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Aim: explain the core structures of the SM in terms of structures present in the fabric of space-time:
e explain the particle content, e.g. why there are three generations of quarks and leptons

e explain the hierarchy of masses

My, = 173 - 10° MeV, m, = 0.511 MeV, m, <2.2- 107° MeV
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Three steps:

e identify string models that have the correct gauge group and particle content

e compute Yukawa couplings (quark and lepton masses and mixing parameters) as functions of the moduli

e stabilise all moduli



Three steps:
e identify models that have the correct gauge group and particle content

e compute Yukawa couplings (quark and lepton masses and mixing parameters) as functions of the moduli

e stabilise all moduli

Eg X Eg Heterotic string - from 10d to 4d keep N=1 SUSY in 4d:
o« Xig=Xg X M, o X, Calabi-Yau, R,z = 0
e Eg = Gyuuaie X Gout Gsur = Ganiee X G e V holomorphic and poly-stable,
e matter fields: F,=F3 ;= g“BFa]; =0
248 — (1, AdGGUT) fas) @(Ri’ r) n, = hl(X, VRi) e matter fields: cohomology,
i

harmonic forms



A heterotic line bundle example

[AC, Fraser-Taliente, Harvey, Lukas, Ovrut '24]

Basic properties
prop [Buchbinder, AC, Lukas "13]

standard model? True massless U(1): 1 number of 55 pairs: 3 c,(V) = {24, 8, 20, 12}

- - 4,68
C]Pl 2 -1 -10 1 1
1 Caiy_ |0 -3 1 1 1
¥ _ CP-| 2 Vika=| o 5 4 1 o
(CIP)l 2 1 2 0 -1 -2
Cpl 2 Cohomology of V:
- - —12
8 Lo = {-1,-3,2,2} h[L5] = {0,8,0,0} h[L,,R] = {{0,0,0,0}{2,2,2,2}{0,0,0,0}{0,0,0, 0}}
Ls = {1,1,0,-2} h[Ls] = {0,4,0,0} h[Ls,R] = {{0,0,0,0}{1,1,1,1}, {0, 0,0, 0}, {0, O, O, O}
LoxLy, = {0,-2,1,1} h[L,xL4] = {0,4,0,0} h[L,xL4,R] = {{0,0,0,0}{1,1,1,1},{0,0,0,0}, {0, 0,0, 0}}
P — Z2 X ZQ LoxLs = {0, -2, 2,0} h[lL,xLs] = {0, 3, 3,0} h[L,xLs,R] = {{0,0,0,0}{0,1,1,1},{0,1,1,1},{0, 0,0, 0}}
LyxLs = {2,2,-1,-3} h[lL4xLs] = {0, 8,0, 0} h[L4xLs,R] = {{0,0,0,0}, {2, 2, 2, 2}, {0, 0, 0, 0}, {0, O, O, O}}
LyxL," = {0, 3, -2, -1} hlLyxLx"] = {0,0, 12, 0} hLixLy",R] = {{0, 0,0, 0}, {0, 0, 0, 0}, {3, 3, 3, 3}, {0, 0, 0, O}}
LyxLs* = {-2,-1,0, 3} h[LixLs*] = {0,0, 12, 0} h[LixLs",R] = {{0, 0,0, 0}, {0, 0, 0, 0}, {3, 3, 3, 3}, {0, 0, 0, O}}
Eg —> LoxLs* = {-1,-4,3,2)  hllexLs"] = {0,20,0,0}  h[L.xLs*,R] = {{0, 0,0, 0}, {5, 5, 5, 5}, {0, 0, 0, 0}, {0, 0, 0, O}}
LoxLy* = {-2,-4,3,3} h[L,xLs*] = {0, 12,0, 0} h[L,xL,*,R] = {{0, 0,0, 0}, {3, 3, 3, 3}, {0, 0, 0, 0}, {0, 0, 0, O}
SU(S) X S( U( 1 )5) — LyxLs* = {-1,0,-1, 2} h[LsxLs"] = {0, 0, 4, 0} h[LsxLs",R] = {{0, 0,0, 0}, {0, 0, 0, 0}, {1, 1, 1, 1}, {0, O, O, O}}
Wilson line: {{0, 0}, {0, 1}} Equivariant structure: {{0, 0}, {0, 0}, {0, 0}, {0, 0}, {0, 0}} Higgs pairs: 1
GSM X S( U( 1 )5) Downstairs spectrum: {2 102, 105, 5214, 2545, H2’5, ﬁ2’5, 3 82’1, 3 85’1, 5 82’3, 3 82!4, S5yg} PhyS nggS {H2,51 ﬁg’s}

Transfer format: {{6, 1,1, 4,6,5,9,9, 8,10,1,7,17}, {6, 6, -1, -1, -1, -1}}

rk(Y(”)) ={2, 2} rk(Y(d))) ={0, 0} dim. 4 operators absent: {True, True} dim. 5 operators absent: {True, True}
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A heterotic line bundle example

Operators
basic superpotential terms: ® correct SpeCtrum
0) (0) (1) e up-Yukawa: rank 2 (perturbatively)
H10P109- YW — . .
107107 ¥ ‘[m o E:,;] e vanishing lepton and down-Yukawas
(0) (0) (0) e right-handed neutrinos
H510%: Y“”=[<0) (0) (0)]
(0) (0) (0) e no proton decay operators
HH: u={1}
Wsing = {0}

R-parity violating terms in superpotential:

0
So4
S24

105752 A = {{{{0}. {0}, {O}}. {{0}. {0}, {0}, (O}, {0}, (O}, {{{0}. {0}, {O}}, {{0}. O}, {O). {0}, {0}, O}, {(O}, {0}, (O}, {{0}. {0}, (O}, (0}, {0}, (O}

HLP: p=

Dimension 5 operators in superpotential:

5°10%10710°: A' = ({{{{0}, {0}, {0}, {0}, {0}, {O}} €O}, {0}, {01}, {0}, {0}, {0}, {{0}. {0}, {O}}. {{0}. {0}, {0}, {{{0}, {0}, {0} {0}, {0}, {O}}, {{0}. O}, {O}
{{t{0}, {0}, {03}, {{0}, {0}, {03}, {{0}. {0}, {013}, {{{0}. {0}, {0}, {{0}, {0}, {0}, {{O}. {0}, {013}, {{{0}. {0}, {0}, {0}, {0}, {0}, {{0}. {0}, {0},
{{{{0}, {0}, {03}, {{0}, {0}, {03}, {{0}, {0}, {01}, {{{0}, {0}, {O}}, {0}, {0}, {0}, {{O}, {0}, {O}}}, {{{0}, {0}, {O}}, {0}, {0}, {O}}, {{O}. {0}, {O}}}}



Heuristic searches for models with the correct
particle spectrum



Heterotic line bundle models: searches

Overview:

e Situation about 10 years ago: only a handful of models that recovered the correct spectrum were known

e Systematic searches: in 2013 we undertook a massive search, scanning essentially over some 10%0 (X, V)-pairs;
this resulted in several million heterotic line bundle models with the correct particle content

[Anderson, AC, Gray, Lukas, Palti ‘13]
e Heuristic searches: more recently (in the last two years), we used Genetic Algorithms and Reinforcement Learning
to search in even larger regions of the string landscape. Viable models can now be generated on demand

(at a rate of hundreds or thousands per day).



Genetic Algorlthms [Abel, AC, Harvey, Lukas, Nutricati ’23]

Mutate some randomly

Create random Specimen . ' Breed new Generation

Find best Specimen

\

Genotype: for fixed X, encode the line bundle integers into a binary sequence
Phenotype: three generations, no exotics, Higgs field, absence of gauge and gravitational anomalies,
supersymmetry, equivariance

Bonus: GAs perform better when enhanced with a Quantum Annealing ‘intrinsic’ mutation



Reinforcement Learning

internal state “Nreward

! environment

learning rate a.
inverse temperature
discount rate vy

observation

Mathematical structure: (Stochastic) Markov Decision Processes.

[Abel, AC, Harvey, Lukas "21]

Simplest version: policy-based RL. The policy is controlled by a NN and learnt without any prior

knowledge of the environment.



Some results

Manifold h |I'||Range| GA Scan|Found Explored
7862 4 2| [-7,8]| 5 5 1100% 1071
7862 4 4 | [-7,8]| 30 31 | 97% 1071
7447 5 2| [-7,8] | 38 38 [100% 10~ **
7447 5 4 | [-7,8] | 139 154 | 90% 10~ **
5302 6 2 | [-7,8] | 403 442 | 93% 107"
5302 6 4 |[-7,8] | 722 897 | 80% 1077
4071 7 2 |[-34] 11,937 N/A| N/A 10~
[Abel, AC, Harvey, Lukas '21] [Abel, AC, Harvey, Lukas, Nutricati 23]

Comparison with systematic scans: virtually the same results while scanning only a fraction of ~ 10720
Comparison between GA and RL: very different philosophies, similar results



Particle spectra and
cohomology computations



Particle content and cohomology: recap

Compactification data for the Eg X Eg heterotic string: (X, V)

Want manifolds and bundles that can be given very explicit presentations.
Best choice: X CICY in product of projective spacesand V=L @ L, @ L D L, D Ls, c;(V) =0

This leads to SU(5) X S(U(1)?) GUTs. Further breaking to the SM gauge group using discrete Wilson lines.

repr. | cohomology total number required for MSSM
lop | HH (X, La® Ly) | >, )M (X, La® L) = M (X, V@ V") -

500 | HH (X, L, @ L) | >,y M(X, L, ® L) = h' (X, A\2V7) np,

5ap | HY(X, Lo ® Lp) | Y ucp PH(X, Ly ® L) = b (X, A?V) 30| + ny,

10, | HY(X, L,) S hH X, L) = h(X,V) 3|

10, | HY(X, L)) S RNX L) =hY (X, V) 0




A good starting point

Line bundles on P". Cohomology dimensions given by the Bott formula:

k -+ n
n

h°(P", Opn(k)) = < ) = % (1+k)...(n+ k), if Kk >0, and 0 otherwise.

h(P", Op(k)) =0, if0O<i<n.

h"(P", Opn(k)) = (_;f;:) = %(—n—k)...(—l—k) ,ifk<—n—1,

and O otherwise.



A good starting point

Writin
e _ U(h+1)
- U(1) x U(n)’

Bott's formula can be regarded as a special case of the Borel-Weil-Bott

]P)n

theorem which deals with flag varieties. Using this, it is possible to represent
the cohomology groups of line bundles over products of projective spaces as
irreducible representations of unitary groups. This technique provides a simple

and computationally useful representation for the cohomology groups.

On toric varieties there is an algorithm due to Blumenhagen, Jurke, Rahn,
Thorsten, Roschy which allows the computation of line bundle cohomology.

XCA=P" xP"”? x...xP™m

Let L — X be a line bundle over X and £ 4 the corresponding line bundle.

Write the Koszul complex associated with L:

0 = LAXNN'Y = LAaA TN & .. = L4 = L =0



We automatised the Leray spectral sequence machinery.
[CIPro package, Anderson, AC, Gray, He, Lee, Lukas - to become publicly available later in '24]
[pyCICY by Larfors & Schneider ‘19]

Computational cost of line bundle cohomology (using spectral sequences):
. . 3
~ 0 <( p(X)dlm(X)deg(L)dlm(X)) >

Example: for a line bundle of (multi)-degree 10 on a Calabi-Yau threefold

with 211(X) = p(X) = 4 Kahler parameters, the estimate is

~ 10'* elementary operations

which reaches the limits of a standard machine



An exercise in pattern recognition

T T T T T T T T T T T T T T T T T T T T T T T T
15 36 73 131 215 315 415 515 615 715 | 1 5 15 36 73 131 216 333 481 eis 809 973 1137 1301
1 2,86 6L 5 15 36 73 131 205 279 353 427 501 i 8r 0 1 5 15 36 73 131 216 330 460 590 720 850 980
P 1 1 1 0 0 1 5 15 36 73 131 215 315 415 515 615 715
X = 1 5 15 36 73 125 177 229 281 333 |
IP)4 4 1 ] 6F0 0 0 1 5 15 36 73 \131 205 279 353 427 501
4- 0 1 5 15 36 70 104 138 172 206
| 0 0 0 0 1 5 15 36 73 125 177 229 281 333
0 0 1 5 15 3 8 75 95 15 4 40 0 0O O O 1 5 15 36 70 104 138 172 206
: 2L 0 0 0 1 5 15 25 35 45 55 - 0 0 0 0 O O 1 5 15 35 55 75 95 115
look at patterns in the ,
0 0 0 0 1 ) N 13 17 21 | 200 0 0O O O O O 1 5 \15 25 35 45 55
data for 0 0 0 0 0O O 0 O 1 ‘5 9 13 17 21
0o 0 0 0 0 2 3 4 5
0 . ] o606 0 06 0 0 0 0 23 45
h*(X,L), L € Pic(X) o o o 0o 0o o 0 0o 0 0| o 0 0o 0 0 0 0 0 o o 0 o o
-4 -2 0 2 4 -8 -6 -4 -2 0 2 4

region in eff. cone h°(X, L = Ox(D = kiD; + k2 D5))

blue 2ki(14 k3) + 2ko(5 + k3)

green 2k1(1—|—k22)+%k2(5+k22)+%k1(1_k12)
yellow 2ki(1+ k3) + 2ka(5 + k3) + Sha (1 — k) +
31— (3 + ko)?) [Ha]

ki >0, kk =0 ki +1
—ki =k >0 1




It is possible to train a neural network (supervised learning) to identify the
different regions and the formulae that hold within each.

7N /
X = (k?z, k‘ikj, . ) —> (Wg,bg)

[Brodie, AC, Deen, Lukas, 1906.08730]
see also: [Klaewer, Schlechter, 1809.02547]

The training data consists of pairs (k, h'(X, Ox(k))).

Drawback: the amount of training data is limited by the slow algorithmic
computation. For larger Picard number manifolds it is not feasible to generate
enough training data. Nevertheless, this ML exercise was useful to generate

conjectures.



Conjecture 5. Let X be a general complete intersection of two hypersurfaces of bi-degrees (1,1) and (1,

P! x P4, belonging to the deformation family with configuration matriz
P 1
P 1 4

The effective, movable and nef cones of X are given by

EH(X) = Ronl +R20(H2 - Hl), MOV(X) = R20H1 + R20(4H2 — Hl)
Nef(X) = RZ()Hl + RZ()HQ s

4) in

(1.16)

(1.17)

where Hy = Op1ypa(1,0)|x and Hy = Op1ypa(0,1)|x. We propose the following generating functions for all line

bundle cohomology dimensions in the entire Picard group of X :

CS°(X,0x) = (1- 2>2 (1-t)" b2 h
’ 1—t1)’ (1 —ta)° (1 —t7") (1 —t7'2) " 0 0
CS'(X,0x) = (1- 2>2 (1-t)" b2t
’ A—t1)> (1 —t2)° (1 —t7) (1 —t7'4) " 00 0

OS2 (X,0x) = - 2)2 (1-1)° ta
’ 1=t (1 —t2)° (1 —t7") (1 —t7'2) " 0 oo

)2 (1 — 4)?

CS%(X,0x) = _-nrd ?) __ =
(I—t)"(1—t)’ (1—t7") (1—t;'3) oo oo

1.5 15 36 73 131 216 333 481 615 809 973 1137 1301 f 142 63 16 0 0 0 0 0 0
860 1 5 15 36 73 131 216 330 460 590 720 850 980- sl 133 61 16 0 0 0 0 0 0
0 0 1 5 15 36 73 131 215 315 415 515 615 715 121 58 16 0 0 0 0 0 0
660 0 0 1 5 15 36 73 131 205 279 353 427 501 6 106 53 16 0 0 0 0 0 0
0 0 0 0 1 5 15 36 73 115 177 229 281 333 | e 46 15 0 0 0 0 0 0
4)0 0 0 0O O 1 5 15 36 70 104 138 172 2061 a4l o7 37 13 0 0 0 0 0 0
0 0 0 0 0 0O 1 5 15 35 55 75 95 115 | 45 26 10 0 0 0 0 0 0
200 0 0 0 O O O 1 5 .15 25 35 45 55 2l 25 15 6 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 9 13 17 21 Lo 7 3 0 0 0 0 0 0
66— —6—86—06—06—=¢ 2345 o—s 2 1 8 8 6 8 8 6
0 0 0 0 0 0 0 0 O 0 0 0 o0 0 0 0 0 0 0 0 0 0
-8 -6 -4 -2 0 2 4 -4 -2 0 2 4

(1.18)

[AC’24]



Significance of cohomology formulae/generating functions

The existence of line bundle cohomology formulae / generating functions greatly simplifies the analysis
of heterotic line bundle models. Calculations that would otherwise take minutes or hours, are now
virtually instantaneous.

Moreover, these expressions are of mathematical interest in themselves. | have examples in arbitrary
dimension > 2 including varieties of Fano, semi-Fano, CY and general type, including non-Mori dream spaces and
complex structure dependence. Aim: convert geometry into algebraic data.

Two surprises:
1. evidence that such generating functions exist
2. the same generating function, expanded around different points, encodes the zeroth and higher
cohomology of all line bundles.

Generating functions carry a lot of numerical information about the variety. Do they uniquely determine the variety?

A similar question has been asked for the regularised quantum period of Fano varieties,
which is a generating function for certain Gromov-Witten invariants. [Coates, Kasprzyk, Pitton, Tveiten ‘21]



Computation of Yukawa
couplings



Low-energy Lagrangian with chiral matter multiplets Ccl = (CI,)(I), corresponding to harmonic forms v,

L =- Kljaﬂclaﬂéj — iK,j)?J_&”aﬂ)(I + XMy X +ec)+

The holomorphic Yukawa couplings and the matter field Kahler metric can be computed from the geometry:
X X

Ak is quasi-topological - can be calculated without the CY metric, bundle metric and harmonic forms

K7 calculation - requires full knowledge of the geometry



Computation of CY metric

Idea: use neural networks as universal approximators to solve PDEs on curved spaces.
Advantage: the solutions are known to exist and are smooth

By using NNs, one can avoid discretisation problem on the manifold

Naively, one would like to solve

R;; = —0;0;log(det(g)) =0 9;; = 0:0;K

This is a terrible 4-th order non-linear PDE (with particularly unpleasant non-linearities in the highest derivatives)

in six dimensions. That’s not how Yau proved the theorem.



Computation of CY metric

Yau’s theorem (1978): A compact, 2n-dimensional Kdhler manifold with vanishing first Chern class

admits a unique Ricci-flat Kahler metric in each Kahler class.

Write g(gat) = g(gef) +0,05¢) , where ¢ is a global function
a a
For instance, g(ref) can be taken to be the metric induced from the Fubini-Study metric on P",
(ef) _ b A 2
re
Gop = D 5=0aO5 ()|, mi=1+]af
1=1 X

Yau showed instead that the Monge-Ampeére equation
JMaY A jdiat - glla — . O A Q| with Jtla — yret) 4 6(_)qb

can be solved.



Computation of CY metric

L = a1 lmA + oLy + a3 Liinler
[Larfors, Lukas, Ruehle, Schneider, 22]

Train on the loss
Gunldl = |[1 = LI@AT@)ATG)
K QAQ 1
Zlo] =) |65 — el -
s#£t

We used the “cymetric” package to realise the ¢)-model.
Details of the implementation: a sample of 300,000 points on X, used both for training and Monte-Carlo integration.

The point sample is split into training and validation sets at a ratio of 9:1.

The neural network is fully connected with GelLU activation, four layers and a width of 128.

Training is carried out for 100 epochs, with batch size 64 and learning rate 0.001.

MA Loss
¢




Computation of HYM connection

For the bundle L = @X(%), with reference bundle metric H™, reference connection A = g1n HeD

and field strength F) = 90 1n H™D write
H = eﬂH(ref)

The HYM equation implies that # must satisfy the following Poisson equation
AB = pg = —ga’gﬁaégln (ﬁ(ref)) :

Train on the loss:
L = a1 Laym + ae Ly
LaymlBl = ||AB - ps,

LB =D _|1Bs = B[, -
s#t

with a similar architecture as before. [AC, Fraser-Taliente, Harvey, Lukas, Ovrut ‘24]



Computation of harmonic bundle-valued forms

For the harmonic forms, use reference quantities that can be written as restrictions of forms from the ambient

product of projective spaces and
v=ov 1 9.0,
The Here, o is a global section of L determined by the Poisson equation

ALO- — ,00- — _ga,gaa (Hyéref))

Train on the following loss, with a similar architecture:

g = &1$A + 5520%:1
Zalo] =|[Aco — pol,

Lilo) =) ||os = Tinor
st [AC, Fraser-Taliente, Harvey, Lukas, Ovrut ‘24]

A similar approach for standard embedding (V = T'X) compactifications was carried out, which matches

spectacularly well the analytic results that can be performed in this setting.
[Butbaia, Pena, Tan, Berglund, Hubsch, Jejjala, Mishra, ‘24]



Application to the model we started with

Plot for the top-quark mass as a function of (one) complex modulus:

Mass/(e™ [(H")])

/////////

Preliminary exploration of the moduli space: a hierarchy factor of 20 (possibly more) between

top and charm can be achieved. This is somewhat too small (the measured factor is approx 137).

However, we have a database of millions of line bundle models with the correct spectrum to which this method

can now be applied. A full-fledged embedding of the SM in string theory is achievable.

[AC, Fraser-Taliente, Harvey, Lukas, Ovrut ‘24]
Major piece of work left: understand moduli stabilisation.



Summary

Connecting String Theory and particle Physics: a hard, but worthwhile problem.
Al tools likely to bring the solution within reach.

The size of the string landscape: the spectacular success of heuristic search methods seems to indicate

that this is no longer a problem.
Fast line bundle cohomology computations: an essential tool for model building.

Computation of physical parameters (quark and lepton masses): now feasible in realistic string models.



