Gapped Phases and Phase Transitions with Categorical Symmetries

Lea Bottini - University of Oxford

05/09/24 - Eurostrings 2024

Based on works with Lakshya Bhardwaj (Oxford), Daniel Pajer (Oxford), Sakura Schäfer-Nameki (Oxford) & Apoorv Tiwari (Copenhagen)

This talk:

following Lakshya's talk

- Categorical Landau Paradigm via SymTFT
 - Extend standard Landau paradigm to S = fusion category (finite!)
 - Will strictly be in 2d (space-time)

[Kong, Lan, Wen, Zhang, Zheng '20; Chatterjee, Ji, Wen '22; Chatterjee, Wen '23; Bhardwaj, Schafer-Nameki '23; Huang, Cheng '23; Wen, Potter '23; Bhardwaj, LB, Pajer, Schafer-Nameki '23;....]

• Anyon chains

[Aasen, Mong, Fendley '20; Lootens, Delcamp, Ortiz, Verstraete '21; Inamura, Ohmori '23; Bhardwaj, LB, Schafer-Nameki, Tiwari '24;....]

• Conclusions & future directions

SymTFT

[Ji, Wen '19; Gaiotto, Kulp '20; Apruzzi, Bonetti, Etxebarria, Hosseini, Schafer-Nameki '21; Freed, Moore, Teleman '22;]

• 2d QFT \mathfrak{T} with symmetry $\mathscr{S} \longrightarrow 3d$ TQFT $\mathscr{Z}(\mathscr{S})$ with topological lines (anyons)

Sandwich construction

Separates symmetry aspects of the theory from the dynamics

• Gives convenient characterisation of charged operators

Local (untwisted) operators

Twisted sector operators

SymTFT

• <u>Gapped boundary</u> specified by maximal set of anyons that can end on it

- Anyons $b \notin \mathscr{L}$ survive on \mathscr{B}^{sym} and generate \mathscr{S} (Neumann b.c.)
- Anyons $a \in \mathscr{L}$ are annihilated on \mathscr{B}^{sym} (Dirichlet b.c.)

Classifying S-symmetric gapped phases in (1+1)d

[Bhardwaj, LB, Pajer, Schafer-Nameki '23]

- 1. Start with \mathcal{S} and construct $\mathcal{Z}(\mathcal{S})$
- 2. Classify all gapped b.c.'s \leftrightarrow all \mathscr{L} 's in $\mathscr{Z}(\mathscr{S})$
- 3. To study S symmetric phases, fix $\mathscr{B}^{sym} = \mathscr{L}_{\mathcal{S}}$
- 4. To obtain a TQFT, also \mathscr{B}^{phys} is gapped: $\mathscr{B}^{phys} = \mathscr{L}_{phys}$

Fixing $\mathscr{L}_{\mathscr{S}}$ and changing \mathscr{L}_{phys} we span all \mathscr{S} -symmetric TQFTs

- 5. Generalised order parameters \leftrightarrow anyons in \mathscr{L}_{phys}
- 6. Number of vacua \leftrightarrow anyons completely ending on both boundaries
- 7. Action of symmetry \mathcal{S} on the vacua
- 8. Framework can be extended to incorporate phase transitions

Example: $\operatorname{Rep}(S_3)$

$$\operatorname{Rep}(S_3) = \{1, P, E\}$$

$$S_3 = \{a, b | a^3 = 1, b^2 = 1, bab = a^2\}$$

- $P \otimes E = E$ $E \otimes E = 1 \oplus P \oplus E$ $P \otimes P = 1$ \mathbb{Z}_2 subsymmetry
- SymTFT $\mathscr{Z}(\operatorname{Rep}(S_3))$ anyons g_{ρ} labelled by
- conjugacy class [g]
- irreducible representation ρ of centraliser H_g

- Lagrangian algebras
 - 1. $\mathscr{L}_1 = 1 + P + 2E$
 - 2. $\mathscr{L}_2 = 1 + E + b_+$
 - 3. $\mathscr{L}_3 = 1 + P + 2a_1$
 - 4. $\mathscr{L}_4 = 1 + a_1 + b_+$

$$\mathscr{B}^{\text{sym}} = \mathscr{L}_4$$

Example: $\operatorname{Rep}(S_3)$

• 4 gapped boundaries \implies 4 gapped phases

Lattice models

- <u>Goal</u>: construct (1+1)d lattice models flowing to gapped and gapless phases with symmetry \mathcal{S}
- Use anyon chains: naturally defined with fusion category symmetry $\mathcal S$
- Data defining the model:
 - 1. Input fusion category \mathscr{C}
 - 2. C-module category \mathcal{M} (Something with a left \mathscr{C} action: $\mathscr{C} \times \mathscr{M} \to \mathscr{M}$)
 - 3. Some object $\rho \in \mathscr{C}$
- State space of the model spanned by fusion diagrams of the form

Lattice models

- Symmetry commutes with hamiltonian as H acts from top and S acts from below
- Gapped boundaries of SymTFT $\mathscr{Z}(\mathscr{S}) \leftrightarrow$ Algebra objects in $\mathscr{C} \leftrightarrow \mathscr{S}$ -symmetric TQFTs

Example: $\operatorname{Rep}(S_3)$

• <u>Defining data:</u> $\mathscr{C} = S_3$ $\mathscr{M} = \mathscr{M}(\mathbb{Z}_2^b) = \{1 \sim (1,b), m \sim (a,ab), m^2 \sim (a^2, a^2b)\}$ $\rho = \underbrace{\mathsf{G}}_{g \in \mathcal{S}_3}$

$$\mathcal{S} = \mathscr{C}^*_{\mathscr{M}} = \operatorname{Rep}(S_3)$$

• <u>State space:</u>

Total space decomposes into tensor product of \mathbb{C}^3 at integer sites and \mathbb{C}^2 at half-integer sites

• Anyon chain admits tensor product Hilbert space: can write this as standard spin chain Hamiltonian

Conclusions & Future Directions

- SymTFT gives powerful machinery to study gapped and gapless phases in (1+1)d
- Applicable to any fusion category $\mathcal S$
- Lattice models provide concrete UV realisation of this paradigm
- Extension to higher dimensions
- Experimental realisations

Thank you!