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Introduction and spoiler

Black Hole entropy

Bekenstein-Hawking entropy

SBH =
A

4G

Entropy counts number of microstates

H =
⊕
E

HE

SBH(E ) ∼ log dimHE

Counting BH microstates
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Introduction and spoiler

Counting BH microstates

Semiclassical BH microstates in
AdS/CFT

Geometric duals

Black holes with end-of-the-world
branes

Severe overcounting

Fixed by wormhole contributions

dimHE = eSBH
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State preparation

State preparation
CFT side

Two copies of a holographic CFT
on Sd−1 × R

|Ψ∆〉 = |e−
β̃LHL

2 O∆e−
β̃RHR

2 〉

∼
∑
m,n

e−
β̃LEm+β̃REn

2 (O∆)mn |m, n〉
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State preparation

State preparation
Eternal black hole, AdS side

Eternal BH + shell of mass m

m2 = ∆(∆− d)

Shell trajectory determined by

f±τ̇± = ±
√
−ṙ2 + f± ,

ṙ2 + Veff(r) = 0 ,

where

Veff(r) = −f+(r)+

(
M+ −M−

m
− 4πGm

(d − 1)VΩrd−2

)2

At t=0, the shell is located at r∗
for which Veff(r∗) = 0
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State preparation

State preparation
Infalling shell, AdS side

Towards microstates for a collapsing black hole

Veff(r) = −f+(r)+

(
∆M

m
− 4πGm

(d − 1)VΩrd−2

)2

For a given ∆M, decreasing m
shrinks the wormhole until

m2
c = (d − 1)

∆Mrd−2
+

4πG
VΩ

For which r∗ = r+: the shell is ini-
tially located at the right horizon
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State preparation

State preparation
Infalling shell, AdS side

Veff(r) = −f+(r)+

(
∆M

m
− 4πGm

(d − 1)VΩrd−2

)2

The shell is located at r∗ for which
Veff(r∗) = 0

Further decreasing m give shells
initially positioned outside the
right horizon that fall into the BH
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Computing overlaps

Norm of the states

The norm can be computed by the euclidean path integral with fixed
boundary conditions

|Ψm〉 = , 〈Ψm|Ψm〉 =

In the semiclassical approximation, given by
∑

e−Ion−shell over classical
saddle point geometries

〈Ψm|Ψm〉 =
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Computing overlaps

State overlaps

Consider two such states with masses m and n. What are their overlaps?

〈Ψm|Ψn〉 = = δmn

At leading order in semiclassical expansion, states are orthogonal

But there are infinite such states, tension with entropy of black hole being
finite
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Computing overlaps

State overlaps

There is small amount of overlap between the states, captured by
wormhole contributions

〈Ψm|Ψn〉〈Ψn|Ψm〉 = = δmn

2

+

Even more information about overlaps from n-boundary wormholes

〈Ψm|Ψn〉〈Ψn|Ψk〉〈Ψk |Ψm〉 =

= δmnk

3
+ (δmn + δmk + δnk) +
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Computing overlaps

Factorization puzzle
And microscopic interpretation

Importantly, the semiclassical approximation of producs of overlaps don’t
factorize

〈Ψm|Ψn〉〈Ψn|Ψm〉 6= 〈Ψm|Ψn〉 〈Ψn|Ψm〉

This can be understood from the ETH applied to O

Omn ≡ 〈Em|O|En〉 = f (Ē )δmn + e−S(Ē)/2g(Ē , ω)1/2Rmn

where Ē = Em+En
2 , ω = Em − En, and

Rmn = 0 , |Rmn|2 = 1

Consistency with the semiclassical approximation sets f = 0 and g = · · ·
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Computing overlaps

Factorization puzzle
And microscopic interpretation

Recall

|Ψ∆〉 ∼
∑
m,n

e−
β̃LEm+β̃REn

2 (O∆)mn |m, n〉

Applying ETH to our states we find

〈Ψ∆′ |Ψ∆〉 ∼
∑
n,m

e−β̄Ē−
∆βω

2
−S(Ē)g(Ē , ω)R∆

mn R∆′
mn = 0

where β̄ = β̃L + β̃R and ∆β = β̃L − β̃R . On the other hand,

|〈Ψ∆′ |Ψ∆〉|2 ∼
∑
n,m

e−2β̄Ē−∆βω−2S(Ē)g(Ē , ω)2|R∆
mn|2 |R∆′

mn|2 6= 0

The semiclassical gravitational path integral averages over the erratic Rmn,
computes only the smooth part of the approximated quantities
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Computing overlaps

Pinching limit
Large shell mass

To easily compute the on-shell actions, use the m→∞ limit, in which
geometries pinch off

→ = Z (β)2

→ = Z (2β)2

→ = Z (3β)2

〈Ψm1 |Ψm2〉 · · · 〈Ψmn |Ψm1〉
∣∣∣
con
→ Z (nβ)2
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Computing overlaps

Different temperatures, large mass
Different temperatures and finite mass corrections

For states prepared with different temperatures βL and βR , we find

〈Ψm1 |Ψm2〉 · · · 〈Ψmn |Ψm1〉
∣∣∣
con
→ Z (nβL)Z (nβR)

Furthermore, keeping finite m corrections we find

〈Ψm1 |Ψm2〉 · · · 〈Ψmn |Ψm1〉
∣∣∣
con
→ Z (nβL)Z (nβR) exp

(a1

m
+

a2

m2
+ · · ·

)

Juan Hernandez Semiclassical black hole microstates Southampton, Sept 5, 2024 17 / 34



Dimension of HE

Outline

1 Introduction and spoiler

2 State preparation

3 Computing overlaps

4 Dimension of HE

5 Hilbert space factorization

Juan Hernandez Semiclassical black hole microstates Southampton, Sept 5, 2024 18 / 34



Dimension of HE

Gram matrix and span of {|ψ1〉, |ψ2〉, · · · , |ψΩ〉}
Focus on a family of states |ψn〉 = |Ψnm0〉 for some m0 � 1. What is their
span?

Compute the rank of the Ω× Ω Gram matrix Gmn = 〈ψm|ψn〉 for
m, n ∈ {1, 2, · · · ,Ω}

We do this using the resolvent method

Rpq(λ) =

(
1

λ− G

)
pq

=
1

λ

(
δpq +

∞∑
n=1

1

λn
(Gn)pq

)
Density of eigenstates is

D(λ) = lim
ε→0+

1

2πi
(R(λ− iε)− R(λ+ iε)) ,

where R(λ) = trRpq(λ)
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Dimension of HE

Resolvent matrix from gravitational path integral

Compute resolvent using gravity path integral

Rpq =
1

λ

(
δpq +

∞∑
n=1

1

λn
(Gn)pq

)
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Dimension of HE

Semiclassical approximation

Compute resolvent using gravity path integral in semiclassical approx

Rpq =
1

λ

(
δpq +

∞∑
n=1

1

λn
(Gn)pq

)
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Dimension of HE

Schwinger-Dyson equation

Rearranging the diagrams

We get a Schwinger-Dyson equation for Rpq

Rpq =
1

λ

(
δpq +

∞∑
n=1

Z (nβ)2

Z (β)2n
R
n−1

Rpq

)

λR = Ω +
∞∑
n=1

Z (nβ)2

Z (β)2n
R
n
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Dimension of HE

Microcanonical projection

To solve the Schwinger-Dyson equation

λR = Ω +
∞∑
n=1

Z (nβ)2

Z (β)2n
R
n

we invert the Laplace transform

Z (nβ) =

∫
dE z(E )e−nβE

and project to a microcanonical window (E ,E + ∆E ), defining

eS ≡ z(E )∆E

we find

λR = Ω + e2S
∞∑
n=1

(
R

e2S

)
= Ω +

e2SR

e2S − R

Juan Hernandez Semiclassical black hole microstates Southampton, Sept 5, 2024 23 / 34



Dimension of HE

Density of eigenvalues and rank of Gram matrix

Solving for R and using the definition of D(λ) we find

D(λ) =
e2S

2πλ

√(
λ−

(
1− Ω1/2e−S

)2
)((

1 + Ω1/2e−S
)2 − λ

)
+δ(λ)

(
Ω− e2S

)
θ
(

Ω− e2S
)

Has a continuous part for
(
1− Ω1/2e−S

)2
< λ <

(
1 + Ω1/2e−S

)2

For Ω > e2S , there is also a singular part at λ = 0, indicating
degeneracy of the Gram matrix

Rank of Gram matrix can be computed by integrating the density of
non-zero eigenstates

rankGpq =

{
Ω for Ω < e2S ,

e2S for Ω > e2S .
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Dimension of HE

Dimension of HE and Bekenstein-Hawking entropy

The maximal rank of the Gram matrix indicate that the dimension of the
microcanonical subspace HE is

dimHE = e2S

The actual value of S can be computed by evaluating the on-shell action
on the thermal disk, and gives the Bekenstein-Hawking entropy of the
black hole of mass E

S = SBH =
A

4G

The factor of 2 in the dimension of HE is from working on a double copy
of the CFT

HE = HCFTL
E ⊗HCFTR

E , dimHCFTL,R

E = eS
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Dimension of HE

Extending to different EL, ER
Microcanonical projection

If we study states with EL < ER , the inverse Laplace transform reads

z(EL,ER) =

∫
dβ0dβ1Z (βL, βR)eβLEL+βRER

For a fixed shell mass m, this includes both inside and outside shell states

MR(βR)−ML(βL)

m
− 4πGm

(d − 1)VΩR
d−2
∗

Infalling shell/white hole states are naturally included in the
microcanonical Hilbert space
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Dimension of HE

Different EL and ER
Density of eigenvalues and rank of Gram matrix

Fix EL and ER , expand in internal shells with mass nm0 with m0 large

Identical results for D(λ) and dimHE , but with 2S → SL + SR

We then have

dimHE = eSL+SR

The different entropies count the dimension of each microcanonical

subspace of HCFTL,R

EL,R
at energies EL,R

Exact details of list of states is unimportant
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Hilbert space factorization

Hilbert space factorization puzzle

In AdS/CFT, consider a double copy of the holgraphic CFT

Hbulk = HL ⊗HR

Is obviously a product of factors HL,R

But how to describe the bulk Hilbert space in bulk language?

Hbulk ≈ Span {|M, ψM〉 , ∂M = ΣL ∪ ΣR , ψM ∈ HM}

⊃ Span {|M, ψM〉 , M connected , ψM ∈ HM}

Addressed in JT gravity in [Boruch, Iliesiu, Lin and Yan]. Here we discuss
the higher dimensional setting
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Hilbert space factorization

Factorization via semiclassical microstates

Following [Boruch, Iliesiu, Lin, Yan], define the auxiliary Hilbert space

HΩ = Span {|Ψn〉 , n ∈ 1, 2, · · · ,Ω}

From previous results, HΩ → Hbulk for Ω > dimHbulk

Compute

TrHΩ
(kLkR) =

(
G−1

)
ij
〈Ψi |kLkR |Ψj〉 , Gij = 〈Ψi |Ψj〉

For kL,R ∈ AHL,R
, and show that, for large Ω

TrHΩ
(kLkR) = TrHL

(kL)TrHR
(kR)
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Hilbert space factorization

Hilbert space factorization

The computation can be done by analytic continuation of

(Gn)ij 〈Ψi |kLkR |Ψj〉 =

∮
dλ

2πi
λnRij(λ)〈Ψi |kLkR |Ψj〉

to n→ −1
Semiclassical approximation
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Hilbert space factorization

Hilbert space factorization

In general this involves 2 point correlation functions in n-boundary
wormhole geometries with shells of matter

In the pinching limit (large m0), the geometries pinch off and we find

microcanonical one point functions k
EL,R

L,R

TrHΩ
(kLkR) =

∮
dλ

2πi
dELdER

kEL
L kER

R

λ

R(λ)eSL+SR

eSL+SR − R(λ)

R(λ) has a pole at λ = 0 when there are null states in the list {|Ψn〉}Ω
n=1

When Ω > dimHbulk

TrHΩ
(kLkR) = TrHL

(kL) TrHR
(kR)

Valid for operators kL,R of dimension much less than m0
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Hilbert space factorization

Conclusion

Recap

Semiclassical black hole microstates

Small overlaps estimated by wormhole contributions

Correct Hilbert space dimension

Null states

Factorization of bulk Hilbert space at leading order

Generality
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Hilbert space factorization

Thank you

Thanks!
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