Holography for KKLT: Anatomy of a Flow

Eurostrings 2024, Southampton, United Kingdom

Max-Planck-Institut für Physik (Werner-Heisenberg-Institut)

Work to appear with I. Bena and S. Lüst

Yixuan Li

MPI Munich

Sept. 3rd, 2024

The string landscape...

String theory's paradigm to get real-world physics: compactifications

 $\mathcal{M}_4 \times X_6$

• To explain our 4d EFT, start from a 10d theory

The string landscape...

- String theory's paradigm to get real-world physics: compactifications
- To explain our 4d EFT, start from a 10d theory
- The higher-dimensional theory is very rich: \rightarrow CY geometry can be very intricate ' \rightarrow 10d field content on top \rightarrow induce fluxes on the CY

- $\mathcal{M}_4 \times X_6$

 \rightarrow surely one can get any EFT from those!

... and the Swampland

No scale-separated AdS vacua

[D. Lüst, Palti, Vafa '19]

As $\Lambda \rightarrow 0$, \exists tower of states s.t.

 $m \sim |\Lambda|^{\alpha}$

No long-lived dS vacua

[Obied, Ooguri, Spodyneiko, Vafa '18] [Ooguri, Palti, Shiu, Vafa '18]

$V(\phi)$ in consistent EFT should satisfy

 $|\nabla V| \ge \frac{c}{M_p} \cdot V$ or $\min(\nabla_i \nabla_j V) \le -\frac{c'}{M_p^2} \cdot V$

... and the Swampland

No scale-separated AdS vacua [D. Lüst, Palti, Vafa '19] As $\Lambda \rightarrow 0$, \exists tower of states s.t. $m \sim |\Lambda|^{\alpha}$

No long-lived dS vacua

[Obied, Ooguri, Spodyneiko, Vafa '18] [Ooguri, Palti, Shiu, Vafa '18]

$V(\phi)$ in consistent EFT should satisfy

$$|\nabla V| \ge \frac{c}{M_p} \cdot V$$
 or $\min(\nabla_i \nabla_j V) \le -\frac{c'}{M_p^2} \cdot V$

Counter-example (?):

[Kachru, Kallosh, Linde, Trivedi '03]

[McAllister, Moritz, Nally, Schachner '24]

Two-step procedure:

Stabilise CY moduli with 1. fluxes + non-perturbative corrections \rightarrow SUSY, scale-separated AdS $\Lambda < 0$

Two-step procedure:

Study this step through holography and domain walls

- Complex-structure deformations (3-cycles) stabilised by fluxes,
- Kähler moduli (2- and 4-cycles) stabilisation need D3 instanton corrections

$$W_{\rm GVW} = \int_{X_3} G_3 \wedge \Omega_3 \qquad G_3 = F_3 - \tau H_3$$
$$W_{\rm n.p.} = \sum_{\mathbf{k}} \mathscr{A}_{\mathbf{k}}(z^i, G_3) e^{-2\pi k^{\alpha} T_{\alpha}}$$
need to be $\ll 1$

- Complex-structure deformations (3-cycles) stabilised by fluxes,
- Kähler moduli (2- and 4-cycles) stabilisation need D3 instanton corrections

• Get C.C. in terms of stabilised Kähler modulus σ_0

$$W_{\text{GVW}} = \int_{X_3} G_3 \wedge \Omega_3 \qquad G_3 = F_3 - \tau H_3$$
$$W_{\text{n.p.}} = \sum_{\mathbf{k}} \mathscr{A}_{\mathbf{k}}(z^i, G_3) e^{-2\pi k^a T_a}$$
$$\text{need to be} \ll 1$$
$$\Lambda_{\text{AdS}} = -3 \left(e^K |W|^2 \right) \Big|_{D_a W = 0} = -\frac{a^2 \mathscr{A}^2 e^{-2a\sigma_0}}{6\sigma_0} < 0$$

$$\Rightarrow |\Lambda_{AdS}| \ll 1$$

- Complex-structure deformations (3-cycles) stabilised by fluxes,
- Kähler moduli (2- and 4-cycles) stabilisation need D3 instanton corrections

• Get C.C. in terms of stabilised Kähler modulus σ_0

Idea: trade fluxes with branes

$$W_{\text{GVW}} = \int_{X_3} G_3 \wedge \Omega_3 \qquad G_3 = F_3 - \tau H_3$$
$$W_{\text{n.p.}} = \sum_{\mathbf{k}} \mathscr{A}_{\mathbf{k}}(z^i, G_3) e^{-2\pi k^{\alpha} T_{\alpha}}$$
$$\text{need to be } \ll 1$$
$$\Lambda_{\text{AdS}} = -3 \left(e^K |W|^2 \right) \Big|_{D_a W = 0} = -\frac{a^2 \mathscr{A}^2 e^{-2a\sigma_0}}{6\sigma_0} < 0$$

$$\Rightarrow |\Lambda_{AdS}| \ll 1$$

Fluxes/branes for KKLT

- 3d version of KKLT from M theory
- On CY₄: trade the G_4 flux for M5 branes on dual cycle $L_4 \subset CY_4$.

• On CY₃: exchange the (F_3, H_3) fluxes with D5/NS5 branes on dual cycles.

Fluxes/branes for KKLT

- 3d version of KKLT from M theory
- On CY₄: trade the G_4 flux for M5 branes on dual cycle $L_4 \subset CY_4$.

• $G_4 = \star G_4$, so locally looks like

• On CY₃: exchange the (F_3, H_3) fluxes with D5/NS5 branes on dual cycles.

1	2	3	4	5	6	7	8

Domain-wall holography

Space-time filling M2-branes

$$N_{M2} = \frac{\chi}{24}, \qquad G_4 = 0$$

Domain wall M5-brane on SLag4 dual to G_4

z = 0

[S. Lüst, Vafa, Wiesner, Xu '22]

 $N_{M2} = 0, \qquad \frac{1}{2} \int G_4 \wedge G_4 = \frac{\chi}{24}$

Susy AdS₃ from M-theory on X_4 in the presence of self-dual G_4 flux

DW = 0 Z

Susy AdS vacuum

[S. Lüst, Vafa, Wiesner, Xu '22]

[S. Lüst, Vafa, Wiesner, Xu '22]

At $z = +\infty$, the IR central charge measures the radius of the AdS₃: $c_{\rm IR} = \frac{3}{2} l_{\rm AdS} \sim \frac{1}{|\Lambda|}$

[S. Lüst, Vafa, Wiesner, Xu '22]

At $z = +\infty$, the IR central charge measures the radius of the AdS₃:

 $c_{\rm IR} = \frac{3}{2} l_{\rm AdS} \sim \frac{1}{|\Lambda|}$

[S. Lüst, Vafa, Wiesner, Xu '22]

At $z = +\infty$, the IR central charge measures the radius of the AdS_3 :

 $c_{\rm IR} = \frac{3}{2} l_{\rm AdS} \sim \frac{1}{|\Lambda|}$

 \Rightarrow Not enough d.o.f. on the brane to get a sufficiently small C.C.!

[S. Lüst, Vafa, Wiesner, Xu '22]

Hidden degrees of freedom?

- deformations of the SLag L_4 .
- What if there are hidden d.o.f.?

 - (D1-D5 system: central charge is N_1N_5 instead of $N_1 + N_5$.)
 - Here: potentially d.o.f. from M2 branes ending on M5 branes

• They take a DW sourcing the KKLT AdS, and declare the UV d.o.f. to be the

At the M5-M5 brane intersections there could have much more d.o.f.

Hidden degrees of freedom?

- deformations of the SLag L_4 .
- What if there are hidden d.o.f.?

 - (D1-D5 system: central charge is N_1N_5 instead of $N_1 + N_5$.)
 - Here: potentially d.o.f. from M2 branes ending on M5 branes

• They take a DW sourcing the KKLT AdS, and declare the UV d.o.f. to be the

At the M5-M5 brane intersections there could have much more d.o.f.

→ Need to evaluate the radius of the AdS corresponding to the brane intersection (with the most d.o.f.)!

The most « entropic » domain wall

- Configuration with the most d.o.f.?

The most « entropic » domain wall

- Configuration with the most d.o.f.?

- How to get an AdS capturing the d.o.f. of intersection?
- Locally, M2 ending on M5-M5.
- The M2 pulls on the worldvolume of the M5

[Bena, Hampton, Houppe, YL, Toulikas '22] [Eckardt, YL '23]

- How to get an AdS capturing the d.o.f. of intersection?
- Locally, M2 ending on M5-M5.
- The M2 pulls on the worldvolume of the M5

[Bena, Hampton, Houppe, YL, Toulikas '22] [Eckardt, YL '23]

 Sugra solution, with infrared limit: $AdS_3 \times S^3 \times S^3 \times_w W_2$

[Bachas, D'Hoker, Estes, Krym '13] [Lunin '07] [Bena, Houppe, Toulikas, Warner '23]

• Reading off central charge is a mess

A smeared M5-M5-M2 intersection

• Can compute central charge from a similar configuration.

	0	y	z	1	2	3	4	5	6	7	8
M5	_		z=0		_	_					
M5											
M2											

A smeared M5-M5-M2 intersection

Can compute central charge from a similar configuration.

	0	y	z	1	2	3	4	5	6	7	8
M5	_	_	z=0		_	_	_				
M5	_	_	z=0							_	_
M2											

We propose:

 Put M2 charge ending on M5 branes (cross shape). • Smear M5(1234,y) along z. Smear M5(5678,y) along z. Take near-horizon limit → central charge

Branes at M5 self-intersections

• There is a sugra solution corresponding to the smeared M5-M5-M2. [de Boer, Pasquinucci, Skenderis '99]

 ds^2

• Metric Ansatz:

- (Localised) M5 harmonic functions:
- M2-charge function:

	y	\mathcal{Z}	$(r, \Omega_3^{(1)})$	$(r', \Omega_3^{(2)})$
$M5_1$	\otimes	2	\otimes	r'=0
$M5_2$	\otimes	2	r=0	\otimes
$M2_1$	\otimes	\otimes	~	r'=0
$M2_2$	\otimes	\otimes	r=0	\sim

$$\begin{split} & = H_T^{-2/3} \left(H_F^{(1)} H_F^{(2)} \right)^{-1/3} \left(-dt^2 + dx_1^2 \right) + H_T^{-2/3} \left(H_F^{(1)} H_F^{(2)} \right)^{2/3} dx_2^2 \\ & + H_T^{1/3} \left(H_F^{(1)} \right)^{-1/3} \left(H_F^{(2)} \right)^{2/3} \left(dr^2 + r^2 d\Omega_{(1)}^2 \right) \\ & + H_T^{1/3} \left(H_F^{(1)} \right)^{2/3} \left(H_F^{(2)} \right)^{-1/3} \left(dr'^2 + r'^2 d\Omega_{(2)}^2 \right) \,. \end{split}$$

$$H_F^{(1)} = 1 + \frac{Q_F^1}{r'^2}, \qquad H_F^{(2)} = 1 + \frac{Q_F^2}{r^2}$$

$$H_T = \left(1 + \frac{Q_T^{(1)}}{r'^2}\right)\left(1 + \frac{Q_T^{(2)}}{r^2}\right)$$

[de Boer, Pasquinucci, Skenderis '99]

• Near-horizon limit:

[de Boer, Pasquinucci, Skenderis '99]

$$z,\lambda)$$

• Near-horizon limit:

[de Boer, Pasquinucci, Skenderis '99]

Used $N_2 = \frac{\chi(X_4)}{24} = \frac{1}{2} \int G_4 \wedge G_4$ • Central charge: $c \propto N_2 N_5 \propto (N_{\text{flux}})^3$

	y	z	$(r, \Omega_3^{(1)})$	$(r', \Omega_3^{(2)})$
$M5_1$	\otimes	\sim	\bigotimes	r'=0
$M5_2$	\otimes	~	$\stackrel{r=0}{\bullet}$	\bigotimes
$M2_1$	\otimes	\otimes	\sim	$\substack{r'=0\\\bullet}$
$M2_2$	\otimes	\otimes	$\stackrel{r=0}{\bullet}$	\sim

$$(z, \lambda)$$

• Near-horizon limit:

[de Boer, Pasquinucci, Skenderis '99]

Used $N_2 = \frac{\chi(X_4)}{24} = \frac{1}{2} \int G_4 \wedge G_4$ • Central charge: $c \propto N_2 N_5 \propto (N_{\text{flux}})^3 > (N_{\text{flux}})^2$

[S. Lüst, Vafa, Wiesner, Xu '22]

	y	z	$(r, \Omega_3^{(1)})$	$(r', \Omega_3^{(2)})$
$M5_1$	\otimes	\sim	\bigotimes	r'=0
$M5_2$	\otimes	\sim	$\stackrel{r=0}{\bullet}$	\bigotimes
$M2_1$	\otimes	\otimes	\sim	r'=0
$M2_2$	\otimes	\otimes	$\stackrel{r=0}{\bullet}$	\sim

\rightarrow Weaker bound on Λ due to the M2 branes!

Sugra solution for D5-NS5-D3 intersection is known.

• The solution is an $AdS_4 \times S^2 \times S^2 \times_w \Sigma_2$

Warped AdS₄ in type IIB

Warped AdS_4 in type IIB

Sugra solution for D5-NS5-D3 intersection is known.

- The solution is an $AdS_4 \times S^2 \times S^2 \times_w \Sigma_2$
- Compute of AdS radius in 4d Planck units:

$$\frac{l_{AdS}}{G_N} \sim (N_{\rm flux})^4 \log(N_{\rm flux})$$

[Assel, Estes, Yamazaki '12]

Warped AdS₄ in type IIB

Matches the free energy of the 3d CFT!

[Assel, Estes, Yamazaki '12]

[Karch, Sun, Uhlemann '22]

- Studied local models for brane systems that source KKLT-type AdS vacua
- Computed AdS radius of the brane intersection (UV)
 - M theory: radius of the AdS₃

$$\frac{l_{AdS}}{G_N} \sim (N_{\rm flux})^3$$

► IIB: radius of the AdS₄

$$\frac{l_{AdS}}{G_N} \sim (N_{\rm flux})^4$$

- Studied local models for brane systems that source KKLT-type AdS vacua
- Computed AdS radius of the brane intersection (UV)
 - M theory: radius of the AdS₃

► IIB: radius of the AdS₄

$$\frac{l_{AdS}}{G_N} \sim (N_{\text{flux}})^4 > (N_{\text{flux}})^2$$

$$A_N = (N_{\text{flux}})^2$$
Hanany-Witten-like d.o.f.

- Studied local models for brane systems that source KKLT-type AdS vacual
- Computed AdS radius of the brane intersection (UV) M theory: radius of the AdS₃ ► IIB: radius of the AdS₄ $\frac{l_{AdS}}{G_N} \sim (N_{\text{flux}})^4 > (N_{\text{flux}})^2$ $\downarrow (N_{\text{flux}})^2$ Hanany-Witten- $\frac{l_{AdS}}{G_N} \sim (N_{\text{flux}})^3 > (N_{\text{flux}})^2$ $\uparrow \text{Deformations}$ like d.o.f. of SLag
- - [S. Lüst, Vafa, Wiesner, Xu '22]
- Cannot have more d.o.f. than that, since we compute the radius of the UV AdS.
- Therefore there is not enough d.o.f. to get the AdS with $|\Lambda| \ll 1$ in the KKLT scenario.

$$|\Lambda_{AdS}| \ge \mathcal{O}\left[\frac{1}{(N_{flux})^4}\right]$$

- Studied local models for brane systems that source KKLT-type AdS vacual
- Computed AdS radius of the brane intersection (UV) M theory: radius of the AdS₃ ► IIB: radius of the AdS₄ $\frac{l_{AdS}}{G_N} \sim (N_{\text{flux}})^4 > (N_{\text{flux}})^2$ $\downarrow N_{\text{flux}} \sim (N_{\text{flux}})^2$ $\downarrow N_{\text{flux}} \sim (N_{\text{flux}})^2$ $\frac{l_{AdS}}{G_N} \sim (N_{\text{flux}})^3 > (N_{\text{flux}})^2$ $\uparrow \text{Deformations}$ like d.o.f. of SLag
- - [S. Lüst, Vafa, Wiesner, Xu '22]
- Cannot have more d.o.f. than that, since we compute the radius of the UV AdS.
- Therefore there is not enough d.o.f. to get the AdS with $|\Lambda| \ll 1$ in the KKLT scenario.

$$|\Lambda_{AdS}| \ge \mathcal{O}\left[\frac{1}{(N_{flux})^4}\right]$$

Thank you!

Backup slides

 Same story in dual version of KKLT in M theory on CY₄

 Same kind of superpotential, controlled by self-dual flux G_4

• Get scale-separated AdS₃

3d version of KKLT

$$X_4 = (X_3 \times T^2) / \mathbb{Z}_2$$

 \mathcal{T}

$$W = \int_{X_4} \Omega_4 \wedge G_4 + \sum_{\mathbf{k}} \mathscr{A}_{\mathbf{k}}(z^i, G_4) \ e^{-2\pi k^{\alpha} T_{\alpha}}$$
$$G_4 = F_3 \wedge a + H_3 \wedge b$$

$$\frac{1}{l_{AdS_3}^2} = -4e^K |W|^2 \Big|_{D_a W=0} \ll 1$$

Idea: trade fluxes with branes

Fluxes/branes for black holes

4d « MSW » black hole: [Maldacena, Stominger, Witten '97]

M5 brane wrapping S_v^1 and L_4 $\subset CY_3$

 Moduli / CY shape are stabilised near horizon:

$$t^i = p^i \sqrt{\frac{q}{\frac{1}{6}C_{ijk}p^i p^j p^k}}$$

		0	\mathbb{R}^3	S_y^1	1	2	3	4	5	6
•	M5		r=0							
p^{ι}	M5	_	$\stackrel{r=0}{\bullet}$	_			_	_	_	_
	M5		r=0							
q	Р		r=0	\rightarrow						

The zoom-in of the branes at the triple intersections

11d: stabilisation from fluxes on CY

11d: competition between branes

11d: triple intersections $c_L = C_{ijk} p^i p^j p^k + c_{2,i} p^i$

Number d.o.f. $\leftrightarrow AdS_2$ radius in 4d units

Fluxes/branes for KKLT

- On CY₄ X_4 : trade the G_4 flux for M5 branes on orthogonal cycle $L_4 \subset X_4$.
- $G_4 = \star G_4$, so locally looks like

	0	y	z	1	2	3	4	5	6	7	8
M5			$\overset{z=0}{\bullet}$			_					
M5			$\overset{z=0}{\bullet}$							_	_

• 3d: KKLT AdS₃ as sourced by a domain wall

$$ds^{2} = e^{2D(z)}(-dt^{2} + dy^{2}) + dz^{2}$$

$$\frac{dD}{dz} = -\zeta |Z| \qquad \frac{d\phi^{a}}{dz} = 2\zeta g^{a\bar{b}}\partial_{\bar{b}} |Z|$$

$$\int tension of the wall$$

At $z = +\infty$, reach KKLT AdS₃

 $|Z|^2 \sim \Delta \langle V \rangle$

Domain-wall holography

Space-time filling M2-branes

$$N_{M2} = \frac{x}{24}, \quad G_4 = 0$$

$$N_{M2} = 0, \quad \frac{1}{2} \int G_4 \wedge G_4 = \frac{x}{24}$$
Susy AdS₃ from M-theory
on X₄ in the presence of
self-dual G₄ flux
$$\sum_{z=0}^{z=0} DW = 0$$

$$DW = 0$$

$$\sum_{z=0}^{z=0} DW = 0$$

$$\frac{\chi(X_4)}{24} = N_{\rm M2} + \frac{1}{2} \int G_4 \wedge G_4$$

DW: M5 Lag [S. Lüst, Vafa, Wiesner, Xu '22]

The estimated UV CFT

• Count possible deformations of special Lagrangian L_4 in X_4

$$c_{\rm UV} = \left(1 + \frac{1}{2}\right)L$$

M5 self-intersections in X_4 $\sim (N_{\rm flux})^2$

Scale $L_4 \rightarrow N_{\text{flux}} L_4$:

 $c_{\rm IR} \leq c_{\rm UV} \sim (N_{\rm flux})^2$ Need it exponentially $|\Lambda_{AdS}| \geq$ $(N_{\rm flux})^2$ small

[S. Lüst, Vafa, Wiesner, Xu '22]

 $L_4 \cdot L_4 + \left(4 + \frac{4}{2}\right) b_1(L_4)$ b_1 independent M5-strips in X_4 $\mathcal{O}[(N_{\rm flux})^2]$

> ⇒ Not enough d.o.f. on the brane to get a sufficiently small C.C.!

$$ds^{2} = H_{T}^{-2/3} \left(H_{F}^{(1)} H_{F}^{(2)} \right)^{-1/3} \left(-dt^{2} + dx_{1}^{2} \right) + H_{T}^{-2/3} \left(H_{F}^{(1)} H_{F}^{(2)} \right)^{-1/3} \\ + H_{T}^{1/3} \left(H_{F}^{(1)} \right)^{-1/3} \left(H_{F}^{(2)} \right)^{2/3} \left(dr^{2} + r^{2} d\Omega_{(1)}^{2} \right) \\ + H_{T}^{1/3} \left(H_{F}^{(1)} \right)^{2/3} \left(H_{F}^{(2)} \right)^{-1/3} \left(dr'^{2} + r'^{2} d\Omega_{(2)}^{2} \right) .$$

• Central charge: $c \propto N_2 N_5 \propto (N_{\text{flux}})^3 > (N_{\text{flux}})^2$

[S. Lüst, Vafa, Wiesner, Xu '22]

))	2/3	dx_2^2
/		

	y	z	$(r, \Omega_3^{(1)})$	$(r', \Omega_3^{(2)})$
$M5_1$	\otimes	\sim	\otimes	r'=0
$M5_2$	\otimes	\sim	r=0	\otimes
$M2_1$	\otimes	\otimes	\sim	r'=0
$M2_2$	\otimes	\otimes	$\stackrel{r=0}{\bullet}$	\sim

\rightarrow Weaker bound on Λ due to the M2 branes!

- In fact the D3 branes can have infinitely-many d.o.f.
- But we are interested in the d.o.f. of the intersection

- The location of the D3 branes modifies $W_{n.p.}$. \rightarrow Choose it such that the CY shrinks on the left \rightarrow Space-time ends there
- This brane system sources the KKLT AdS out of nothing.

Infinite central charge?

Sugra solution for D3 ending on D5-NS5 is known.

[D'Hoker, Estes, Gutperle '07] [Aharony, Berdichevsky, Berkooz, Shamir '11]

[Assel, Bachas, Estes, Gomis '11]

- The solution is an $AdS_4 \times S^2 \times S^2 \times_w \Sigma_2$ • Need estimate of AdS radius in 4d Planck units: $c_{UV} \sim \frac{l_{AdS}}{G_N}$
- V_6 infinite because of the AdS₅ region

• Trick to cut off infinite AdS₅ region from CFT: end the D3's on some D5's.

• Compute free energy: $F \sim (N_{\text{flux}})^4 \log(N_{\text{flux}})$

Finite central charge

[Karch, Sun, Uhlemann '22]

The radius of the AdS₄ solution dual to this quiver has the same scaling!

[Assel, Estes, Yamazaki '12] [Bachas, Lavdas '17]

