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• Categorical Landau Paradigm via SymTFT

• Anyon chains

• Conclusions & future directions 

[Kong, Lan, Wen, Zhang, Zheng ’20; Chatterjee, Ji, Wen ‘22; Chatterjee, Wen ‘23; 
Bhardwaj, Schafer-Nameki ’23; Huang, Cheng ‘23; Wen, Potter ’23;  
Bhardwaj, LB, Pajer, Schafer-Nameki ’23;….]

[Aasen, Mong, Fendley ‘20; Lootens, Delcamp, Ortiz, Verstraete ‘21; 
Inamura, Ohmori ‘23; Bhardwaj, LB, Schafer-Nameki, Tiwari ’24;….]

This talk: 

- Extend standard Landau paradigm to fusion category (finite!)! =

- Will strictly be in 2d (space-time) 



SymTFT

• 2d QFT  with symmetry " ! 3d TQFT  with topological lines (anyons)#(!)
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Figure 2: The basic SymTFT sandwich: (1) LHS: The d-dimensional theory T on the RHS is
constructed as the interval compactification of d+ 1-dimensional SymTFT Z(S) on the LHS,
with two boundary conditions. The gapped, i.e. topological, boundary Bsym

S is on the left

and the physical, possibly non-topological, boundary Bphys
T is on the right. (2) RHS: Here

focus on sandwich constructions for S-symmetric TQFTs (denoted TQFTS) in which case the

physical boundary Bphys
T is also topological, Bphys

top (though not necessarily the same as the
symmetry boundary on the left).

can lead to physically distinguishable vacua. This is in stark contrast to spontaneous

breaking of invertible symmetries, i.e. conventional symmetries described by symmetry

groups possibly with ’t Hooft anomalies, where all the vacua participating in an irre-

ducible gapped phase are physically indistinguishable. Turning the discussion around,

the appearance of physically distinguishable vacua in the IR can be used to diagnose the

presence of a spontaneously broken non-invertible symmetry.

Proposal for Classification of Symmetric Gapped Phases The procedure of classify-

ing S-symmetric (1 + 1)d gapped phases by utilizing the SymTFT perspective requires the

following steps:

1. SymTFT and its Topological Defects: Given a symmetry described by a unitary fusion

category S, we identify the associated 3d SymTFT Z(S) and the topological bulk lines

living in Z(S). These lines form a non-degenerate braided fusion category Z(S) known
as the Drinfeld center of S.

2. Lagrangian Algebras: We then classify all the irreducible topological boundary condi-

tions of Z(S), which are captured (modulo Euler terms) by the so-called Lagrangian

algebras in Z(S). These characterize the topological lines in Z(S) which have Dirichlet

boundary conditions.

3. Symmetry Boundary Condition: Since we are interested in classifying S-symmetric gapped
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⟶

Sandwich construction
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Separates symmetry 
aspects of the theory 
from the dynamics

Topological 
(gapped) b.c.

Non topological b.c. 
(dynamics)

! !

• Gives convenient characterisation of charged operators
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Local (untwisted) operators Twisted sector operators



SymTFT

• Gapped boundary specified by maximal set of anyons that can end on it 

Lagrangian algebras in #(!)

ℒ = ⨁
a∈#(!)

naa
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• Anyons  survive on  and generate  (Neumann b.c.)b ∉ ℒ ℬsym !

• Anyons  are annihilated on  (Dirichlet b.c.)a ∈ ℒ ℬsym



Classifying -symmetric gapped phases in (1+1)d!

1. Start with  and construct  

2. Classify all gapped b.c.’s  all ’s in  

3. To study  symmetric phases, fix  

4. To obtain a TQFT, also  is gapped: 

! #(!)

⟷ ℒ #(!)

! ℬsym = ℒ!

ℬphys ℬphys = ℒphys

5. Generalised order parameters  anyons in  

6. Number of vacua  anyons completely ending on both boundaries  

7. Action of symmetry  on the vacua  

8. Framework can be extended to incorporate phase transitions

⟷ ℒphys

⟷

!
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Fixing  and changing   
we span all -symmetric TQFTs

ℒ! ℒphys
!

[Bhardwaj, LB, Pajer, Schafer-Nameki ’23]



Example: Rep(S3) Rep(S3) = {1,P, E}

P ⊗ P = 1P ⊗ E = E E ⊗ E = 1 ⊕ P ⊕ E  subsymmetryℤ2

S3 = {a, b |a3 = 1 , b2 = 1 , bab = a2}

• SymTFT  anyons  labelled by #(Rep(S3)) gρ - conjugacy class [g]
- irreducible representation  of centraliser ρ Hg

‣  has    [1] H1 = S3 ⟶ 1 , P , E

‣  has    [a] = {a, a2} Ha = ℤ3 ⟶ a1 , aω , aω2

‣  has    [b] = {b, ab, a2b} Hb = ℤ2 ⟶ b+ , b−

• Lagrangian algebras

1.  

2.  

3.  

4.

ℒ1 = 1 + P + 2E

ℒ2 = 1 + E + b+

ℒ3 = 1 + P + 2a1

ℒ4 = 1 + a1 + b+

ℬsym = ℒ4



Example: Rep(S3)
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• 4 gapped boundaries  4 gapped phases⟹



Lattice models
• Goal: construct (1+1)d lattice models flowing to gapped and gapless phases with symmetry !

• Use anyon chains: naturally defined with fusion category symmetry !

• Data defining the model:

1. Input fusion category /

• An object ⇢ in C, which in general is taken to be a non-simple object.

The basic constituent for the lattice model is a block of the following form

mi 2 M mi+1 2 M

⇢ 2 C

µ
i+ 1

2

(1.51)

where mi and mi+1 are simple objects in the module category M, and µ
i+ 1

2
2 Hom(mi, ⇢ ⌦

mi+1) is a basis vector in the morphism space formed by ⇢ ending between mi and mi+1.

Concatenating such blocks builds a basis vector in the Hilbert space of the model on a circle

with periodic boundary conditions, sector Hilbert space Vu,

m1 m2

⇢

µ 3
2

⇢

µ 5
2

· · ·
mL

⇢

µ
L� 1

2
m1

⇢

µ 1
2

(1.52)

Here L is the length of the system and we consider periodic boundary conditions, i.e. the two

m1 on the left and right are identified with each other.

The building block for the Hamiltonian uses morphisms h : ⇢⌦ ⇢ ! ⇢⌦ ⇢ and is given by

the move:

mi�1 mi

⇢

µ
i� 1

2
mi+1

⇢

µ
i+ 1

2

h =
P

h

mi�1 m0
i

⇢

µ0
i� 1

2
mi+1

⇢

µ0
i+ 1

2

(1.53)

where we sum over simple objects and a basis of morphisms (labeled by primes) and h 2 C
are coe�cients appearing in the sum that depend on the morphism h 2 Hom(⇢ ⌦ ⇢, ⇢ ⌦ ⇢)

and (µ
i� 1

2
,mi, µi+ 1

2
). Let us define an operator hi which takes a state of the form (1.52) to

a state where the local information around site i is modified to the RHS of (1.53). Then the

Hamiltonian is

H = �
X

i

hi . (1.54)
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2. -module category / ℳ
(Something with a left  action: )/ / × ℳ → ℳ

3. Some object ρ ∈ /

• State space of the model spanned by fusion diagrams of the form 



Lattice models

• Gapped Hamiltonians

• Symmetry Action The lattice model naturally possesses a S symmetry, as topological lines from S can be

fused from below using the fact that M is also a right module category over S

m1 m2

⇢

µ 3
2

⇢

µ 5
2

· · ·
mL

⇢

µ
L� 1

2
m1

⇢

µ 1
2

s 2 S (1.55)

This action commutes with the Hamiltonian move (1.53) due to the topological nature of the

lines and local operators involved. To put it simply, the action of symmetry is from the bottom,

while the Hamiltonian acts from the top, and hence the two commute. As a consequence of

this, S is a symmetry of any such lattice model built using input data (C,M).

All the possible gapped phases for S, as captured e.g. by the SymTFT, can be realized

by some specific Hamiltonians. Recall that in the SymTFT construction gapped phases cor-

respond to choices of topological boundary conditions for the physical boundary Bphys. Let

us define an input boundary Binp
C such that the fusion category of topological lines on the

input boundary is C, where C is the input fusion category entering the anyon chain definition.

The boundary condition Bphys can be obtained from the input topological boundary condi-

tion Binp
C by gauging, either all of or some part of, the fusion category symmetry2 C of the

boundary Binp
C . Such a gauging is specified by a Frobenius algebra A in the fusion category

C [15]. We choose ⇢ to be the object underlying the algebra A

⇢ = A (1.56)

and the Hamiltonian morphism is chosen to be

h = � �m, (1.57)

where

m : ⇢⌦ ⇢ ! ⇢ (1.58)

is the algebra multiplication and

� : ⇢ ! ⇢⌦ ⇢ (1.59)

2Note that this should not be confused with the symmetry S of the lattice model, which is the symmetry of
the boundary Bsym

S .
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is the co-multiplication for the Frobenius algebra. This can be represented diagrammatically

as

mi�1 mi

⇢

µ
i� 1

2
mi+1

⇢

⇢⇢

µ
i+ 1

2

h
=

mi�1 mi

⇢

⇢

µ
i� 1

2
mi+1

⇢

⇢⇢

µ
i+ 1

2

m� (1.60)

Ground states of this Hamiltonians can simply be identified with modules for the Frobenius

algebra ⇢, that we refer to as ⇢-modules, in the module category M. Such a module is a (not

necessarily simple) object m 2 M along with a morphism µ 2 Hom(m, ⇢⌦m) satisfying

m m

⇢

⇢

µ m

⇢

⇢⇢

µ

=

m m

⇢

µ m

⇢

µ

(1.61)

implying that a state constructed out of a ⇢-module is a +1 eigenstate of all projectors and

hence a ground state.

As explained in [7], one can similarly translate the club-sandwich construction into data

for lattice models for gapless phases with S symmetry.

1.4.2 A spin chain example

This paper studies a specific lattice model that very concretely illustrates the categorical

Landau paradigm in action. This lattice model is realized on a tensor product Hilbert space,

acted upon by generalized Ising Hamiltonians. These models exhibit four gapped phases,

with a commuting projector Hamiltonian within each of them. The ground states cannot

be explained as standard SSB phases, but require a non-invertible symmetry, in this case

Rep(S3). Moreover, by tuning the parameters in the generalized Ising Hamiltonians, we also

realize second order phase transitions between such gapped phases. The order parameters

for the phase transitions are mixtures of local and string-like order parameters, which is a

hallmark of non-invertible symmetries [3, 84]. This lattice model provides a concrete ultra-

violet (UV) realization of the gapped and gapless Rep(S3) phases found using continuum

methods in [3, 5, 126].
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Specialise  to be an 
algebra object in  

ρ
/

! = /*ℳ

[Bhardwaj, LB, Schafer-Nameki, Tiwari ’24]

• Symmetry commutes with hamiltonian as  acts from top and  acts from belowH !

• Gapped boundaries of SymTFT   Algebra objects in   -symmetric TQFTs#(!) ↔ / ↔ !

(Dual category obtained from  via generalised gauging)/



Example: Rep(S3)

• Defining data:

! = /*ℳ = Rep(S3)

m ⇠ (a, ab) m2 ⇠ (a2, a2b)

a, b

1

• State space:

Total space decomposes into tensor product of 
 at integer sites and  at half-integer sitesℂ3 ℂ2

• Anyon chain admits tensor product Hilbert space: can write this as standard spin chain Hamiltonian 

/ = S3 ρ = ⨁
g∈S3

gℳ = ℳ(ℤb
2) = {1 ∼ (1,b) , m ∼ (a, ab) , m2 ∼ (a2, a2b)}



Conclusions & Future Directions

• SymTFT gives powerful machinery to study gapped and gapless phases in (1+1)d

• Applicable to any fusion category !

• Lattice models provide concrete UV realisation of this paradigm 

• Extension to higher dimensions

Thank you!

• Experimental realisations


