Holography for KKLT: Anatomy of a Flow

Yixuan Li

Eurostrings 2024, Southampton, United Kingdom

Max-Planck-Institut für Physik (Werner-Heisenberg-Institut)

Work to appear with I. Bena and S. Lüst

Sept. 3rd, 2024

MPI Munich

The string landscape…

• String theory's paradigm to get real-world physics: compactifications

 $\mathcal{M}_4 \times X_6$

• To explain our 4d EFT, start from a 10d theory

The string landscape…

- String theory's paradigm to get real-world physics: compactifications
- To explain our 4d EFT, start from a 10d theory
- The higher-dimensional theory is very rich: → CY geometry can be very intricate → 10d field content on top \rightarrow induce fluxes on the CY

- $\mathcal{M}_4 \times X_6$
	-

 \rightarrow surely one can get any EFT from those!

No scale-separated AdS vacua

As $\Lambda \rightarrow 0$, \exists tower of states s.t.

 $m \sim |\Lambda|^{\alpha}$

No long-lived dS vacua

in consistent EFT should *V*(*ϕ*) satisfy

 $|\nabla V| \geq \frac{c}{M_p} \cdot V$ or $\min (\nabla_i \nabla_j V) \leq -\frac{c'}{M_p^2} \cdot V$

[D. Lüst, Palti, Vafa '19] [Obied, Ooguri, Spodyneiko, Vafa '18] [Ooguri, Palti, Shiu, Vafa '18]

… and the Swampland

No long-lived dS vacua

in consistent EFT should *V*(*ϕ*) satisfy

[D. Lüst, Palti, Vafa '19] [Obied, Ooguri, Spodyneiko, Vafa '18] [Ooguri, Palti, Shiu, Vafa '18]

$$
|\nabla V| \ge \frac{c}{M_p} \cdot V \quad \text{or} \quad \min \left(\nabla_i \nabla_j V \right) \le -\frac{c'}{M_p^2} \cdot V
$$

Counter-example (?):

KKLT

[Kachru, Kallosh, Linde, Trivedi '03]

[McAllister, Moritz, Nally, Schachner '24]

… and the Swampland

No scale-separated AdS vacua As $\Lambda \rightarrow 0$, \exists tower of states s.t. $m \sim |\Lambda|^{\alpha}$

1. Stabilise CY moduli with fluxes + non-perturbative corrections → SUSY, scale-separated AdS $\Lambda < 0$

Two-step procedure:

Two-step procedure:

Study this step through holography and domain walls

- Complex-structure deformations (3-cycles) stabilised by fluxes,
- Kähler moduli (2- and 4-cycles) stabilisation need D3 instanton corrections

$$
W_{\text{GVW}} = \int_{X_3} G_3 \wedge \Omega_3 \qquad G_3 = F_3 - \tau H_3
$$

$$
W_{\text{n.p.}} = \sum_{\mathbf{k}} \mathcal{A}_{\mathbf{k}}(z^i, G_3) e^{-2\pi k^{\alpha} T_{\alpha}}
$$

need to be $\ll 1$

- Complex-structure deformations (3-cycles) stabilised by fluxes,
- Kähler moduli (2- and 4-cycles) stabilisation need D3 instanton corrections

• Get C.C. in terms of stabilised Kähler modulus σ_0

$$
\Rightarrow |\Lambda_{AdS}| \ll 1
$$

$$
W_{\text{GVW}} = \int_{X_3} G_3 \wedge \Omega_3 \qquad G_3 = F_3 - \tau H_3
$$

$$
W_{\text{n.p.}} = \sum_{\mathbf{k}} \mathcal{A}_{\mathbf{k}}(z^i, G_3) e^{-2\pi k^{\alpha} T_{\alpha}}
$$

$$
\Delta_{\text{AdS}} = -3 \left(e^K |W|^2 \right) \Big|_{D_{\alpha}W=0} = -\frac{a^2 \mathcal{A}^2 e^{-2a\sigma_0}}{6\sigma_0} < 0
$$

- Complex-structure deformations (3-cycles) stabilised by fluxes,
- Kähler moduli (2- and 4-cycles) stabilisation need D3 instanton corrections

• Get C.C. in terms of stabilised Kähler modulus σ_0

$$
\Rightarrow |\Lambda_{AdS}| \ll 1
$$

$$
W_{\text{GVW}} = \int_{X_3} G_3 \wedge \Omega_3 \qquad G_3 = F_3 - \tau H_3
$$

$$
W_{\text{n.p.}} = \sum_{\mathbf{k}} \mathcal{A}_{\mathbf{k}}(z^i, G_3) e^{-2\pi k^{\alpha} T_{\alpha}}
$$

$$
\Delta_{\text{AdS}} = -3 \left(e^K |W|^2 \right) \Big|_{D_a W = 0} = -\frac{a^2 \mathcal{A}^2 e^{-2a\sigma_0}}{6\sigma_0} < 0
$$

Idea: trade fluxes with branes

Fluxes/branes for KKLT

- 3d version of KKLT from M theory
- On CY_4 : trade the G_4 flux for M5 branes on dual cycle $L_4 \subset CY_4$.

• On CY_3 : exchange the (F_3, H_3) fluxes with D5/NS5 branes on dual cycles.

Fluxes/branes for KKLT

- 3d version of KKLT from M theory
- On CY_4 : trade the G_4 flux for M5 branes on dual cycle $L_4 \subset CY_4$.

• $G_4 = \star G_4$, so locally looks like

• On CY_3 : exchange the (F_3, H_3) fluxes with D5/NS5 branes on dual cycles.

Domain-wall holography

Space-time filling M2-branes

$$
N_{M2} = \frac{\chi}{24}, \qquad G_4 = 0
$$

Domain wall M5-brane on SLag4 dual to G_4

 $z = 0$

DW: M5 brane on special Lagrangian L_4

Susy AdS_3 from M-theory on X_4 in the presence of self-dual G_4 flux 3

Susy AdS vacuum $DW = 0 \quad Z$

[S. Lüst, Vafa, Wiesner, Xu '22]

 $N_{M2} = 0$, $\frac{1}{2} \int G_4 \wedge G_4 = \frac{\chi}{24}$

[S. Lüst, Vafa, Wiesner, Xu '22]

 $\forall A t z = +\infty$, the IR central charge measures the radius of the AdS_3 : $c_{\rm IR} =$ 3 2 l_{AdS} ∼ 1 |Λ|

[S. Lüst, Vafa, Wiesner, Xu '22]

3

2

 $c_{\rm IR} =$

1

|Λ|

 $\forall A t z = +\infty$, the IR central charge measures the radius of the AdS_3 :

 l_{AdS} ∼

[S. Lüst, Vafa, Wiesner, Xu '22]

3

2

 $c_{\rm IR} =$

1

|Λ|

 $\forall A t z = +\infty$, the IR central charge measures the radius of the AdS_3 :

 l_{AdS} ∼

[S. Lüst, Vafa, Wiesner, Xu '22]

[S. Lüst, Vafa, Wiesner, Xu '22]

⇒ Not enough d.o.f. on the brane to get a sufficiently small C.C.!

• They take a DW sourcing the KKLT AdS, and declare the UV d.o.f. to be the

- deformations of the SLag L_4 .
- What if there are hidden d.o.f.?
	-
	- \cdot (D1-D5 system: central charge is N_1N_5 instead of $N_1 + N_5$.)
	- ‣ Here: potentially d.o.f. from M2 branes ending on M5 branes

‣ At the M5-M5 brane intersections there could have much more d.o.f.

Hidden degrees of freedom?

Hidden degrees of freedom?

• They take a DW sourcing the KKLT AdS, and declare the UV d.o.f. to be the

- deformations of the SLag L_4 .
- What if there are hidden d.o.f.?
	-
	- \cdot (D1-D5 system: central charge is N_1N_5 instead of $N_1 + N_5$.)
	- ‣ Here: potentially d.o.f. from M2 branes ending on M5 branes

‣ At the M5-M5 brane intersections there could have much more d.o.f.

 \rightarrow Need to evaluate the radius of the AdS corresponding to the brane intersection (with the most d.o.f.)!

The most « entropic » domain wall
ation with the most d.o.f.?
all branes at the same place → brane interaction enhanced

- Configuration with the most d.o.f.?
-

The most « entropic » domain wall omain wall
nteraction enhanced

- Configuration with the most d.o.f.?
-

- How to get an AdS capturing the d.o.f. of intersection?
- Locally, M2 ending on M5-M5.
- The M2 pulls on the worldvolume of the M5

[Bena, Hampton, Houppe, YL, Toulikas '22] [Eckardt, YL '23]

- How to get an AdS capturing the d.o.f. of intersection?
- Locally, M2 ending on M5-M5.
- The M2 pulls on the worldvolume of the M5

Ads • Sugra solution, with infrared limit: $AdS_3 \times S^3 \times S^3 \times_w W_2$

Hourings, *vvaritet* [Lunin '07] [Bachas, D'Hoker, Estes, Krym '13] [Bena, Houppe, Toulikas, Warner '23]

[Bena, Hampton, Houppe, YL, Toulikas '22] [Eckardt, YL '23]

• Reading off central charge is a mess

• Can compute central charge from a similar configuration.

A smeared M5-M5-M2 intersection

MS A smeared M5-M5-M2 intersection

We propose:

• Put M2 charge ending on M5 branes (cross shape). • Smear M5(1234,y) along z. Smear M5(5678,y) along z. • Take near-horizon limit \rightarrow central charge

• Can compute central charge from a similar configuration.

Branes at M5 self-intersections The September equation corresponds to M2 small corresponds to M2 small corresponds to M2 small corresponds to M cannot move in the 6789 space. So in the end there is not more moduli due to the presence this call The more supersymmetry one breaks, the more degeneracy (and entropy, when it We can also determine the central charge of such a M2-M5-M5 system by going to anes at ivio seil-intersections the set M5 calf-intercections 7 + 1 + dx2 + d Foreign and the state of t −1 , F2m3 ,

• There is a sugra solution corresponding to the smeared M5-M5- $\overline{\hspace{1cm}}_{\rm M5}$ M2. δ H ₂
H2² where ^I runs over all ^m [∈] {3, ⁴, ⁵, ⁶} and ^m′ [∈] {7, ⁸, ⁹, ¹⁰}. ^H(1) \mathcal{G} to the sincered individually transverse directions of $\mathbb{M}5_2 \otimes \sim$

> ds^2 $\mathbf{3} \times \mathbf{4}$

*^r*² (5.2) $\frac{\sigma_F}{r^2}$) and H(2) and r^2 , \sim (2.2) $\frac{z_1}{r^2}$

- (Localised) M5 harmonic functions: \overline{P}
- M2-charge function:

ا –
ا *H*(1) *^F ^H*(2)

⇣ $[5, 99]$

$$
ds^{2} = H_{T}^{-2/3} \left(H_{F}^{(1)} H_{F}^{(2)} \right)^{-1/3} \left(-dt^{2} + dx_{1}^{2} \right) + H_{T}^{-2/3} \left(H_{F}^{(1)} H_{F}^{(2)} \right)^{2/3} dx_{2}^{2}
$$

\n
$$
+ H_{T}^{1/3} \left(H_{F}^{(1)} \right)^{-1/3} \left(H_{F}^{(2)} \right)^{2/3} \left(dr^{2} + r^{2} d\Omega_{(1)}^{2} \right)
$$

\n
$$
+ H_{T}^{1/3} \left(H_{F}^{(1)} \right)^{2/3} \left(H_{F}^{(2)} \right)^{-1/3} \left(dr^{2} + r^{2} d\Omega_{(2)}^{2} \right) .
$$

\n
$$
= 1 \qquad \qquad (1) \qquad Q_{F}^{1} \qquad \qquad (2) \qquad Q_{F}^{2}
$$

• Metric Ansatz:

functions:

\n
$$
H_F^{(1)} = 1 + \frac{Q_F^1}{r'^2}, \qquad H_F^{(2)} = 1 + \frac{Q_F^2}{r^2}
$$

$$
H_T = (1 + \frac{Q_T^{(1)}}{r'^2})(1 + \frac{Q_T^{(2)}}{r^2})
$$

Ede Boer, Pasquinucci, Skenderis '99].
In the Boer, Pasquinucci, Skenderis '99].

⌘1*/*³

The near-horizon limit

[de Boer, Pasquinucci, Skenderis '99]

• Near-horizon limit:

y	z	$(r, \Omega_3^{(1)})$	$(r', \Omega_3^{(2)})$	
$M5_1$	\otimes	\sim	$r' = 0$	
$M5_2$	\otimes	\sim	\otimes	
$M2_1$	\otimes	\sim	\otimes	
$M2_1$	\otimes	\sim	$r' = 0$	
$M2_2$	\otimes	\otimes	\sim	\bullet

$$
(\zeta,\lambda)
$$

 $\frac{10}{5}$

The near-horizon limit

• Central charge: *c* ∝ *N*2*N*⁵ ∝ (*N*flux) $N₅ \propto (N_{flux})^3$ $H_4 = 1 \int_{\mathcal{C}} \Delta \mathcal{L}$ -24 -21 -41 that Used $N_2 =$ χ (X_4) 24 = 1 $\frac{1}{2}$ $G_4 \wedge G_4$

[de Boer, Pasquinucci, Skenderis '99]

• Near-horizon limit:

$$
(\zeta,\lambda)
$$

 $\frac{10}{5}$

The near-horizon limit

• Central charge: *c* ∝ *N*2*N*⁵ ∝ (*N*flux) $N_{5} \; \propto \; (N_{\rm flux})^{3} > \; \rm (N_{\rm flux})^{2} \qquad \qquad \rightarrow \; \rm Weaker\;bo$ $H_4 = 1 \int_{\mathcal{C}} \Delta \mathcal{L}$ -24 -21 -41 that Used $N_2 =$ χ (X_4) 24 = 1 $\frac{1}{2}$ $G_4 \wedge G_4$

[de Boer, Pasquinucci, Skenderis '99]

• Near-horizon limit:

$$
,\lambda)
$$

\rightarrow Weaker bound on Λ due ✓ 1 THE MEDICINES to the M2 branes!

^x [S. Lüst, Vafa, Wiesner, Xu '22]

• The solution is an $AdS_4 \times S^2 \times S^2 \times W^2$

Warped AdS_4 in type IIB

Warped AdS_4 in type IIB

- The solution is an AdS $_4 \times S^2 \times S^2 \times_w \Sigma_2$
- Compute of AdS radius in 4d Planck units:

$$
\frac{l_{AdS}}{G_N} \sim (N_{\text{flux}})^4 \log(N_{\text{flux}})
$$

[Karch, Sun, Uhlemann '22]

Warped AdS_4 in type IIB

$$
\frac{l_{AdS}}{G_N} \sim (N_{\text{flux}})^3
$$

- Studied local models for brane systems that source KKLT-type AdS vacua
- Computed AdS radius of the brane intersection (UV)
	- M theory: radius of the AdS_3
• IIB: radius of the AdS_4

$$
\frac{l_{AdS}}{G_N} \sim (N_{\text{flux}})^4
$$

- Studied local models for brane systems that source KKLT-type AdS vacua
- Computed AdS radius of the brane intersection (UV)
	- M theory: radius of the AdS_3
• IIB: radius of the AdS_4

-
- $\frac{4aS}{C} \sim (N_{\text{flux}})^4$ > $(N_{\text{flux}})^2$ *l AdS* $G_{\!N}$ $\sim (N_{\text{flux}})$ 4 Hanany-Wittenlike d.o.f.
- Studied local models for brane systems that source KKLT-type AdS vacua
- Computed AdS radius of the brane intersection (UV)
	- *l AdS* $G_{\!N}$ $\sim (N_{\text{flux}})^3$ > (N_{flux}) • M theory: radius of the AdS_3
• IIB: radius of the AdS_4 **Deformations**

[S. Lüst, Vafa, Wiesner, Xu '22] of SLag

- Cannot have more d.o.f. than that, since we compute the radius of the UV AdS.
- Therefore there is not enough d.o.f. to get the AdS with |Λ| ≪ 1 in the KKLT scenario.

$$
|\Lambda_{AdS}| \geq \mathcal{O}\left[\frac{1}{(N_{\text{flux}})^4}\right]
$$

- Studied local models for brane systems that source KKLT-type AdS vacua
- Computed AdS radius of the brane intersection (UV)
	- *l AdS* $G_{\!N}$ $\sim (N_{\text{flux}})^3$ > (N_{flux}) • M theory: radius of the AdS_3
• IIB: radius of the AdS_4 **Deformations**
-
- $\frac{4aS}{C} \sim (N_{\text{flux}})^4$ > $(N_{\text{flux}})^2$ *l AdS* $G_{\!N}$ $\sim (N_{\text{flux}})$ 4 Hanany-Wittenlike d.o.f.

[S. Lüst, Vafa, Wiesner, Xu '22] of SLag

- Cannot have more d.o.f. than that, since we compute the radius of the UV AdS.
- Therefore there is not enough d.o.f. to get the AdS with |Λ| ≪ 1 in the KKLT scenario.

$$
|\Lambda_{AdS}| \ge \mathcal{O}\left[\frac{1}{(N_{\text{flux}})^4}\right]
$$

Thank you!

Backup slides

3d version of KKLT

• Same story in dual version of KKLT in M theory on CY_4

$$
X_4 = (X_3 \times T^2) / \mathbb{Z}_2
$$

• Same kind of superpotential, controlled by self-dual flux *G*⁴

• Get scale-separated $AdS₃$

$$
W = \int_{X_4} \Omega_4 \wedge G_4 + \sum_{\mathbf{k}} \mathcal{A}_{\mathbf{k}}(z^i, G_4) e^{-2\pi k^{\alpha}T_{\alpha}}
$$

$$
G_4 = F_3 \wedge a + H_3 \wedge b
$$

$$
\frac{1}{l_{\text{AdS}_3}^2} = -4e^K |W|^2 \bigg|_{D_a W = 0} \ll 1
$$

Idea: trade fluxes with branes

τ

• Moduli / CY shape are stabilised near horizon: denotes the wrapping directions of the brane.

 $\sqrt{\frac{q^3}{\frac{1}{6}C_{ijk}p^ip^jp^k}}$

 $\nu = \sqrt{\frac{2}{\pi}}$

11d: triple intersections $c_L = C_{ijk} p^i p^j p^k + c_{2,i} p^i$

Number d.o.f. \leftrightarrow AdS₂ radius in 4d units

The zoom-in of the branes at the triple intersections
The zoom-in of the branes at the triple intersections

4d « MSW » black hole: [Maldacena, Stominger, Witten '97]

M5 brane wrapping S_y^1 and $\frac{1}{y}$ and L_4 $\mathsf{C} \mathbf{C} \mathbf{Y}_3$

11d: competition between branes

Fluxes/branes for black holes

11d: stabilisation from fluxes on CY

$$
ds^{2} = e^{2D(z)}(-dt^{2} + dy^{2}) + dz^{2}
$$

$$
\frac{dD}{dz} = -\zeta |Z| \frac{d\phi^{a}}{dz} = 2\zeta g^{a\bar{b}}\partial_{\bar{b}} |Z|
$$
tension of the wall

At $z = +\infty$, reach KKLT AdS₃

|*Z*| 2 ∼ Δ ⟨*V*⟩

Fluxes/branes for KKLT

- On CY₄ X_4 : trade the G_4 flux for M5 branes on orthogonal cycle $L_4 \subset X_4$.
- $G_4 = \star G_4$, so locally looks like

• 3d: KKLT AdS₃ as sourced by a domain wall

Domain-wall holography

Space-time filling M2-branes

$$
N_{M2} = \frac{\chi}{24}, \qquad G_4 = 0
$$

Do M5-brane o

DW: M5 brane on special Lagrangian L_4

$N_{M2}=0$, $\frac{1}{2}\int G_4 \wedge G_4 = \frac{\chi}{24}$	Susy AdS ₃ from M-theory on X_4 in the presence of self-dual G_4 flux
$z=0$	Susy AdS vacuum
$z=0$	$DW=0$ z
$W=0$ z	

[S. Lüst, Vafa, Wiesner, Xu '22]

M5 self-intersections in X_4 $\sim (N_{\text{flux}})^2$

 $Scale L_4 \rightarrow N_{\text{flux}} L_4$:

$$
c_{\rm UV} = \left(1 + \frac{1}{2}\right)L_4 \cdot L_4 + \left(4 + \frac{1}{2}\right)L_5
$$

4

 $\frac{1}{2}$) $b_1(L_4)$ b_1 independent M5-strips in X_4 $[(N_{\text{flux}})]$ 2

[S. Lüst, Vafa, Wiesner, Xu '22]

 $c_{\text{IR}} \leq c_{\text{UV}} \sim (N_{\text{flux}})$ $|\Lambda_{AdS}| \ge$ ² ⇒ [1 $(N_{\text{flux}})^2$ Need it exponentially small

The estimated UV CFT

• Count possible deformations of special Lagrangian L_4 in X_4

 Not enough d.o.f. on the brane to get a sufficiently small C.C.!

The near-horizon limit density in $\mathbf{r}_{\mathbf{a}}$ and $\mathbf{r}_{\mathbf{a}}$ and $\mathbf{r}_{\mathbf{a}}$, $\mathbf{r}_{\mathbf{a$ functions associated with the membrane one may interpret the solution as an overlap the near-horizon limit. The supergravity solution of the M2-M5-M5 configuration can be The $\frac{1}{2}$ near dU′² ar-horizon limit

$$
ds^{2} = H_{T}^{-2/3} \left(H_{F}^{(1)} H_{F}^{(2)} \right)^{-1/3} \left(-dt^{2} + dx_{1}^{2} \right) + H_{T}^{-2/3} \left(H_{F}^{(1)} H_{F}^{(2)} \right)^{2/3} dx_{2}^{2}
$$

+
$$
H_{T}^{1/3} \left(H_{F}^{(1)} \right)^{-1/3} \left(H_{F}^{(2)} \right)^{2/3} \left(dr^{2} + r^{2} d\Omega_{(1)}^{2} \right)
$$

+
$$
H_{T}^{1/3} \left(H_{F}^{(1)} \right)^{2/3} \left(H_{F}^{(2)} \right)^{-1/3} \left(dr'^{2} + r'^{2} d\Omega_{(2)}^{2} \right) .
$$

(*r*² + *r*0²)³ ⌘ to the M2 branes! \rightarrow Weaker bound on Λ due

• Central charge: $c \propto N_2 N_5 \propto (N_{\text{flux}})$ 3 • Central charge: $c \propto N_2 N_5 \propto (N_{\text{flux}})^2 > (N_{\text{flux}})^2$ we give bound on the dict

Usec

 \overline{a}

H^T =

 $\frac{1}{2}$ $G_4 \wedge G_4$

 $> (N_{\text{flux}})^2$

24

=

Used $N_2 =$

[S. Lüst, Vafa, Wiesner, Xu '22] $\frac{1}{2}$, $\frac{1}{2}$

- The location of the D3 branes modifies $W_{n,p}$. \rightarrow Choose it such that the CY shrinks on the left \rightarrow Space-time ends there
- This brane system sources the KKLT AdS *out of nothing.*

- In fact the D3 branes can have infinitely-many d.o.f.
- But we are interested in the d.o.f. of the intersection
- The solution is an AdS • Need estimate of AdS radius in 4d Planck units: c_{UV} ~ $_4 \times S^2 \times S^2 \times_w \Sigma_2$ *l AdS* $G_{\!N}$ $SU(N_{\infty})$
- V_6 infinite because of the AdS₅ region

*S*³ *H*(3) = 0*,* \overline{S}

[Assel, Bachas, Estes, Gomis '11]

Infinite central charge?

• Sugra solution for D3 ending on D5-NS5 is known. [D'Hoker, Estes, Gutperle '07] [Aharony, Berdichevsky, Berkooz, Shamir '11] F

• Trick to cut off infinite AdS_5 region from CFT: end the D3's on some D5's.

Finite central charge

• Compute free energy: • Compute free energy: $F \sim (N_{\text{flux}})^4 \log(N_{\text{flux}})$

[Karch, Sun, Uhlemann '22]

The radius of the $AdS₄$ solution dual to this quiver has the same scaling!

[Assel, Estes, Yamazaki '12] [Bachas, Lavdas '17] $A²$

