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Conformal Field Theory

When theorists can feel safe

Conformal Field Theory is well-defined.

I No divergences

I Non-perturbative

I Fully calculable (in principle)

I Only known way to fully formulate quantum gravity (in AdS)

I Can be completed from the bottom-up through conformal boostrap!

Say no more... Where do I sign?



A Carrollian conformal bootstrap?

Expectations

[Bagchi-Banerjee-Basu-Dutta ’22, Donnay-Fiorucci-Herfray-Ruzziconi ’22, ...]

Massless scattering amplitudes are correlators in Carrollian CFT

I Indeed the Poincaré group is the conformal Carrollian group!

Open question

Can we construct scattering amplitudes through conformal bootstrap?

Wish list:

I No divergences

I Non-perturbative

I Fully calculable (in principle)

I Predictivity

I Bottom-up completion
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Carrollian OPE = collinear factorization?

Gauge theory tree-level amplitudes satisfy collinear factorization:

An(p1, p2, ...)
1||2−→ A3(p1, p2,−P )

1

P 2
An−1(P, ...) , P ≡ p1 + p2 .

After applying the (modified) Mellin transform, it looks like the leading term

of a holomorphic OPE [Fan-Fotopoulos-Taylor ’19, Mason-Ruzziconi-Srikant ’23],

O1(z1)O2(z2)
z12∼0∼ 1

z12
O3(z2)

Open questions

I Is the OPE limit always associated to a collinear limit?

I Is there a consistent OPE at subleading orders in z12?

I Is there an OPE for generic massless amplitudes? (ex: λφ4)
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From massless particles to carrollian fields

By I we simply mean a null surface R× S2 covered with complex

stereographic coordinates x = (u, z, z̄) and conformal metric

ds2
I = 0 du2 + dzdz̄ .

Given a massless particle state |p〉J of helicity J and momentum pµ

parametrised as

pµ = ω(1 + zz̄, z + z̄, i(z̄ − z), 1− zz̄) ,

we can define the carrollian conformal field through the modified Mellin

transform [Banerjee ’18]

O∆,J(u, xi)|0〉 =

∫ ∞
0

dω ω∆−1e−iωu|p〉J .
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From massless particles to carrollian fields

Under Poincaré ISO(1,3) symmetries, they transform like

[H,O(x)] = −i∂uO(x) ,

[K,O(x)] = −izz̄∂uO(x) ,

[B,O(x)] = −iz∂uO(x) ,

[L−1, O(x)] = −i∂zO(x) ,

[L0, O(x)] = − i
2

(u∂u + 2z∂z + 2h)O(x) ,

[L1, O(x)] = −iz (u∂u + z∂z + 2h)O(x) ,

with the chiral weights

h =
∆ + J

2
, h̄ =

∆− J
2

.

They can be constructed directly from representation theory [Nguyen-West ’23].



Building a simple carrollian OPE

Let’s postulate the existence of an OPE of the form

O1(x)O2(0)
x∼0
≈
∑
k

f12k(x)Ok(0) + subleading ,

and constrain the functions f12k(x) by requiring consistency with Poincaré

symmetry.

We find

f12k(x) =
c0

u2a zh1+h2−hk−a z̄h̄1+h̄2−h̄k−a
+

c1 δ(z)δ(z̄)

u∆1+∆2−∆k−2

+
c2 δ(z̄)

uh̄1+h̄2−h̄k+b−1 zh1+h2−hk−b
+

c̄2 δ(z)

uh1+h2−hk+b̄−1 z̄h̄1+h̄2−h̄k−b̄
,

where the coefficients c0, c1, c2, c̄2 as well as the exponents a, b, b̄ are arbitrary

numbers.
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Application: 3-point MHV amplitude

The 3-point MHV amplitude with arbitrary quantum numbers is given by

〈O1O2O3〉 ∼
δ(z̄12)δ(z̄13)|z12|∆3−J1−J2−2|z23|∆1−J2−J3−2|z13|∆2−J1−J3−2

(z23 u1 + z31 u2 + z12 u3)
2(h̄1+h̄2+h̄3−2)

assuming that J1 + J2 + J3 < 0.

Taking the OPE limit we get

〈O1O2O3〉
z12∼0∼ z∆3−J1−J2−2

12 δ(z̄12)

u
2(h̄1+h̄2+h̄3−2)
12

δ(z̄13)z−2h3
13 = f124(x12)〈O4O3〉(x13) ,

where the quantum numbers of O4 are given by

h̄4 = 1− h̄3 , h4 = h3 .
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Application: λφ4 theory

The tree-level amplitude is just M4 = 1. After modified Mellin transform,

C4 ∼
z∆1−∆2δ(z − z̄)
(1− z)∆3−∆2

∣∣∣∣z24

z12

∣∣∣∣2(∆1−1) ∣∣∣∣z34

z23

∣∣∣∣2(∆2−1) ∣∣∣∣z14

z13

∣∣∣∣2(∆3−1)
1

|z13z24|2

× 1(
u4 − u1z

∣∣∣ z24z12 ∣∣∣2 + u2
1−z
z

∣∣∣ z34z23 ∣∣∣2 − u3
1

1−z

∣∣∣ z14z13 ∣∣∣2)Σ∆−4
.

In the OPE limit z̄12 ∼ z12 ∼ 0 we find

C4 ∼
z∆3+∆4−2

12 δ(z̄12)

uΣ∆−4
12

1

(z̄23)1−∆4(z̄24)1−∆3(z̄34)∆3+∆4−1

1

(z23)∆3(z24)∆4

= f125(x12)〈O5(z2)O3(z3)O4(z4)〉

with

h̄5 = 1− ∆3 + ∆4

2
, h5 =

∆3 + ∆4

2
.
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The collinear OPE

Let’s now consider the weaker limit z → 0 keeping z̄ and u arbitrary. Then it

makes sense to integrate the position of Ok,

O1(x)O2(0)
z∼0
≈
∑
k

zα12k

∫ 1

0

dt dsF12k(u, z̄; t, s)Ok(tu, 0, sz̄) .

Requiring consistency with Poincaré symmetry at this order, we find

α12k = hk − h2 − h1 ,

F12k = c12k z̄
h̄k−h̄2−h̄1 th̄k−h̄2+h̄1−1(1− t)h̄k+h̄2−h̄1−1δ(t− s).

In the special case ∆1,2 = 1 and ∆3 = 1 + p with p = J1 + J2 − J3 − 1, we

can write

O1(x)O2(0)
z∼0
≈ z−1 z̄p

∫ 1

0

dt tJ2−J3−1(1− t)J1−J3−1∂puO3(tu, 0, tz̄),

thereby recovering the collinear OPE limit [Mason-Ruzziconi-Srikant ’23].
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The collinear OPE: comments

I At the level of 4-point MHV amplitudes, this yields

C4(x, 0; ...)
z∼0
≈ z−1 z̄p1

∫ 1

0

dt tJ2−Jk−1(1−t)J1−Jk−1∂puC3(tu, 0, tz̄, ...),

with C3 the three-point MHV amplitude with support

C3 ∝ δ(z̄12)δ(z̄23) .

Hence this collinear OPE controls the regime z̄12, z̄13 � z ≡ z14 � 1.

I At subleading order we would naturally consider

O1(x)O2(0)
z∼0
≈ zα12k

∫ 1

0

dt dsF12k(u, z̄; t, s)Ok(tu, 0, sz̄)

+ zα12k+1

∫ 1

0

dt dsG12k(u, z̄; t, s)∂zOk(tu, 0, sz̄) ,

but this fails to solve the ISO(1, 3) constraints...
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Perspectives

To appear soon:

I Classification of 2-,3- and 4-point functions with complex kinematics

I Carrollian OPE limits

I Carrollian OPE blocks

I Explicit examples using MHV amplitudes

I Carrollian manifestation of the double copy GR = (YM)2

Open questions:

I Role of massive particles in the carrollian OPE?

(p1 + p2)2 = 2 p1 · p2 6= 0

I How to extend the collinear OPE beyond leading order? Relation to

non-factorisation of subleading collinear terms?

[Nandan-Plefka-Wormsbecher ’16]

I 4-point carrollian blocks? crossing equations? bootstrap? ...


