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What does AdSs/CFT, know about thermal black holes?

AdSs /CFT,

® Susy protects observables between
strong and weak coupling

® Huge list of successful checks: susy
indices, HD corrections, correlations
functions...



What does AdSs/CFT, know about thermal black holes?

AdSs/CFT4 AdSs/CFT4
® Susy protects observables between ® Hard problem: no protection between
strong and weak coupling strong and weak coupling
° Huge list of successful checks: susy ® |dea: despite that (maybe) near the
indices, HD corrections, correlations BPS locus we can retain calculational

functions... control



An explicit thermal black hole in bd supergravity
[Chong, Cvetic, Lu, Pope, 2005]

asymptotics: AdSs x S° — near-horizon: \Si/ X(Ql’Qz)Rz X \Si
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Previously: “susy first, extremal later”

non-extremal [Cabo-Bizet, Cassani, Martelli, Murthy, 2018]
susy BH:
21 3 . 3
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27Gs e @ 2 full BH
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There are infinitely many ways to reach the BPS locus

> Expand the parameters

(3, bey T, €) = Gul@ns bs) + q0,1(3x, b)) T+ qro(as, bi) e + O(s?), s:={T,e}



There are infinitely many ways to reach the BPS locus

> Expand the parameters

q(a*v b*7 T7 6) — q*(a*v b*) + CIO,l(a*, b*) T + QI,0(3*7 b*) € + 0(52) b} S = {Tu 6}

> Demand T ~ physical temperature and € ~ susy deviation

Br=T+0(s) 1+U+w-20=27mT+e+0(s}) ImS=0(s?)



There are infinitely many ways to reach the BPS locus

> Expand the parameters

q(a*7 b*7 T, 6) = q*(a*7 b*) + q0,1(3*7 b*) T+ q1,0(3*, b*) €+ 0(52) , §.= {T, 6}

> Demand T ~ physical temperature and € ~ susy deviation

Br=T+0(s) 1+U+Lw-20=2mT+e+0(s}) ImS=0(s?)

> Result:

5=5 —ﬁTJro(s?) I =1 +3x+0(5) X =
- * M - I M T

|~



Notice what gets modified at which order

> The “balancing condition” gets modified at first order

1+ + B —-20=27T — 1+QU+-20=27T+c+0O(s?)



Notice what gets modified at which order

> The "balancing condition” gets modified at first order

1+ + B —-20=21T — 1+Q+-20=27T+ec+0O(s?

> Equivalently from the expansion we get

wi = Wi (8, bi) + 07 (ax, b)) x + O(s) . Wy + wh — 29" =27
© = ©*(ax, by) + ¢*(ax, by) x + O(s) oy +o05—20"=1



Notice what gets modified at which order

> The “balancing condition” gets modified at first order

1+ + B —-20=270T — 1+QU+-20=27T+c+0O(s?)

> Equivalently from the expansion we get

Wi = Wi (ax, by) + 07 (ax, bi) x + O(s) wi +ws — 2" = 27
p = ¢"(ax, b)) + ¢"(ax, b)) x + O(s) o1 +05—2¢" =1

> The BPS bound gets un-saturated at second order

— 301 lani 3
A.—E*JlfJgfiQ—2M€(47T1T+6)+O(S)



Once near the BPS point tuning x = ¢/ T we get closer to either susy or
extremality

small x

T (non-extremal)

1

[Larsen, Nian, Zeng, 2019]
1 (a, + b,)%(3 + a, + b, — a,b,)
N M 2Gs8(1 — a,)(1 — by )(1+ a2 + b2 + 3a,b, + 3(ax + by))

' [Boruch, Heydman, Iliesiu, Turiaci, 2022]

large x € (non-susy)


Vasil Dimitrov
[Boruch, Heydman, Iliesiu, Turiaci, 2022]

Vasil Dimitrov
[Larsen, Nian, Zeng, 2019]


Useful rewritings of the on-shell action / = [, +2M~1 x

> Instead of (ay, b,), we can express the on-shell action in terms of (w¥, o7

Gl <(¢*)3 | 91— 2(0f +03) +4((0f)? — ofos + (o—;>2>)>X]

| 27
*, Kk * Kk * Kk
wiws o105 640705

- 27Gs




Useful rewritings of the on-shell action / = [, +2M~1 x

> Instead of (ay, b.), we can express the on-shell action in terms of (w?, o)

Gl ((¢*)3 L 91 =2(01 +03) + 4((01)* — o5 + (05)2))>X]

[ — 2
227Gy

*, K * Kk * Kk
wiws o105 640705

> |t is not quite possible to write it in terms of what will eventually become field theory
fugacities w; = wr + 07 x and ¢ = %(wl + wy — 27 — x), but we get close

/

_'_
wiw? 64wiwo

27 ! @3 Ix(x? — 2x(w1 + w2 + g2(ax, by)) + 4(w? — wiws + w3 + g1(as, b*)))]
- 27Gs



Classical statements about the partition function, Casimir energy and index

> Classically, we can approximate the partition function as Z ~ e/. We also split Z
into Casimir energy (Ep) and “index” (Z) contributions

Z=ePBT — |x—-BE+logT



Classical statements about the partition function, Casimir energy and index

> Classically, we can approximate the partition function as Z ~ e/. We also split Z
into Casimir energy (Ep) and “index" (Z) contributions

Z=ePBT — |x—BE+logZ

> The Casimir energy, as extracted from the on-shell action SEy = —flimg_, %I, is
entirely expressed in terms of the field theory variables

27 (w1 + w»)3 X(X2 + 6x(w1 + wp) + 12(w? — Twiwy + w%))
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Classical statements about the partition function, Casimir energy and index

> Classically, we can approximate the partition function as Z ~ e/. We also split Z
into Casimir energy (Ep) and “index” (Z) contributions

Z=e¢PBT — |x—-BE+logT

> The Casimir energy, as extracted from the on-shell action BEy = —flimg_, %I, is
entirely expressed in terms of the field theory variables

BE 27 [ (w1 +w2)®  x(x? 4 6x(w1 + w2) + 12(wi — Twiwa + w%))]
0 - _

- 27 G5 8W1WQ 64W1WQ

> While the “index”" contains the functions g1 2(ax, by)

logZ =

4w1w2 32(,01002

27 [Wi(4772 + 6mi(wr + w2 — x) — 3(w1 + w2 — x)?)  Ix(gox — 2g1)]
27 Gy



The near-horizon geometry of the near-BPS black hole

> Reached by simultaneously bringing the outer and inner horizons together (T — 0)
and driving an observer towards this point (r — ry). Throwing € in the game

t

t=——= r=ri(e,T)+2nT c(as, by)(r—1) then (¢,T)—0
2T



The near-horizon geometry of the near-BPS black hole

> Reached by simultaneously bringing the outer and inner horizons together (T — 0)
and driving an observer towards this point (r — ry). Throwing € in the game

t

t=—— r=ri(eT)+2nT c(as,b,)(r—1) then (e,T)—0
2T

> The resulting metric is

_ ~ ~ 1 ~
ds?y .eps = fi(F,e, T) (— [(F - 1)+ O(s)] de + o dr2> X0, 2,0 (F, €, T)ds2s

nAdS;



The near-horizon geometry of the near-BPS black hole

> Reached by simultaneously bringing the outer and inner horizons together (T — 0)
and driving an observer towards this point (r — ry). Throwing € in the game

t

t=——= r=ri(e, T)+2nT c(as, b)) (r—1) then (¢,T)—0
2T

> The resulting metric is

_ ~ . 1 _
ds?ygps = (Fe, T) <—[(r2 — 1)+ 0(s)] dE + I dr2> X0, (7 €, T)ds2s

nAdS>

> The equations of motion and Killing spinor variations of the 5d sugra hold as

Euw = O(s%) Ssusytou = O(s%)



Susy breaking in the holographic dual

The 4d background, with n; = (sin 6, cos )
dsj = dr? +d6°+ ) nf(dg; —iQdr)*, A= i<d> - 2) dr, V=—idr
locally solves the Killing spinor equation
(vM — Ay + iV + iv"’aM,\,)c ~0
for any value of . However, supersymmetry is broken by the amended boundary condition

(T + B) = e™HP2¢(7)



The 4d background is a Hopf surface with complex “twisting” parameters

The background is a Hopf surface of the form S3 xq, o, St

dsj = Q(0)*(d7 + c)* +d6* + > n7d¢? — Q(0)*c?,

2
ds3

2 202 1 2
Q(@) :1—Zini§2i, C:—Q(e)zzinigidgbi

with complex Killing vector

K = oMoy = %[EI(Q,- —1)dy, — iaf}



In the Cardy limit size(S!) < size(S®) one obtains an effective 3d CS theory

[Assel, Cassani, Martelli, 2014]
(1) Relate the 4d background (A, V,w) to the 3d background fields (c, A, V, w)

(2) Evaluate the classical building blocks (supersymmetrized CS actions)

h=-"-1{ ¢rde h=— [ Ardc h=— | ArNdA | w A dw

41 Jss 41 Jg3 4 Js3 ~ 102 s3

(3) Determine their coefficients by integrating a tower of massive KK modes, involving
sums like (note the imprint of the susy breaking in the 3d theory)

sum(k) = Zn(mn)k sgn(my), my,= 2ﬁ7r (n + ;(1 + 2ﬁ7r€1) r—(p- u)>

[Di Pietro, Komargodski, 2014] [Di Pietro, Honda, 2015] [Ardehali, Murthy, 2021]

(4) Sum over all 4d fermion towers and evaluate the classical 3d CS action (Ics) on the
dominant saddle v =0
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Steps 1 & 2: The 3d background has no explicit dependence on the susy
breaking parameter ¢

> The matching is performed by ensuring that the reduced 4d susy variations coincide
with the 3d susy variations

[VM - I(AN — VN) + %Euyp VV’}/p + %H’}/M]T]

<VM — 1Ay +1Vy —i—iV’VamN)C {K(_i*c)u — 0 _|_av#)7# +i(D +aH)}77



Steps 1 & 2: The 3d background has no explicit dependence on the susy
breaking parameter ¢

> The matching is performed by ensuring that the reduced 4d susy variations coincide
with the 3d susy variations
V. —i(A, — V) + i,V +1Hy,n
(V/vl—iA/vl+iV/vl+iVN0MN)C Vi . (A . ) 2% 2 2
[((71* c), —iouo + O'VM>’}/“ +i(D + a’H)}n

> In previous analysis the 4d gauge field was assumed real. Lifting this assumption and
taking into account the susy breaking BC's

A= _;[<Ql+92—2—%+Mc+mc], c=c



Steps 1 & 2: The 3d background has no explicit dependence on the susy
breaking parameter ¢

> The matching is performed by ensuring that the reduced 4d susy variations coincide
with the 3d susy variations

[vu —i(A,— V) + %%Vﬁ VAP + %HW]U

(VM —iAy +iVy + iv’VaMN)§ { K(_i* ¢), - 100 + UW)W“ +i(D+ aH)}n

> |In previous analysis the 4d gauge field was assumed real. Lifting this assumption and
taking into account the susy breaking BC's

A= —;[<Ql+92—2—%+%>c+ﬂ*c], c=c

> Thus the CS actions evaluate as in [Cassani, Komargodski, 2021]

(w1 + w2) im(wy + wa)? im(wy — wa)?
h=———7""—="38 k= Ir =

wiwo W1w2 dwiwr 48wiwo

it

h=—
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Steps 3 & 4: Due to the susy breaking the “real mass” is complex

> The sum over KK towers involve sgn(z € C), we attempt a simple extension of the
sgn function

sgn(mp) = sgn(Re my,) mp = 2;- (n + %(1 + ﬁ)r —(p- u))



Steps 3 & 4: Due to the susy breaking the “real mass” is complex

> The sum over KK towers involve sgn(z € C), we attempt a simple extension of the
sgn function

sgn(mp) = sgn(Re m),) mp = 2; <n + %(1 + %)r —(p- u)>

> With this the final classical CS action is

Tr R3 7i [47r2 + 6mi(w; +wy — x) — 3(w1 + w2 — X)z]
les = +

6 4wiwo ~—~
subleading in N



Steps 3 & 4: Due to the susy breaking the “real mass” is complex

> The sum over KK towers involve sgn(z € C), we attempt a simple extension of the
sgn function

sgn(mp) = sgn(Re m),) mp = 257T <n + %(1 + %m)r —(p- u)>

> With this the final classical CS action is

Tr R3 mi[4m? + 6mi(w1 + wo — x) — 3(w1 + wo — x)?]
6 Awiwy

+

lee =
CS ,
subleading in N

> |dentify logZ = Ics and import from gravity the “field theory like” result for the
corrected Casimir energy, then

TrR3| 3 n 9Ix(x* — 2x(w1 + w2) + 4(w] — wiws + w3))

log Z =
& £QFT 6 wWiw?2 64W1WQ



Comparison between field theory and gravity

log Zqrt =

6

TR §° n 9x(x? — 2x(w1 4 w2) + 4(wi — wiws + w3))
wiw2 64wiw>

Tr R3 B 27
6  27Gs

[ 2 ol vt 4l v )

/ =
B 27Gs | wiwo 64wiwo




We have a match for small and for large x = ¢/ T

> Using the relations w; = w’ 4 o7 x, for small x (¢ < T aka closer to the susy locus):

2T

TrR3 | (wf + wj — 2i)?
ferav = 27Gs

*, K
6 Bwiws

\3
(Wi + w} — 2mi)
*, 4k
Bwiws

+ O(x)

log ZQFT = + O(X)




We have a match for small and for large x = ¢/ T

> Using the relations w; = w’ 4 o7 x, for small x (¢ < T aka closer to the susy locus):

TrR3 | (wf + wj — 2ri)?
6 8wiwy

2T

(wF + wh — 27i)>
Igrav = 27G5

*, Kk
Bwiws

log Zarr = +0(x) +0(x)

> and for large x (e > T aka closer to the extremal locus):

2 2
|0g ZQFT == M X + 0(1) Igrav == M X + O(l)



We have a match for small and for large x = ¢/ T

> Using the relations w; = w’ + o7 x, for small x (e < T aka closer to the susy locus):

Tr R® | (W} + wj — 27i1)° o1 | (wi + wi — 2ni)?
log ZqrT = L =2 O [ 1T W o
08 £QFT 6 Bwiws +00) BV 27Gs Bwiws +0(x)
> and for large x (¢ > T aka closer to the extremal locus):
2 2
|Og ZQFT = M X + 0(1) Igrav = M X + O(l)

where M is the Schwarzian mass scale

M~ 27Gs 807 0% 6407 0%

1 7 | (of + 03 —1)3 N 9(1 —2(07 + 03) + 4((07)? — 0503 + (03)?))



Conclusions and open problems

> Need an independent solely QFT calculation of the Casimir energy SEy when € # 0

> Need to re-derive the coefficients of the CS actions from scratch
® Is sgn(z) = sgn(Re z) legit?
® Note: any change in them would not affect the x — oo and x — 0 analysis
® Freedom to choose renormalization scheme of the on-shell action in gravity?

> Should we even hope for a precise match on the classical level?

® Gravity: T — 0 vs. field theory: 3=+ — 0
® A priory nothing is protected when € # 0, nevertheless we see indications that
something is protected when susy but extremal

> Relation to recent work of [Cabo-Bizet, 202417
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Thank you!



