constructed from the single covariantly constant spinor, ✏, which defines a manifold of
SU(3)-holonomy [Ber55]

⌦ijk = ✏
T
�ijk✏ (14)

with �ijk the anti-symmetric product of �-matrices satisfying
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a handy foothold into machine implementation.
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Computation of CY metric

Yau’s theorem (1978): A compact, -dimensional Kähler manifold with vanishing first Chern class

admits a unique Ricci-flat Kähler metric in each Kähler class. 


Write  , where  is a global function


For instance,  can be taken to be the metric induced from the Fubini-Study metric on ,


                                         

Yau showed instead that the Monge-Ampère equation


 ,      with         


can be solved. 
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ab̄
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matrix as well as by the non-canonical matter field Käh-
ler metric, both of which depend on complex structure
moduli. The dependence of the physical Yukawa cou-
plings on the Kähler moduli completely drops out in
this particular model, as a consequence of the volume-
independence mentioned earlier, and of working at the
special locus Eq. (II.3) in Kähler moduli space. Thirdly,
in order to make contact with the measured values of
the quark masses, one should include the RG running
from the compactification scale down to the electroweak
scale in the presence of supersymmetry breaking. This is
amenable to standard methods and will not be discussed
further. Finally, loop, ↵0, and non-perturbative correc-
tions can affect the physical Yukawa couplings. These
are suppressed in the large volume and weak coupling
regime and, in these limits, will only lead to small cor-
rections to non-zero perturbative masses (of course, they
may be the leading effect if a perturbative mass vanishes,
as in our present example). For precise predictions from
string theory, all these corrections must ultimately be
considered.

III. METRICS AND HARMONIC FORMS

In geometric heterotic compactifications on smooth CY
threefolds X/�, the holomorphic Yukawa couplings and
the matter field Kähler metric are given by the following
expressions:

�IJK =
c 2

p
2

|�|

Z

X
⌫I ^ ⌫J ^ ⌫K ^ ⌦, (III.1)

KIJ =
1

2V|�|

Z

X
⌫I ^ ?V ⌫J =

1

2V|�|

Z

X
⌫I ^ ?(HJ ⌫̄J) .

(III.2)

Here ⌫I are harmonic (0, 1)-forms which represent the
matter fields and take values in line bundles LI , whilst
HI are HYM bundle metrics on LI . Concretely, for the
model outlined in the previous section, the line bundles
LI are the ones given in Eq. (II.4). Furthermore, V is the
CY volume and the Hodge star is taken with respect to
the Ricci-flat CY metric. The holomorphic (3, 0)-form ⌦
on X is normalised such that

R
X ⌦^⌦̄ = 1. The integrals

are performed on the ‘upstairs’ manifold X and the result
is transferred to the smooth ‘downstairs’ quotient X/� by
dividing by the group order, |�|. Concretely, for our spe-
cific model, we have |�| = |Z2⇥Z2| = 4. In line with the
constraints from the low-energy U(1) symmetries, holo-
morphic Yukawa couplings �IJK can be non-zero only
if LI ⌦ LJ ⌦ LK = OX and entries KIJ for LI 6= LJ

must vanish. The numerical pre-factors arise from the
dimensional reduction, whilst the factor c =

p
HIHJHK

originates from transforming between conventions used in
the physics and mathematics literature [47]. Note that
HIHJHK is constant for any Yukawa coupling allowed
by the U(1) symmetries.

As mentioned in the previous section, to compute the
Ricci-flat CY metric g, the HYM bundle metrics HI

and the harmonic forms ⌫I , we start with certain ref-
erence quantities which represent the correct cohomol-
ogy classes. To these, we add exact terms which are de-
termined by training suitable neural networks. We now
describe how this is done for each of the three types of
quantities in turn.

A. The Ricci-flat CY metric

1. Mathematical background

Yau’s theorem, applied to a CY manifold X, asserts
that in any given Kähler class, associated to a reference
metric g

(ref), there exists a unique Ricci-flat metric

gab̄ = g
(ref)

ab̄
+ @a@̄b̄�, (III.3)

where � is a real function on X determined by solving
the relevant Monge-Ampère equation. In practice, this
can be done by training a neural network which repre-
sents �. This approach has been realised in the cymetric
package [34, 35], where it is referred to as the ‘�-model’.

Our specific simply-connected CY threefold is defined
as a tetra-quadric (TQ) hypersurface given as the zero lo-
cus of a defining polynomial p of multi-degree (2, 2, 2, 2),
in the ambient space A = P1

⇥ P1
⇥ P1

⇥ P1. Ho-
mogeneous coordinates on the four P1s are denoted by
x↵, y↵, u↵, v↵, where ↵ = 0, 1. The standard patches on
A with x↵, y� , u� , v� 6= 0 are denoted by U↵��� and affine
coordinates on the patch U0000 are defined by z1 = x1/x0,
z2 = y1/y0, z3 = u1/u0 and z4 = v1/v0. We also intro-
duce the convenient shorthand i = 1 + |zi|

2.
Computing the holomorphic Yukawa couplings (III.1)

requires the holomorphic (3, 0)-form ⌦. On the standard
patch with coordinates zi defined above, it can be written
explicitly as

⌦ / ⌦̂ =
dz1 ^ dz2 ^ dz3

@p
@z4

�����
X

, (III.4)

with the proportionality constant fixed by
R
X ⌦ ^ ⌦̄ =

1, up to an arbitrary phase that drops out of physical
quantities.

For the reference metric in Eq. (III.3) we choose the
Fubini-Study metric restricted to X:

g
(ref)

ab̄
=

4X

i=1

t
i

2⇡
@a@̄b̄ ln(i)

�����
X

, (III.5)

where t
i
2 R>0 are the four Kähler parameters. In terms

of these parameters, the CY volume V reads:

V = 2(t1t2t3 + t1t2t4 + t1t3t4 + t2t3t4) . (III.6)

At the supersymmetric locus (II.3), this expression sim-
plifies to V = 8t3, with the overall Kähler parameter t.
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matrix as well as by the non-canonical matter field Käh-
ler metric, both of which depend on complex structure
moduli. The dependence of the physical Yukawa cou-
plings on the Kähler moduli completely drops out in
this particular model, as a consequence of the volume-
independence mentioned earlier, and of working at the
special locus Eq. (II.3) in Kähler moduli space. Thirdly,
in order to make contact with the measured values of
the quark masses, one should include the RG running
from the compactification scale down to the electroweak
scale in the presence of supersymmetry breaking. This is
amenable to standard methods and will not be discussed
further. Finally, loop, ↵0, and non-perturbative correc-
tions can affect the physical Yukawa couplings. These
are suppressed in the large volume and weak coupling
regime and, in these limits, will only lead to small cor-
rections to non-zero perturbative masses (of course, they
may be the leading effect if a perturbative mass vanishes,
as in our present example). For precise predictions from
string theory, all these corrections must ultimately be
considered.

III. METRICS AND HARMONIC FORMS

In geometric heterotic compactifications on smooth CY
threefolds X/�, the holomorphic Yukawa couplings and
the matter field Kähler metric are given by the following
expressions:
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Here ⌫I are harmonic (0, 1)-forms which represent the
matter fields and take values in line bundles LI , whilst
HI are HYM bundle metrics on LI . Concretely, for the
model outlined in the previous section, the line bundles
LI are the ones given in Eq. (II.4). Furthermore, V is the
CY volume and the Hodge star is taken with respect to
the Ricci-flat CY metric. The holomorphic (3, 0)-form ⌦
on X is normalised such that

R
X ⌦^⌦̄ = 1. The integrals

are performed on the ‘upstairs’ manifold X and the result
is transferred to the smooth ‘downstairs’ quotient X/� by
dividing by the group order, |�|. Concretely, for our spe-
cific model, we have |�| = |Z2⇥Z2| = 4. In line with the
constraints from the low-energy U(1) symmetries, holo-
morphic Yukawa couplings �IJK can be non-zero only
if LI ⌦ LJ ⌦ LK = OX and entries KIJ for LI 6= LJ

must vanish. The numerical pre-factors arise from the
dimensional reduction, whilst the factor c =

p
HIHJHK

originates from transforming between conventions used in
the physics and mathematics literature [47]. Note that
HIHJHK is constant for any Yukawa coupling allowed
by the U(1) symmetries.

As mentioned in the previous section, to compute the
Ricci-flat CY metric g, the HYM bundle metrics HI

and the harmonic forms ⌫I , we start with certain ref-
erence quantities which represent the correct cohomol-
ogy classes. To these, we add exact terms which are de-
termined by training suitable neural networks. We now
describe how this is done for each of the three types of
quantities in turn.

A. The Ricci-flat CY metric

1. Mathematical background

Yau’s theorem, applied to a CY manifold X, asserts
that in any given Kähler class, associated to a reference
metric g

(ref), there exists a unique Ricci-flat metric

gab̄ = g
(ref)

ab̄
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where � is a real function on X determined by solving
the relevant Monge-Ampère equation. In practice, this
can be done by training a neural network which repre-
sents �. This approach has been realised in the cymetric
package [34, 35], where it is referred to as the ‘�-model’.

Our specific simply-connected CY threefold is defined
as a tetra-quadric (TQ) hypersurface given as the zero lo-
cus of a defining polynomial p of multi-degree (2, 2, 2, 2),
in the ambient space A = P1
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⇥ P1. Ho-
mogeneous coordinates on the four P1s are denoted by
x↵, y↵, u↵, v↵, where ↵ = 0, 1. The standard patches on
A with x↵, y� , u� , v� 6= 0 are denoted by U↵��� and affine
coordinates on the patch U0000 are defined by z1 = x1/x0,
z2 = y1/y0, z3 = u1/u0 and z4 = v1/v0. We also intro-
duce the convenient shorthand i = 1 + |zi|

2.
Computing the holomorphic Yukawa couplings (III.1)

requires the holomorphic (3, 0)-form ⌦. On the standard
patch with coordinates zi defined above, it can be written
explicitly as

⌦ / ⌦̂ =
dz1 ^ dz2 ^ dz3
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with the proportionality constant fixed by
R
X ⌦ ^ ⌦̄ =

1, up to an arbitrary phase that drops out of physical
quantities.

For the reference metric in Eq. (III.3) we choose the
Fubini-Study metric restricted to X:
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where t
i
2 R>0 are the four Kähler parameters. In terms

of these parameters, the CY volume V reads:

V = 2(t1t2t3 + t1t2t4 + t1t3t4 + t2t3t4) . (III.6)

At the supersymmetric locus (II.3), this expression sim-
plifies to V = 8t3, with the overall Kähler parameter t.



Computation of CY metric

Train on the loss


We used the “cymetric” package to realise the -model.  


Details of the implementation: a sample of 300,000 points on , used both for training and Monte-Carlo integration. 

The point sample is split into training and validation sets at a ratio of 9:1. 


The neural network is fully connected with GeLU activation, four layers and a width of 128. 

Training is carried out for 100 epochs, with batch size 64 and learning rate 0.001. 


                                                         


ϕ
X
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For most of the calculations below, we will be working
with the two-parameter family of TQs defined by the
vanishing of the polynomial

p =
X

even

↵+�+�+�

x
2
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2

�u
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�v
2

� +  0
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↵+�+�+�

x
2

↵y
2

�u
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�v
2

� +  
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↵,�,�,�

x↵y�u�v�,

(III.7)
constructed in analogy with the Dwork pencil of quintic
threefolds. For  0 6= 1, this leads to a smooth hypersur-
face for generic values of  . This polynomial is of course
invariant under the action (II.1) of � = Z2 ⇥ Z2. How-
ever, it is also invariant under an additional symmetry
which enforces equality between the two non-zero up-
quark masses, a degeneration reflected in the numerical
calculation below (see, for instance, Figure 7). To illus-
trate that this degeneracy can be lifted, we also consider
a more general � = Z2 ⇥ Z2 invariant polynomial which
breaks the additional symmetry present in Eq. (III.7),
namely,

p̃ =6x2
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Here, (1 $ 0) is the instruction to copy over all the previ-
ous terms with coordinate indices swapped as indicated.

Throughout the entire calculation below, we will set
the overall Kähler parameter to t = 1. Recall that in
the present model the physical Yukawa couplings are in-
dependent of the Kähler parameters, so this choice does
not limit the scope of our calculation.

2. Computational realisation

An approximate Ricci-flat CY metric is constructed
via Eq. (III.3), where the function � is represented by
a neural network and trained on a loss function that in-
cludes the Monge-Ampère loss, the transition loss and
the Kähler class loss:

L = ↵1LMA + ↵2Ltr. + ↵3LKähler

LMA[�] =

�����

�����1�
1



J(�) ^ J(�) ^ J(�)

⌦̂ ^ ⌦̂

�����

�����
1

Ltr.[�] =
X

s 6=t

�����s � �t

����
1
.

(III.9)

Here ↵1, ↵2, ↵3 are weights for the three contributions
and ||·||1 is the L1-norm computed by performing Monte-
Carlo integration on X as detailed in Ref. [35]. Further-
more, J(�) is the Kähler form associated to the met-
ric (III.3), ⌦̂ is defined in Eq. (III.4), �s is the version
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Figure 1. Monge-Ampère loss for the neural network approxi-
mating the function � defined in Eq. (III.3). For this example,
we have chosen  0 = 2 and  = 1.

of � computed on the patch Us, while the normalisation
factor  and the Kähler class loss LKähler are defined in
Ref. [35].

We carry out the computation of the CY metric at the
points along the pencil of tetra-quadrics (III.7) defined
by  0 = 2 and for  2 {0, 0.5, 1, 2, 4, 6}. For each value
of  , the cymetric package [34, 35] is used to create a
sample of 300, 000 points on X, distributed according
to the measure defined in Ref. [35]. These points are
used to train the neural network for � as well as the
neural networks discussed below and to perform Monte-
Carlo integration over X. We split the point sample into
training and validation sets at a ratio of 9:1.

The neural network is fully connected with GeLU ac-
tivation [69], four layers and a width of 128. Training is
carried out for 100 epochs, with batch size 64 and learn-
ing rate 0.001. The change in loss over the course of a
typical training round with  0 = 2 and  = 1 is illus-
trated in Figure 1 and Figure 2. We define the following
measures for the training performance,

MMA[�] =
LMA[�]

LMA[� = 0]
, (III.10)

Mtr.[�] =
1

V

Ltr[�]

std. dev. of �
, (III.11)

where the integration is performed over the validation
set. For a typical run with  0 = 2 and  = 1, we find
MMA(�) = 0.04 and Mtr.(�) = 0.05. These values indi-
cate that the neural network � performs well and leads
to a good approximation of the Ricci-flat CY metric.

B. The HYM bundle metric

1. Mathematical background

Let L = OX(k) be a line bundle on X associated with
one of the matter fields in (II.4). To determine the cor-
rect field normalisations, knowledge of the HYM metric
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Figure 2. Transition loss for the neural network approximat-
ing the function � defined in Eq. (III.3). For this example,
we have chosen  0 = 2 and  = 1.

on OX(k) is required. As reference metric H
(ref), we

choose the standard bundle metric associated with the
Chern connection on OA(k) restricted to X. This can be
written down explicitly as

H
(ref) =

4Y

i=1


�ki

i

�����
X

. (III.12)

The HYM bundle metric H on OX(k) is related to H
(ref)

by

H = e
�
H

(ref)
, (III.13)

where � is a real function on X. The HYM equation
implies that � must satisfy the following Poisson equation

�� = ⇢� = �g
ab̄
@a@̄b̄ ln

⇣
H̄

(ref)

⌘
. (III.14)

The integrability condition for this equation amounts to
the requirement that the slope of the line bundle vanishes,
which is guaranteed by working at the supersymmetric
Kähler locus in Eq. (II.3). From the spectrum (II.4), in
order to determine the up-quark Yukawa couplings, we
need to compute the three Hermitian bundle metrics on
L2, L5 and L

⇤
2
⌦ L

⇤
5
.

2. Computational realisation

A possible method to solve Eq. (III.14), which has, for
instance, been used in Ref. [35], is to construct a function
basis, by starting with the sections of a given line bundle
L
0
! X. Then, Eq. (III.14) can be converted into a lin-

ear system by expanding � in terms of this basis, and by
computing the matrix elements of the Laplacian as well
as the components of the source ⇢� . In our case, the sim-
plest line bundle for this purpose is L

0 = OX(1, 1, 1, 1)
with 16 sections, leading to 162 = 256 functions. Work-
ing with this basis requires computing 2562 Laplacian
matrix elements. On the other hand, this is equivalent

with working with the l = 0, 1 spherical harmonics in
each of the P1 ⇠= S

2 directions only, which indicates a
rather poor approximation. Trying to improve this by
starting with L

0 = OX(2, 2, 2, 2) instead requires the cal-
culation of an unfeasible number of matrix elements. In
conclusion, it appears difficult to achieve sufficient accu-
racy with this method.

For this reason, we have opted to determine the HYM
bundle metric by training a neural network, in analogy
with what has been done for the CY metric. In prac-
tice, the neural network approximating the function � in
Eq. (III.13) has two contributions for the loss function:
the HYM loss based on the failure to satisfy Eq. (III.14),
and the transition loss which ensures that � transforms
as a function. Explicitly, the loss function is given by

L = ↵1LHYM + ↵2Ltr.

LHYM[�] =
������ � ⇢�

����
1

Ltr.[�] =
X

s 6=t

�����s � �t

����
1
,

(III.15)

where ↵1, ↵2 are weights for the two contributions, and
�s, �t are the versions of � computed on the patches Us,
Ut, respectively.

The neural network is fully connected with GeLU ac-
tivation, three layers and a width of 128. Training is
carried out for 100 epochs, with batch size 64 and learn-
ing rate 0.001. Each of the three required bundle metrics
is computed for  0 = 2 and  2 {0, 0.5, 1, 2, 4, 6}. To dis-
cuss training and accuracy, we focus on the case  = 1
which turns out to be typical. A typical change in loss
over the course of training is shown in Figure 3 and Fig-
ure 4. Appropriate measures for the success or failure of
training the neural networks can be defined by

MHYM[�] =
LHYM[�]R

X |⇢|
, (III.16)

Mtr.[�] =
1

V

Ltr.[�]

std. dev. of �
, (III.17)

where the integration goes over the validation set.
Typical numerical values for these measures, computed

for the three line bundles, range between 0.05� 0.06 for
MHYM and between 0.02� 0.04 for Mtr.. We expect the
product of the three bundle metrics to give the trivial
bundle metric. It follows that this product must be con-
stant over the CY manifold, and this is indeed true within
an error of about 4%.

C. The harmonic forms

1. Mathematical background

The matter fields in the spectrum (II.4) are associated
with harmonic bundle-valued (0, 1)-forms. Let L be one
of the relevant line bundles on X with HYM bundle met-
ric H = e

�
H

(ref). Each matter field is represented by a
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constructed in analogy with the Dwork pencil of quintic
threefolds. For  0 6= 1, this leads to a smooth hypersur-
face for generic values of  . This polynomial is of course
invariant under the action (II.1) of � = Z2 ⇥ Z2. How-
ever, it is also invariant under an additional symmetry
which enforces equality between the two non-zero up-
quark masses, a degeneration reflected in the numerical
calculation below (see, for instance, Figure 7). To illus-
trate that this degeneracy can be lifted, we also consider
a more general � = Z2 ⇥ Z2 invariant polynomial which
breaks the additional symmetry present in Eq. (III.7),
namely,
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Here, (1 $ 0) is the instruction to copy over all the previ-
ous terms with coordinate indices swapped as indicated.

Throughout the entire calculation below, we will set
the overall Kähler parameter to t = 1. Recall that in
the present model the physical Yukawa couplings are in-
dependent of the Kähler parameters, so this choice does
not limit the scope of our calculation.

2. Computational realisation

An approximate Ricci-flat CY metric is constructed
via Eq. (III.3), where the function � is represented by
a neural network and trained on a loss function that in-
cludes the Monge-Ampère loss, the transition loss and
the Kähler class loss:

L = ↵1LMA + ↵2Ltr. + ↵3LKähler
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Here ↵1, ↵2, ↵3 are weights for the three contributions
and ||·||1 is the L1-norm computed by performing Monte-
Carlo integration on X as detailed in Ref. [35]. Further-
more, J(�) is the Kähler form associated to the met-
ric (III.3), ⌦̂ is defined in Eq. (III.4), �s is the version

Figure 1. Monge-Ampère loss for the neural network approxi-
mating the function � defined in Eq. (III.3). For this example,
we have chosen  0 = 2 and  = 1.

of � computed on the patch Us, while the normalisation
factor  and the Kähler class loss LKähler are defined in
Ref. [35].

We carry out the computation of the CY metric at the
points along the pencil of tetra-quadrics (III.7) defined
by  0 = 2 and for  2 {0, 0.5, 1, 2, 4, 6}. For each value
of  , the cymetric package [34, 35] is used to create a
sample of 300, 000 points on X, distributed according
to the measure defined in Ref. [35]. These points are
used to train the neural network for � as well as the
neural networks discussed below and to perform Monte-
Carlo integration over X. We split the point sample into
training and validation sets at a ratio of 9:1.

The neural network is fully connected with GeLU ac-
tivation [69], four layers and a width of 128. Training is
carried out for 100 epochs, with batch size 64 and learn-
ing rate 0.001. The change in loss over the course of a
typical training round with  0 = 2 and  = 1 is illus-
trated in Figure 1 and Figure 2. We define the following
measures for the training performance,

MMA[�] =
LMA[�]

LMA[� = 0]
, (III.10)

Mtr.[�] =
1

V

Ltr[�]

std. dev. of �
, (III.11)

where the integration is performed over the validation
set. For a typical run with  0 = 2 and  = 1, we find
MMA(�) = 0.04 and Mtr.(�) = 0.05. These values indi-
cate that the neural network � performs well and leads
to a good approximation of the Ricci-flat CY metric.

B. The HYM bundle metric

1. Mathematical background

Let L = OX(k) be a line bundle on X associated with
one of the matter fields in (II.4). To determine the cor-
rect field normalisations, knowledge of the HYM metric

  [Larfors, Lukas, Ruehle, Schneider, ‘22]



Computation of HYM connection

For the bundle , with reference bundle metric , reference connection 


and field strength , write  


                                              

The HYM equation implies that  must satisfy the following Poisson equation 


                                                    

Train on the loss:


                                      

with a similar architecture as before. 


L = 𝒪X( ⃗k) H(ref) A(ref) = ∂ ln H(ref)

F(ref) = ∂̄∂ ln H(ref)

H = eβH(ref)

β

6

Figure 2. Transition loss for the neural network approximat-
ing the function � defined in Eq. (III.3). For this example,
we have chosen  0 = 2 and  = 1.

on OX(k) is required. As reference metric H
(ref), we

choose the standard bundle metric associated with the
Chern connection on OA(k) restricted to X. This can be
written down explicitly as

H
(ref) =

4Y

i=1


�ki

i

�����
X

. (III.12)

The HYM bundle metric H on OX(k) is related to H
(ref)

by

H = e
�
H

(ref)
, (III.13)

where � is a real function on X. The HYM equation
implies that � must satisfy the following Poisson equation

�� = ⇢� = �g
ab̄
@a@̄b̄ ln

⇣
H̄

(ref)

⌘
. (III.14)

The integrability condition for this equation amounts to
the requirement that the slope of the line bundle vanishes,
which is guaranteed by working at the supersymmetric
Kähler locus in Eq. (II.3). From the spectrum (II.4), in
order to determine the up-quark Yukawa couplings, we
need to compute the three Hermitian bundle metrics on
L2, L5 and L

⇤
2
⌦ L

⇤
5
.

2. Computational realisation

A possible method to solve Eq. (III.14), which has, for
instance, been used in Ref. [35], is to construct a function
basis, by starting with the sections of a given line bundle
L
0
! X. Then, Eq. (III.14) can be converted into a lin-

ear system by expanding � in terms of this basis, and by
computing the matrix elements of the Laplacian as well
as the components of the source ⇢� . In our case, the sim-
plest line bundle for this purpose is L

0 = OX(1, 1, 1, 1)
with 16 sections, leading to 162 = 256 functions. Work-
ing with this basis requires computing 2562 Laplacian
matrix elements. On the other hand, this is equivalent

with working with the l = 0, 1 spherical harmonics in
each of the P1 ⇠= S

2 directions only, which indicates a
rather poor approximation. Trying to improve this by
starting with L

0 = OX(2, 2, 2, 2) instead requires the cal-
culation of an unfeasible number of matrix elements. In
conclusion, it appears difficult to achieve sufficient accu-
racy with this method.

For this reason, we have opted to determine the HYM
bundle metric by training a neural network, in analogy
with what has been done for the CY metric. In prac-
tice, the neural network approximating the function � in
Eq. (III.13) has two contributions for the loss function:
the HYM loss based on the failure to satisfy Eq. (III.14),
and the transition loss which ensures that � transforms
as a function. Explicitly, the loss function is given by

L = ↵1LHYM + ↵2Ltr.

LHYM[�] =
������ � ⇢�

����
1

Ltr.[�] =
X

s 6=t

�����s � �t

����
1
,

(III.15)

where ↵1, ↵2 are weights for the two contributions, and
�s, �t are the versions of � computed on the patches Us,
Ut, respectively.

The neural network is fully connected with GeLU ac-
tivation, three layers and a width of 128. Training is
carried out for 100 epochs, with batch size 64 and learn-
ing rate 0.001. Each of the three required bundle metrics
is computed for  0 = 2 and  2 {0, 0.5, 1, 2, 4, 6}. To dis-
cuss training and accuracy, we focus on the case  = 1
which turns out to be typical. A typical change in loss
over the course of training is shown in Figure 3 and Fig-
ure 4. Appropriate measures for the success or failure of
training the neural networks can be defined by

MHYM[�] =
LHYM[�]R

X |⇢|
, (III.16)

Mtr.[�] =
1

V

Ltr.[�]

std. dev. of �
, (III.17)

where the integration goes over the validation set.
Typical numerical values for these measures, computed

for the three line bundles, range between 0.05� 0.06 for
MHYM and between 0.02� 0.04 for Mtr.. We expect the
product of the three bundle metrics to give the trivial
bundle metric. It follows that this product must be con-
stant over the CY manifold, and this is indeed true within
an error of about 4%.

C. The harmonic forms

1. Mathematical background

The matter fields in the spectrum (II.4) are associated
with harmonic bundle-valued (0, 1)-forms. Let L be one
of the relevant line bundles on X with HYM bundle met-
ric H = e

�
H

(ref). Each matter field is represented by a
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ing with this basis requires computing 2562 Laplacian
matrix elements. On the other hand, this is equivalent

with working with the l = 0, 1 spherical harmonics in
each of the P1 ⇠= S

2 directions only, which indicates a
rather poor approximation. Trying to improve this by
starting with L

0 = OX(2, 2, 2, 2) instead requires the cal-
culation of an unfeasible number of matrix elements. In
conclusion, it appears difficult to achieve sufficient accu-
racy with this method.

For this reason, we have opted to determine the HYM
bundle metric by training a neural network, in analogy
with what has been done for the CY metric. In prac-
tice, the neural network approximating the function � in
Eq. (III.13) has two contributions for the loss function:
the HYM loss based on the failure to satisfy Eq. (III.14),
and the transition loss which ensures that � transforms
as a function. Explicitly, the loss function is given by
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where ↵1, ↵2 are weights for the two contributions, and
�s, �t are the versions of � computed on the patches Us,
Ut, respectively.

The neural network is fully connected with GeLU ac-
tivation, three layers and a width of 128. Training is
carried out for 100 epochs, with batch size 64 and learn-
ing rate 0.001. Each of the three required bundle metrics
is computed for  0 = 2 and  2 {0, 0.5, 1, 2, 4, 6}. To dis-
cuss training and accuracy, we focus on the case  = 1
which turns out to be typical. A typical change in loss
over the course of training is shown in Figure 3 and Fig-
ure 4. Appropriate measures for the success or failure of
training the neural networks can be defined by

MHYM[�] =
LHYM[�]R

X |⇢|
, (III.16)

Mtr.[�] =
1

V

Ltr.[�]
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, (III.17)

where the integration goes over the validation set.
Typical numerical values for these measures, computed

for the three line bundles, range between 0.05� 0.06 for
MHYM and between 0.02� 0.04 for Mtr.. We expect the
product of the three bundle metrics to give the trivial
bundle metric. It follows that this product must be con-
stant over the CY manifold, and this is indeed true within
an error of about 4%.

C. The harmonic forms

1. Mathematical background

The matter fields in the spectrum (II.4) are associated
with harmonic bundle-valued (0, 1)-forms. Let L be one
of the relevant line bundles on X with HYM bundle met-
ric H = e

�
H

(ref). Each matter field is represented by a

[AC, Fraser-Taliente, Harvey, Lukas, Ovrut ‘24]



Computation of harmonic bundle-valued forms
For the harmonic forms,  use reference quantities that can be written as restrictions of forms from the ambient 

product of projective spaces and


                                        

The Here, σ is a global section of  determined by the Poisson equation 


                                                    

Train on the following loss, with a similar architecture:


                                      

A similar approach for standard embedding ( ) compactifications was carried out, which matches 

spectacularly well the analytic results that can be performed in this setting. 
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Figure 3. A typical HYM loss, LHYM, as given in Eq. (III.15),
for the neural network approximating the function � defined
in Eq. (III.14), and the line bundle L2. For this example, we
have chosen  0 = 2 and  = 1.

Figure 4. A typical transition loss, Ltransition, as given in
Eq. (III.15), for the neural network approximating the func-
tion � defined in Eq. (III.14), for the line bundle L2. For this
example, we have chosen  0 = 2 and  = 1.

specific cohomology class in H
1(X,L) and we choose a

reference form ⌫
(ref) to represent this class. The unique

harmonic form ⌫ in the same cohomology class is related
to ⌫(ref) by

⌫ = ⌫
(ref) + @̄L� . (III.18)

Here, � is a global section of L determined by the Poisson
equation

�L� = ⇢� = �g
ab̄
@a

⇣
H⌫

(ref)

b̄

⌘
, (III.19)

where �L is the Laplacian on L relative to the Ricci-flat
CY metric g and the HYM bundle metric H.

For our model, we need to calculate seven harmonic
forms, one for each of the matter fields in Table I. These
are precisely the forms which survive the � = Z2 ⇥ Z2

projection and the inclusion of the Wilson line. Explicit
expressions for these reference forms have been given in
Refs. [21–23], which, being somewhat lengthy, will not be
reproduced here.

2. Computational realisation

Following the same principles as before, we find the
harmonic bundle-valued form ⌫ from Eq. (III.18), by de-
signing a neural network which approximates �, trained
on a loss function with two contributions: the Laplacian
loss, which measures the failure to satisfy Eq. (III.19),
and the transition loss, which ensures that � transforms
as a section of L. In analogy with Eq. (III.15), this loss
function has the form

L = ↵̃1L� + ↵̃2Ltr.

L�[�] =
�����L� � ⇢�

����
1

Ltr.[�] =
X

s 6=t

�����s � T(s,t)�t

����
1
,

(III.20)

where ↵̃1, ↵̃2 are weights, �s, �t are the versions of �
computed on the patches Us, Ut, respectively and T(s,t)

denotes the transition function between Ut and Us.
Enforcing the right transformation for � is more com-

plicated than in the previous cases for � and � due to
the presence of the transition functions. These functions
can become large or small away from the natural over-
lap region between two patches. As a result, for any
i 2 {1, . . . , 4} with a line bundle integer ki 6= 0, the tran-
sition loss is evaluated at points on a ‘belt’ region B, de-
fined by 1/2 < |zi| < 2, where zi is the affine coordinate
on the i

th P1 space introduced previously.
The neural network is fully connected with GeLU ac-

tivation, three layers and a width of 128. Training is car-
ried out for 75 epochs, with batch size 64 and learning
rate 0.001. Each of the required seven harmonic forms is
computed for  0 = 2 and  2 {0, 0.5, 1, 2, 4, 6}. To dis-
cuss training and accuracy, we focus on the case  = 1
which turns out to be typical. The loss over the course
of training for this case is shown in Figure 5 and Fig-
ure 6. Appropriate measures for the trained network’s
performance are defined as

M�[�] =
L�[�]R
X |⇢|

, (III.21)

Mtr.[�] =
1

VB

Ltr.[�]

std. dev. of �
, (III.22)

where the integration goes over the validation set. In
the evaluation of the transition measure for �, we only
consider the ‘belt’ region with volume VB. Both measures
are given in Table I, for each of the seven matter fields.

H
u
2,5 Q5 U5 Q

1

2 Q
2

2 U
1

2 U
2

2

M�(�) 0.06 0.08 0.12 0.15 0.20 0.14 0.12
Mtr.(�) 0.04 0.09 0.13 0.15 0.17 0.21 0.14

Table I. Typical values of the errors, evaluated on the trained
neural networks representing �, for  0 = 2 and  = 1.
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denotes the transition function between Ut and Us.
Enforcing the right transformation for � is more com-

plicated than in the previous cases for � and � due to
the presence of the transition functions. These functions
can become large or small away from the natural over-
lap region between two patches. As a result, for any
i 2 {1, . . . , 4} with a line bundle integer ki 6= 0, the tran-
sition loss is evaluated at points on a ‘belt’ region B, de-
fined by 1/2 < |zi| < 2, where zi is the affine coordinate
on the i

th P1 space introduced previously.
The neural network is fully connected with GeLU ac-

tivation, three layers and a width of 128. Training is car-
ried out for 75 epochs, with batch size 64 and learning
rate 0.001. Each of the required seven harmonic forms is
computed for  0 = 2 and  2 {0, 0.5, 1, 2, 4, 6}. To dis-
cuss training and accuracy, we focus on the case  = 1
which turns out to be typical. The loss over the course
of training for this case is shown in Figure 5 and Fig-
ure 6. Appropriate measures for the trained network’s
performance are defined as

M�[�] =
L�[�]R
X |⇢|

, (III.21)

Mtr.[�] =
1

VB

Ltr.[�]

std. dev. of �
, (III.22)

where the integration goes over the validation set. In
the evaluation of the transition measure for �, we only
consider the ‘belt’ region with volume VB. Both measures
are given in Table I, for each of the seven matter fields.

H
u
2,5 Q5 U5 Q

1

2 Q
2

2 U
1

2 U
2

2

M�(�) 0.06 0.08 0.12 0.15 0.20 0.14 0.12
Mtr.(�) 0.04 0.09 0.13 0.15 0.17 0.21 0.14

Table I. Typical values of the errors, evaluated on the trained
neural networks representing �, for  0 = 2 and  = 1.

7

Figure 3. A typical HYM loss, LHYM, as given in Eq. (III.15),
for the neural network approximating the function � defined
in Eq. (III.14), and the line bundle L2. For this example, we
have chosen  0 = 2 and  = 1.

Figure 4. A typical transition loss, Ltransition, as given in
Eq. (III.15), for the neural network approximating the func-
tion � defined in Eq. (III.14), for the line bundle L2. For this
example, we have chosen  0 = 2 and  = 1.

specific cohomology class in H
1(X,L) and we choose a

reference form ⌫
(ref) to represent this class. The unique

harmonic form ⌫ in the same cohomology class is related
to ⌫(ref) by

⌫ = ⌫
(ref) + @̄L� . (III.18)

Here, � is a global section of L determined by the Poisson
equation

�L� = ⇢� = �g
ab̄
@a

⇣
H⌫

(ref)

b̄

⌘
, (III.19)

where �L is the Laplacian on L relative to the Ricci-flat
CY metric g and the HYM bundle metric H.

For our model, we need to calculate seven harmonic
forms, one for each of the matter fields in Table I. These
are precisely the forms which survive the � = Z2 ⇥ Z2

projection and the inclusion of the Wilson line. Explicit
expressions for these reference forms have been given in
Refs. [21–23], which, being somewhat lengthy, will not be
reproduced here.

2. Computational realisation

Following the same principles as before, we find the
harmonic bundle-valued form ⌫ from Eq. (III.18), by de-
signing a neural network which approximates �, trained
on a loss function with two contributions: the Laplacian
loss, which measures the failure to satisfy Eq. (III.19),
and the transition loss, which ensures that � transforms
as a section of L. In analogy with Eq. (III.15), this loss
function has the form

L = ↵̃1L� + ↵̃2Ltr.

L�[�] =
�����L� � ⇢�

����
1

Ltr.[�] =
X

s 6=t

�����s � T(s,t)�t

����
1
,

(III.20)

where ↵̃1, ↵̃2 are weights, �s, �t are the versions of �
computed on the patches Us, Ut, respectively and T(s,t)

denotes the transition function between Ut and Us.
Enforcing the right transformation for � is more com-

plicated than in the previous cases for � and � due to
the presence of the transition functions. These functions
can become large or small away from the natural over-
lap region between two patches. As a result, for any
i 2 {1, . . . , 4} with a line bundle integer ki 6= 0, the tran-
sition loss is evaluated at points on a ‘belt’ region B, de-
fined by 1/2 < |zi| < 2, where zi is the affine coordinate
on the i

th P1 space introduced previously.
The neural network is fully connected with GeLU ac-

tivation, three layers and a width of 128. Training is car-
ried out for 75 epochs, with batch size 64 and learning
rate 0.001. Each of the required seven harmonic forms is
computed for  0 = 2 and  2 {0, 0.5, 1, 2, 4, 6}. To dis-
cuss training and accuracy, we focus on the case  = 1
which turns out to be typical. The loss over the course
of training for this case is shown in Figure 5 and Fig-
ure 6. Appropriate measures for the trained network’s
performance are defined as

M�[�] =
L�[�]R
X |⇢|

, (III.21)

Mtr.[�] =
1

VB

Ltr.[�]

std. dev. of �
, (III.22)

where the integration goes over the validation set. In
the evaluation of the transition measure for �, we only
consider the ‘belt’ region with volume VB. Both measures
are given in Table I, for each of the seven matter fields.

H
u
2,5 Q5 U5 Q

1

2 Q
2

2 U
1

2 U
2

2

M�(�) 0.06 0.08 0.12 0.15 0.20 0.14 0.12
Mtr.(�) 0.04 0.09 0.13 0.15 0.17 0.21 0.14

Table I. Typical values of the errors, evaluated on the trained
neural networks representing �, for  0 = 2 and  = 1.

V = TX

[AC, Fraser-Taliente, Harvey, Lukas, Ovrut ‘24]

[Butbaia, Pena, Tan, Berglund, Hubsch, Jejjala, Mishra,  ‘24]



Application to the model we started with

Plot for the top-quark mass as a function of (one) complex modulus: 


                                   

Preliminary exploration of the moduli space: a hierarchy factor of 20 (possibly more) between 

top and charm can be achieved. This is somewhat too small (the measured factor is approx 137).


However, we have a database of millions of line bundle models with the correct spectrum to which this method

can now be applied. A full-fledged embedding of the SM in string theory is achievable.


Major piece of work left: understand moduli stabilisation. 
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Figure 5. A typical Laplacian loss, L�, as in Eq. (III.20),
for the neural network approximating the section � defined in
Eq. (III.19), for the case of the up-Higgs. For this example,
we have chosen  0 = 2 and  = 1.

Figure 6. A typical transition loss, Ltr., as given in
Eq. (III.20), for the neural network approximating the sec-
tion � defined in Eq. (III.19), for the case of the up-Higgs.
For this example, we have chosen  0 = 2 and  = 1.

IV. YUKAWA COUPLINGS AND MASSES

We now outline the main steps in the numerical cal-
culation. For concreteness, we refer to the details of the
model introduced in Section II, but we note that the pro-
cedure is general for heterotic line bundle models.

(1) At the reference Kähler locus (ti) = (1, 1, 1, 1), and
for the defining polynomial (III.7) with  0 = 2 and
for each  2 {0, 0.5, 1, 2, 4, 6}, a sample of 300, 000
points on the TQ manifold is generated. Then,
the Ricci-flat CY metric is computed by machine-
learning the function � in Eq. (III.3), with this
point sample as a training/validation set.

(2) For each relevant line bundle L, the corresponding
HYM bundle metric H is computed by machine-
learning the function � in Eq. (III.13), with a
newly generated training/validation point set and
the loss function (III.15). This needs to be done
for three line bundles, namely, for L2 associated to

trained
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Figure 7. Plot of the (degenerate) top/charm mass in units of
e
��|hHui| for the defining polynomial (III.7) with  0 = 2, as a

function of the complex structure modulus  . The black curve
corresponds to the full neural network calculation, whilst the
red curve gives the masses computed with the reference met-
rics and differential forms. The blue curve shows the mass for
canonical kinetic terms, obtained by setting KQ = Ku = I2
and k

u = k
Q = k = 1 in Eq. (II.8). Comparison of the

blue and black curve demonstrates the importance of includ-
ing the field normalisations. Error bars are statistical, and
average five independent calculations.
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(3) For each matter field involved, the corresponding
bundle-valued harmonic form ⌫ is computed by
starting with the corresponding reference bundle-
valued form taken from Refs. [21–23], machine-
learning � in Eq. (III.18), with an additional point
sample as training/validation set and loss func-
tion (III.20). This needs to be done for seven cases:
the three left-handed quarks Q

i, the three right-
handed up-quarks U

i and the up-Higgs H
u.

(4) Using the aforementioned quantities, Eqs. (III.1)
and (III.2) are used to compute the holomorphic
Yukawa couplings and matter field metrics. This is
done by Monte-Carlo integration using the given
point sample. These results must be consistent
with the structure of Yukawa couplings and mat-
ter field metrics as given in Eqs. (II.6) and (II.8),
which provides an important check of our calcula-
tion. Furthermore, this determines the entries �i
of the holomorphic Yukawa couplings in Eq. (II.6)
and the quantities K

Q
,K

u
, k

Q
, k

u
, k in Eq. (II.8).

(5) Finally, inserting these quantities into Eqs. (II.9),
(II.10) and (II.11), we determine the physical up
Yukawa couplings and up-quark masses.

The above calculation is performed in three modes. Ini-
tially, we carry out a quick calculation with the analytic
reference quantities, that is, we set � and all � and �

to zero. In this case, no neural networks need to be
trained—the above first three steps are trivial—but the

[AC, Fraser-Taliente, Harvey, Lukas, Ovrut ‘24]



Connecting String Theory and particle Physics: a hard, but worthwhile problem.

AI tools likely to bring the solution within reach.


The size of the string landscape: the spectacular success of heuristic search methods seems to indicate

that this is no longer a problem.


Fast line bundle cohomology computations: an essential tool for model building.


Computation of physical parameters (quark and lepton masses): now feasible in realistic string models.


       Summary


