Semiclassical black hole microstates Microcanonical dimension and Hilbert space factorization

Juan Hernandez

Vrije Universiteit Brussel

Work in progress with Vijay Balasubramanian, Ben Craps, Mikhail Khramtzov and Maria Knysh See also Balasubramanian, Lawrence, Magan and Sasieta [2212.02447] & [2212.08623] Climent, Emparan, Magan, Sasieta and Vilar Lopez [2401.08775] Boruch, Iliesiu, Lin and Yan [2406.04396]

Southampton, Sept 5, 2024

Juan Hernandez [Semiclassical black hole microstates](#page-44-0) Southampton, Sept 5, 2024 1 / 34

 200

 $(1 + 4\sqrt{3}) + 4\sqrt{3} + 4\sqrt{3} + 4$

Outline

1 [Introduction and spoiler](#page-1-0)

- [State preparation](#page-4-0)
- [Computing overlaps](#page-9-0)
- [Dimension of](#page-22-0) \mathcal{H}_F
- [Hilbert space factorization](#page-34-0)

 QQ

目

 $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right.$

Black Hole entropy

• Bekenstein-Hawking entropy

$$
S_{BH}=\frac{A}{4G}
$$

• Entropy counts number of microstates

$$
\mathcal{H}=\bigoplus_E \mathcal{H}_E
$$

$$
S_{BH}(E) \sim \log \dim {\cal H}_E
$$

• Counting BH microstates

イロト イ押ト イヨト イヨト

 QQ

目

Counting BH microstates

Semiclassical BH microstates in AdS/CFT

Geometric duals

Black holes with end-of-the-world branes

• Severe overcounting

Fixed by wormhole contributions

$$
\mathrm{dim}\mathcal{H}_E=e^{S_{BH}}
$$

(a) Subcritical: $0 \leq T_0 < 1$

化重新润滑脂 Juan Hernandez [Semiclassical black hole microstates](#page-0-0) Southampton, Sept 5, 2024 4 / 34

 Ω

Outline

[Introduction and spoiler](#page-1-0)

- 2 [State preparation](#page-4-0)
	- [Computing overlaps](#page-9-0)
	- [Dimension of](#page-22-0) \mathcal{H}_F
	- [Hilbert space factorization](#page-34-0)

 QQ

目

 4 ロ } 4 \overline{m} } 4 \overline{m} } 4 \overline{m} }

State preparation CFT side

Two copies of a holographic CFT on $S^{d-1}\times R$

$$
\ket{\Psi_{\Delta}}=\ket{e^{-\frac{\tilde{\beta}_L H_l}{2}}\mathcal{O}_{\Delta}e^{-\frac{\tilde{\beta}_R H_R}{2}}}
$$

$$
\sim \sum_{m,n}e^{-\frac{\tilde{\beta}_L E_m+\tilde{\beta}_R E_n}{2}}(\mathcal{O}_{\Delta})_{mn}\ket{m,n}
$$

 $A \equiv \mathbf{1} \times A \equiv \mathbf{1}$ Juan Hernandez [Semiclassical black hole microstates](#page-0-0) Southampton, Sept 5, 2024 6 / 34

4日下

4 同 ト

 299

目

State preparation

Eternal black hole, AdS side

Eternal $BH +$ shell of mass m

$$
m^2 = \Delta(\Delta - d)
$$

Shell trajectory determined by

$$
f_{\pm}\dot{\tau}_{\pm} = \pm \sqrt{-\dot{r}^2 + f_{\pm}},
$$

$$
\dot{r}^2 + V_{\text{eff}}(r) = 0,
$$

where

$$
V_{\text{eff}}(r) = -f_{+}(r) + \left(\frac{M_{+} - M_{-}}{m} - \frac{4\pi Gm}{(d-1)V_{\Omega}r^{d-2}}\right)^{2}
$$

At t=0, the shell is located at r_* for which $V_{\text{eff}}(r_*)=0$

化重新润滑脂 э

 \leftarrow \Box

 200

State preparation Infalling shell, AdS side

Towards microstates for a collapsing black hole

$$
V_{\text{eff}}(r)=-f_{+}(r)+\left(\frac{\Delta M}{m}-\frac{4\pi Gm}{(d-1)V_{\Omega}r^{d-2}}\right)^{2}
$$

For a given ΔM , decreasing m shrinks the wormhole until

$$
m_c^2 = (d-1)\frac{\Delta Mr_+^{d-2}}{4\pi G}V_\Omega
$$

For which $r_* = r_+$: the shell is initially located at the right horizon

 200

State preparation Infalling shell, AdS side

$$
V_{\text{eff}}(r) = -f_{+}(r) + \left(\frac{\Delta M}{m} - \frac{4\pi Gm}{(d-1)V_{\Omega}r^{d-2}}\right)^{2}
$$

The shell is located at r_{*} for which

$$
V_{\text{eff}}(r_{*}) = 0
$$

Further decreasing *m* give shells initially positioned outside the
right horizon that fall into the BH

イロト イ部 トイモ トイモト

 298

重

Outline

[Introduction and spoiler](#page-1-0)

[State preparation](#page-4-0)

3 [Computing overlaps](#page-9-0)

[Dimension of](#page-22-0) \mathcal{H}_F

[Hilbert space factorization](#page-34-0)

 QQ

G.

イロト イ部 トイモ トイモト

Norm of the states

The norm can be computed by the euclidean path integral with fixed boundary conditions

$$
|\Psi_m\rangle=\underset{\mu}{\bigcup_{\mathcal{D} \in \mathcal{D}_{\mathcal{D}_n}}}\,,\qquad \langle \Psi_m|\Psi_m\rangle=\underset{\Lambda}{\bigoplus_{\mathcal{D}_{\mathcal{D}_n}}}\,.
$$

In the semiclassical approximation, given by $\sum e^{-I_{\rm on-shell}}$ over classical saddle point geometries

$$
\overline{\langle \Psi_m | \Psi_m \rangle} = \sqrt{\text{Var}(\Psi_m | \Psi_m)}
$$

Consider two such states with masses m and n . What are their overlaps?

 \leftarrow \Box

э

 QQ

Consider two such states with masses m and n . What are their overlaps?

At leading order in semiclassical expansion, states are orthogonal

But there are infinite such states, tension with entropy of black hole being finite

 200

There is small amount of overlap between the states, captured by wormhole contributions

$$
\overline{\langle \Psi_m | \Psi_n \rangle \langle \Psi_n | \Psi_m \rangle} = \overline{\langle \bigotimes_{\pi} \langle \bigotimes_{\pi} \pi \rangle} = \delta_{mn} \langle \bigotimes_{\pi} \pi \rangle^2 + \sum_{\pi} \pi \langle \bigotimes_{\pi} \pi \rangle^2
$$

イロト イ押 トイヨ トイヨト

 QQ

D.

There is small amount of overlap between the states, captured by wormhole contributions

$$
\overline{\langle \Psi_m | \Psi_n \rangle \langle \Psi_n | \Psi_m \rangle} = \overline{\langle \bigotimes_{\lambda_n} \langle \bigotimes_{\lambda_n} \rangle} = \delta_{mn} \langle \bigotimes_{\lambda_n} \rangle^2 + \sum_{\lambda_n} \langle \bigotimes_{\lambda_n} \rangle^2
$$

Even more information about overlaps from n-boundary wormholes

hΨm|ΨnihΨn|Ψ^k ihΨ^k |Ψmi = = δmnk 3 + (δmn + δmk + δnk) +

Factorization puzzle

And microscopic interpretation

Importantly, the semiclassical approximation of producs of overlaps don't factorize

$$
\overline{\langle \Psi_m | \Psi_n \rangle \langle \Psi_n | \Psi_m \rangle} \neq \overline{\langle \Psi_m | \Psi_n \rangle} \, \overline{\langle \Psi_n | \Psi_m \rangle}
$$

This can be understood from the ETH applied to $\mathcal O$

$$
\mathcal{O}_{mn} \equiv \langle E_m | \mathcal{O} | E_n \rangle = f(\bar{E}) \delta_{mn} + e^{-S(\bar{E})/2} g(\bar{E}, \omega)^{1/2} R_{mn}
$$

where $\bar{E} = \frac{E_m+E_n}{2}, \ \omega = E_m - E_n$, and

$$
\overline{R_{mn}}=0\,,\quad \overline{|R_{mn}|^2}=1
$$

Consistency with the semiclassical approximation sets $f = 0$ and $g = \cdots$

KOD KOD KED KED DAR

Factorization puzzle

And microscopic interpretation

Recall

$$
\ket{\Psi_\Delta}\sim\sum_{m,n}e^{-\frac{\beta_L E_m+\beta_R E_n}{2}}(\mathcal{O}_\Delta)_{mn}\ket{m,n}
$$

Applying ETH to our states we find

$$
\overline{\langle \Psi_{\Delta'}|\Psi_{\Delta}\rangle}\sim \sum_{n,m}e^{-\bar{\beta}\bar{E}-\frac{\Delta\beta\omega}{2}-S(\bar{E})}g(\bar{E},\omega)\overline{R_{mn}^{\Delta}}\;\overline{R_{mn}^{\Delta'}}=0
$$

where $\bar{\beta}=\tilde{\beta}_\textsf{L}+\tilde{\beta}_\textsf{R}$ and $\Delta\beta=\tilde{\beta}_\textsf{L}-\tilde{\beta}_\textsf{R}.$ On the other hand,

$$
\overline{|\langle \Psi_{\Delta'}|\Psi_{\Delta}\rangle|^2} \sim \sum_{n,m} e^{-2\bar{\beta}\bar{E}-\Delta\beta\omega-2S(\bar{E})}g(\bar{E},\omega)^2\overline{|R_{mn}^{\Delta}|^2}\;\overline{|R_{mn}^{\Delta'}|^2}\neq 0
$$

The semiclassical gravitational path integral averages over the erratic R_{mn} . computes only the smooth part of the approxim[ate](#page-15-0)[d](#page-17-0) [q](#page-15-0)[ua](#page-16-0)[n](#page-17-0)[ti](#page-8-0)[t](#page-9-0)[ie](#page-21-0)[s](#page-22-0)

Juan Hernandez [Semiclassical black hole microstates](#page-0-0) Southampton, Sept 5, 2024 15 / 34

AD A B A B A B A GOOD

Large shell mass

To easily compute the on-shell actions, use the $m \to \infty$ limit, in which geometries pinch off

$$
\bigoplus \rightarrow \bigotimes = Z(\beta)^2
$$

 QQ

E

Large shell mass

To easily compute the on-shell actions, use the $m \to \infty$ limit, in which geometries pinch off

 $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right.$

G.

 QQ

Large shell mass

To easily compute the on-shell actions, use the $m \to \infty$ limit, in which geometries pinch off

イロト イ押 トイヨ トイヨト

G.

 QQ

Large shell mass

To easily compute the on-shell actions, use the $m \to \infty$ limit, in which geometries pinch off

G.

 QQQ

イロト イ押ト イヨト イヨト

Different temperatures, large mass

Different temperatures and finite mass corrections

For states prepared with different temperatures β_L and β_R , we find

$$
\overline{\langle \Psi_{m_1} | \Psi_{m_2} \rangle \cdots \langle \Psi_{m_n} | \Psi_{m_1} \rangle} \Big|_{\text{con}} \rightarrow Z(n\beta_L) Z(n\beta_R)
$$

Furthermore, keeping finite m corrections we find

$$
\overline{\langle \Psi_{m_1} | \Psi_{m_2} \rangle \cdots \langle \Psi_{m_n} | \Psi_{m_1} \rangle} \Big|_{\text{con}} \rightarrow Z(n\beta_L) Z(n\beta_R) \exp \left(\frac{a_1}{m} + \frac{a_2}{m^2} + \cdots \right)
$$

KONKAPRA BRADE

 QQ

Outline

[Introduction and spoiler](#page-1-0)

- [State preparation](#page-4-0)
- [Computing overlaps](#page-9-0)
- [Dimension of](#page-22-0) \mathcal{H}_F

[Hilbert space factorization](#page-34-0)

 QQ

G.

 4 ロ } 4 \overline{m} } 4 \overline{m} } 4 \overline{m} }

Gram matrix and span of $\{|\psi_1\rangle, |\psi_2\rangle, \cdots, |\psi_{\Omega}\rangle\}$

Focus on a family of states $|\psi_n\rangle = |\Psi_{nm_0}\rangle$ for some $m_0\gg 1$. What is their span?

Compute the rank of the $\Omega \times \Omega$ Gram matrix $G_{mn} = \langle \psi_m | \psi_n \rangle$ for $m, n \in \{1, 2, \cdots, \Omega\}$

We do this using the resolvent method

$$
R_{pq}(\lambda) = \left(\frac{1}{\lambda - G}\right)_{pq} = \frac{1}{\lambda} \left(\delta_{pq} + \sum_{n=1}^{\infty} \frac{1}{\lambda^n} \left(G^n \right)_{pq} \right)
$$

Density of eigenstates is

$$
D(\lambda) = \lim_{\epsilon \to 0^+} \frac{1}{2\pi i} (R(\lambda - i\epsilon) - R(\lambda + i\epsilon)),
$$

where $R(\lambda) = \text{tr} R_{pq}(\lambda)$

 $AB + AB + AB + AB$

Resolvent matrix from gravitational path integral

Compute resolvent using gravity path integral

化重新化重新

 200

Semiclassical approximation

Compute resolvent using gravity path integral in semiclassical approx

$$
\overline{R_{pq}} = \frac{1}{\lambda} \left(\delta_{pq} + \sum_{n=1}^{\infty} \frac{1}{\lambda^n} \overline{(G^n)_{pq}} \right)
$$

Schwinger-Dyson equation

Rearranging the diagrams

We get a Schwinger-Dyson equation for $\overline{R_{pq}}$

$$
\overline{R_{pq}} = \frac{1}{\lambda} \left(\delta_{pq} + \sum_{n=1}^{\infty} \frac{Z(n\beta)^2}{Z(\beta)^{2n}} \overline{R}^{n-1} \overline{R_{pq}} \right)
$$

$$
\lambda \overline{R} = \Omega + \sum_{n=1}^{\infty} \frac{Z(n\beta)^2}{Z(\beta)^{2n}} \overline{R}^n
$$

 \leftarrow \Box

E

Microcanonical projection

To solve the Schwinger-Dyson equation

$$
\lambda \overline{R} = \Omega + \sum_{n=1}^{\infty} \frac{Z(n\beta)^2}{Z(\beta)^{2n}} \overline{R}^n
$$

we invert the Laplace transform

$$
Z(n\beta) = \int dE z(E) e^{-n\beta E}
$$

and project to a microcanonical window $(E, E + \Delta E)$, defining

$$
e^S \equiv z(E) \Delta E
$$

we find

$$
\lambda \overline{R} = \Omega + e^{2S} \sum_{n=1}^{\infty} \left(\frac{\overline{R}}{e^{2S}} \right) = \Omega + \frac{e^{2S} \overline{R}}{e^{2S} - \overline{R}}
$$

Juan Hernandez [Semiclassical black hole microstates](#page-0-0) Southampton, Sept 5, 2024 23 / 34

目

Density of eigenvalues and rank of Gram matrix

Solving for \overline{R} and using the definition of $D(\lambda)$ we find

$$
\overline{D(\lambda)} = \frac{e^{2S}}{2\pi\lambda} \sqrt{\left(\lambda - \left(1 - \Omega^{1/2} e^{-S}\right)^2\right) \left(\left(1 + \Omega^{1/2} e^{-S}\right)^2 - \lambda\right)}
$$

$$
+ \delta(\lambda) \left(\Omega - e^{2S}\right) \theta \left(\Omega - e^{2S}\right)
$$

 \leftarrow \Box

化重新润滑脂

E

 QQ

Density of eigenvalues and rank of Gram matrix

Solving for \overline{R} and using the definition of $D(\lambda)$ we find

$$
\overline{D(\lambda)} = \frac{e^{2S}}{2\pi\lambda} \sqrt{\left(\lambda - \left(1 - \Omega^{1/2}e^{-S}\right)^2\right) \left(\left(1 + \Omega^{1/2}e^{-S}\right)^2 - \lambda\right)}
$$

$$
+ \delta(\lambda) \left(\Omega - e^{2S}\right) \theta \left(\Omega - e^{2S}\right)
$$

- Has a continuous part for $\left(1-\Omega^{1/2}e^{-S}\right)^2<\lambda<\left(1+\Omega^{1/2}e^{-S}\right)^2$
- For $\Omega > e^{2S}$, there is also a singular part at $\lambda=0$, indicating degeneracy of the Gram matrix

 $\mathbf{A} = \mathbf{A} + \mathbf{A} + \mathbf{B} + \mathbf{A} + \mathbf{B} + \mathbf{A}$

Density of eigenvalues and rank of Gram matrix

Solving for \overline{R} and using the definition of $D(\lambda)$ we find

$$
\overline{D(\lambda)} = \frac{e^{2S}}{2\pi\lambda} \sqrt{\left(\lambda - \left(1 - \Omega^{1/2} e^{-S}\right)^2\right) \left(\left(1 + \Omega^{1/2} e^{-S}\right)^2 - \lambda\right)}
$$

$$
+ \delta(\lambda) \left(\Omega - e^{2S}\right) \theta \left(\Omega - e^{2S}\right)
$$

- Has a continuous part for $\left(1-\Omega^{1/2}e^{-S}\right)^2<\lambda<\left(1+\Omega^{1/2}e^{-S}\right)^2$
- For $\Omega > e^{2S}$, there is also a singular part at $\lambda=0$, indicating degeneracy of the Gram matrix
- Rank of Gram matrix can be computed by integrating the density of non-zero eigenstates

$$
\text{rank} G_{pq} = \begin{cases} \Omega & \text{for} \quad \Omega < e^{2S} \,, \\ e^{2S} & \text{for} \quad \Omega > e^{2S} \,. \end{cases}
$$

→ 伊 ▶ → ヨ ▶ → ヨ ▶ │ ヨ │ ◆ 9 Q ⊙

Dimension of \mathcal{H}_F and Bekenstein-Hawking entropy

The maximal rank of the Gram matrix indicate that the dimension of the microcanonical subspace \mathcal{H}_F is

$$
\mathrm{dim}\mathcal{H}_E=e^{2S}
$$

The actual value of S can be computed by evaluating the on-shell action on the thermal disk, and gives the Bekenstein-Hawking entropy of the black hole of mass E

$$
S=S_{BH}=\frac{A}{4G}
$$

The factor of 2 in the dimension of \mathcal{H}_F is from working on a double copy of the CFT

$$
\mathcal{H}_\text{E} = \mathcal{H}_\text{E}^\text{CFT_L} \otimes \mathcal{H}_\text{E}^\text{CFT_R}\,, \quad \mathrm{dim} \mathcal{H}_\text{E}^\text{CFT_{L,R}} = e^S
$$

Extending to different E_L , E_R

Microcanonical projection

If we study states with $E_L < E_R$, the inverse Laplace transform reads

$$
z(E_L, E_R) = \int d\beta_0 d\beta_1 Z(\beta_L, \beta_R) e^{\beta_L E_L + \beta_R E_R}
$$

For a fixed shell mass m, this includes both inside and outside shell states

$$
\frac{M_R(\beta_R)-M_L(\beta_L)}{m}-\frac{4\pi G m}{(d-1)V_\Omega R_*^{d-2}}
$$

Infalling shell/white hole states are naturally included in the microcanonical Hilbert space

KONKAPRA BRADE

 Ω

Different E_L and E_R

Density of eigenvalues and rank of Gram matrix

Fix E_L and E_R , expand in internal shells with mass nm₀ with m₀ large

Identical results for $\overline{D(\lambda)}$ and $\dim \mathcal{H}_E$, but with $2S \rightarrow S_L + S_R$

We then have

$$
\mathrm{dim}\mathcal{H}_E=e^{S_L+S_R}
$$

The different entropies count the dimension of each microcanonical subspace of $\mathcal{H}_{E_{LR}}^{CFT_{L,R}}$ $E_{L,R}^{CFTL,R}$ at energies $E_{L,R}$

Exact details of list of states is unimportant

 Ω

Outline

[Introduction and spoiler](#page-1-0)

- [State preparation](#page-4-0)
- [Computing overlaps](#page-9-0)
- [Dimension of](#page-22-0) \mathcal{H}_F

5 [Hilbert space factorization](#page-34-0)

 QQ

G.

 4 ロ } 4 \overline{m} } 4 \overline{m} } 4 \overline{m} }

In AdS/CFT, consider a double copy of the holgraphic CFT

 $\mathcal{H}_{\text{bulk}} = \mathcal{H}_I \otimes \mathcal{H}_R$

Is obviously a product of factors \mathcal{H}_{LR}

 \leftarrow \Box

 $\left\{ \bigoplus_{i=1}^n x_i \in \mathbb{R} \right| x_i \in \mathbb{R} \right\}$

In AdS/CFT, consider a double copy of the holgraphic CFT

 $\mathcal{H}_{\text{bulk}} = \mathcal{H}_I \otimes \mathcal{H}_R$

Is obviously a product of factors \mathcal{H}_{LR}

But how to describe the bulk Hilbert space in bulk language?

 $\mathcal{H}_{\text{bulk}} \approx \text{Span} \{ |\mathcal{M}, \psi_{\mathcal{M}} \rangle, \quad \partial \mathcal{M} = \Sigma_I \cup \Sigma_R, \quad \psi_{\mathcal{M}} \in \mathcal{H}_{\mathcal{M}} \}$

KOD KOD KED KED DAR

In AdS/CFT, consider a double copy of the holgraphic CFT

 $\mathcal{H}_{\text{bulk}} = \mathcal{H}_I \otimes \mathcal{H}_R$

Is obviously a product of factors \mathcal{H}_{LR}

But how to describe the bulk Hilbert space in bulk language?

$$
\mathcal{H}_{\text{bulk}} \approx \text{Span}\left\{ \left| \mathcal{M}, \psi_{\mathcal{M}} \right\rangle, \quad \partial \mathcal{M} = \Sigma_L \cup \Sigma_R, \quad \psi_{\mathcal{M}} \in \mathcal{H}_{\mathcal{M}} \right\}
$$

 \supset Span { $\vert \mathcal{M}, \psi_{\mathcal{M}} \rangle$, \mathcal{M} connected, $\psi_{\mathcal{M}} \in \mathcal{H}_{\mathcal{M}}$ }

In AdS/CFT, consider a double copy of the holgraphic CFT

 $\mathcal{H}_{\text{bulk}} = \mathcal{H}_I \otimes \mathcal{H}_R$

Is obviously a product of factors \mathcal{H}_{LR}

But how to describe the bulk Hilbert space in bulk language?

$$
\mathcal{H}_{\text{bulk}} \approx \text{Span}\left\{ \left| \mathcal{M}, \psi_{\mathcal{M}} \right\rangle, \quad \partial \mathcal{M} = \Sigma_L \cup \Sigma_R, \quad \psi_{\mathcal{M}} \in \mathcal{H}_{\mathcal{M}} \right\}
$$

 \supset Span { $|\mathcal{M}, \psi_{\mathcal{M}}\rangle$, \mathcal{M} connected, $\psi_{\mathcal{M}} \in \mathcal{H}_{\mathcal{M}}\}$

Addressed in JT gravity in [Boruch, Iliesiu, Lin and Yan]. Here we discuss the higher dimensional setting

KOD KAP KED KED E VAA

Factorization via semiclassical microstates

Following [Boruch, Iliesiu, Lin, Yan], define the auxiliary Hilbert space

 $\mathcal{H}_{\Omega} = \text{Span} \{ |\Psi_n \rangle, \quad n \in 1, 2, \cdots, \Omega \}$

From previous results, $\mathcal{H}_{\Omega} \to \mathcal{H}_{\text{bulk}}$ for $\Omega > \text{dim} \mathcal{H}_{\text{bulk}}$

K ロ ▶ K 個 ▶ K 로 ▶ K 로 ▶ 『 콘 │ ◆ 9,9,0*

Factorization via semiclassical microstates

Following [Boruch, Iliesiu, Lin, Yan], define the auxiliary Hilbert space

$$
\mathcal{H}_{\Omega} = \text{Span}\left\{ |\Psi_n\rangle, \quad n \in 1, 2, \cdots, \Omega \right\}
$$

From previous results, $\mathcal{H}_{\Omega} \to \mathcal{H}_{\text{bulk}}$ for $\Omega > \text{dim} \mathcal{H}_{\text{bulk}}$

Compute

$$
\text{Tr}_{\mathcal{H}_{\Omega}}\left(k_{L}k_{R}\right)=\left(G^{-1}\right)_{ij}\left\langle\Psi_{i}|k_{L}k_{R}|\Psi_{j}\right\rangle,\quad G_{ij}=\left\langle\Psi_{i}|\Psi_{j}\right\rangle
$$
\nFor $k_{L,R}\in\mathcal{A}_{\mathcal{H}_{L,R}}$, and show that, for large Ω

$$
\operatorname{Tr}_{\mathcal{H}_{\Omega}}(k_{L}k_{R})=\operatorname{Tr}_{\mathcal{H}_{L}}(k_{L})\operatorname{Tr}_{\mathcal{H}_{R}}(k_{R})
$$

E

Hilbert space factorization

The computation can be done by analytic continuation of

$$
\overline{(G^n)_{ij} \langle \Psi_i | k_L k_R | \Psi_j \rangle} = \oint \frac{d\lambda}{2\pi i} \lambda^n \overline{R_{ij}(\lambda) \langle \Psi_i | k_L k_R | \Psi_j \rangle}
$$

to $n \to -1$
Semiclassical approximation

$$
\overline{R \cdot \Gamma} = \bigotimes_{i=1}^{n} + \bigotimes_{i=1}^{n}
$$

Juan Hernandez [Semiclassical black hole microstates](#page-0-0) Southampton, Sept 5, 2024 31 / 34

イロト イ押 トイヨ トイヨト

 QQ

 \equiv

Hilbert space factorization

In general this involves 2 point correlation functions in n-boundary wormhole geometries with shells of matter

In the pinching limit (large m_0), the geometries pinch off and we find microcanonical one point functions $k_{LR}^{E_{L,R}}$ L,R

$$
\overline{\text{Tr}_{\mathcal{H}_{\Omega}}(k_{L}k_{R})} = \oint \frac{d\lambda}{2\pi i} dE_{L} dE_{R} \frac{k_{L}^{E_{L}}k_{R}^{E_{R}}}{\lambda} \frac{R(\lambda)e^{S_{L}+S_{R}}}{e^{S_{L}+S_{R}}-R(\lambda)}
$$

 $R(\lambda)$ has a pole at $\lambda=0$ when there are null states in the list $\{\ket{\Psi_n}\}_{n=1}^{\Omega}$ When $\Omega > \text{dim} \mathcal{H}_{\text{bulk}}$

$$
\overline{\text{Tr}_{\mathcal{H}_{\Omega}}(k_{L}k_{R})} = \overline{\text{Tr}_{\mathcal{H}_{L}}(k_{L})} \; \overline{\text{Tr}_{\mathcal{H}_{R}}(k_{R})}
$$

Valid for operators $k_{L,R}$ of dimension much less than m_0

KEL KALA DI KEL KALA KELI

Conclusion

Recap

- **Semiclassical black hole microstates**
- Small overlaps estimated by wormhole contributions
- Correct Hilbert space dimension
- **•** Null states
- Factorization of bulk Hilbert space at leading order
- **•** Generality

4 **E** F

G.

Thank you

Thanks!

Juan Hernandez [Semiclassical black hole microstates](#page-0-0) Southampton, Sept 5, 2024 34 / 34

イロン イ団 とくをとくをと

造

 2990