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This talk

A different setup with two intersecting null hypersurfaces — Light-cone formulation




Light-cone formulation

“Forms of relativistic dynamics” [Dirac '49]

@ Choice of ‘time’ for Hamiltonian dynamics

(a) Instant form (b) Front form

L

(a) Instant form: time x°
Spatial foliations (initial data on x° = 0)

- H + X0+x3
(b) Front form: time x™ = 7

Null foliations (initial data on x* = 0)

@ Different IVP in GR: Cauchy vs. Characteristics
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Poincaré algebra (P, M,..))

Instant Form
Cartesian coords: (x°, x3), a=1,2,3

@ Kinematical K = {Pa, Mz} : 6-dim

@ Dynamical D = {Py, Mya} : 4-dim
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Light-cone formulation

“Forms of relativistic dynamics” [Dirac '49]

@ Choice of ‘time’ for Hamiltonian dynamics

(a) Instant form: time x°
Spatial foliations (initial data on x° =0)

- + XO-H(3
(b) Front form: time x™ = v

Null foliations (initial data on x* = 0)

@ Different IVP in GR: Cauchy vs. Characteristics

(a) Instant form (b) Front form

L

Poincaré algebra (P, M,..,)

Instant Form
Cartesian coords: (x°, x3), a=1,2,3

@ Kinematical K = {Pa, Mz} : 6-dim

@ Dynamical D = {Py, Mya} : 4-dim

Front Form
Light-cone coords, (x*, xx/), i=1,2

K ={P_,P,M_j,Mj,M_.} : 7-dim

D = {P;, M,,;} : 3-dim

Largest Kinematical subgroup possible: Easier to derive interacting actions

o
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Why light-cone?

@ Reason 1: Largest kinematical subgroup

@ Reason 2: Non-relativistic or Galilean aspects [Weinberg ‘66; Susskind'68]
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— 3D Galilei subgroup within 4D light-cone Poincaré = Hamiltonian P =
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@ Reason 3: Gauge constraints often solvable — only physical d.o.f.

“Constrained Hamiltonian Systems” [Dirac 1959; Bergmann 1959]
Shlp, 7, ] = /dt/dsx (mq'b —H - A;Q') ., G gauge constraints

Closer to on-shell physics: Scattering amplitudes, Helicity states, GW waves. ..
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Why light-cone?

@ Reason 1: Largest kinematical subgroup

@ Reason 2: Non-relativistic or Galilean aspects [Weinberg ‘66; Susskind'68]
Light-cone Physics <— non-relativistic Galilean invariance PuPH = 2P P_—PiP' =0

o, s . . ) PP
— 3D Galilei subgroup within 4D light-cone Poincaré = Hamitonian P = !

@ Reason 3: Gauge constraints often solvable — only physical d.o.f.

“Constrained Hamiltonian Systems” [Dirac 1959; Bergmann 1959]

Shlp, 7, ] = /dt/dsx (mq'b —H - A;Q') ., G gauge constraints
Closer to on-shell physics: Scattering amplitudes, Helicity states, GW waves. ..

Many successes: DLCQ, Loop computations in QCD,
UV finiteness of A = 4 Super Yang-Mills,
Light-cone quantization of strings,
Higher-spins and supersymmetric theories
Scattering amps.: KLT, MHV Lagrangians, Self-dual YM, ...

Disclaimer: Non-covariant and ugly!
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Brief Outline

@ Light-cone formulation of QFT
@ LC approach to Asymptotic symmetries

@ Some recent works:
a) Null-front canonical analysis

b) Links to Carrollian Physics




Light-cone Electromagnetism

Gauge-fixing the Maxwell action
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Gauge-fixing the Maxwell action

Al = At = Al

Light-cone gauge : 75

Maxwell equations: 9, F*” =0

@ Constraint (v = +): 82 A~ +90_A =0

“Inverse derivative” [Mandelstam '83, Leibbrandt '83]
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@ Trivial equation (v = —) relates g, and a; = one arbitrary constant  Let’s set them to zero

@ Dynamical equations (v = i)

(20-04 — 8,-8’)Af = 0,4 =0 —  two propagating modes




Light-cone Electromagnetism

Gauge-fixing the Maxwell action

Al = At = Al

Light-cone gauge : 75

Maxwell equations: 9, F*” =0

@ Constraint (v = +): 82 A~ +90_A =0
“Inverse derivative” [Mandelstam '83, Leibbrandt '83]
Al . . 1 -~ N
A - 9A +ar(xT, XY xT + a(xT, x') 5906 = = [T =y TIo T oy eonst.
a_ ) ’ e E
@ Trivial equation (v = —) relates g, and a; = one arbitrary constant  Let’s set them to zero

@ Dynamical equations (v = i)
(20-04 — B,BI)AJ = 0A=0 > two propagating modes

Light-cone action for Electromagnetism
Complexify the A — (A, A) :  +1 helicity states of the photon
SilA Al = / d*x A(0,0_ —98)A — lcp formalism




Boundary conditions are sneaky!

Boundary conditions in light-cone formalism
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Boundary conditions are sneaky!

Boundary conditions in light-cone formalism ;\ K
f - 8iAf + iy = + i
Constraint: A~ = — 3 +a(x,x)x +a(x,x)

Nay=dia1 = Ad ; A =29)

Ao, A

(x=)  (x7)

+ ...

Fall-offatlarge x™ : A = o'd +

Large gauge transformations A, — A,, + 9,,€(x)

Case I: Zero modes ag, a; set to zero
o Fall-of: A' = © (%—)
@ LC action:

SelA A = /d“x A (0,0 — 05) A

@ LGTs: ¢(x,X) = f(x) + f(X) — Constrained




Boundary conditions are sneaky!

Boundary conditions in light-cone formalism

A ; ;
Constraint: A~ = — 8’ +ai(x", XY xT +a(xt,x)
Nag = dia; = Ad ;A =295
; Al Al
Fall-offatlarge x™ : A = 9’0 + & (1)2 +..
(x=)  (x7)

Large gauge transformations A, — A,, + 9,,€(x)
Case I: Zero modes ag, a; set to zero
oAl 1
@ Fall-off: A = © (F)
@ LC action:

Si[A Al = /d“x A(0,0_ — D) A

@ LGTs: ¢(x,X) = f(x) + f(X) — Constrained

Case lI: Zero modes ag, a1 # 0
@ Fall-off: A = O (1)
@ LC action:
S[A, A, &] = Si[A, Al + / (o-term)
or
@ LGTs : Arbitrary function e(x, X)

[SM (2022)]

4

Key lesson: Boundary conditions, zero modes in x ~ subtle: handle with care!
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@ Light-cone formulation of QF T
@ LC approach to Asymptotic symmetries

@ Some recent works:

a) Null-front canonical analysis
[Barnich, SM, Speziale, Tan, arXiv: 2401.14873]

b) Links to Carrollian Physics
[SM, arXiv: 2406.10353]




Back to basics: Chiral Bosons in 2D

Issue: Boundary conditions, zero modes in x— delicate

How to account for boundary conditions or zero modes correctly?
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Issue: Boundary conditions, zero modes in x— delicate

How to account for boundary conditions or zero modes correctly?

The problem: 2D chiral boson Partition function
Partition function Z(8, a) = Tr e~ AH+ieP

Time x°, Periodic boundary conditions x* — x' + L

o 1
20T = e

[Di Francesco-Mathieu-Sénéchal or your favourite CFT textbook]

7 modular parameter




Back to basics: Chiral Bosons in 2D

Issue: Boundary conditions, zero modes in x— delicate

How to account for boundary conditions or zero modes correctly?

The problem: 2D chiral boson Partition function
Partition function Z(8, a) = Tr e~ AH+ieP

Time x°, Periodic boundary conditions x* — x' + L

1
2(r,7) = ———— 7 modular parameter

V72|n(7)?

[Di Francesco-Mathieu-Sénéchal or your favourite CFT textbook]

Scalar field Lagrangian
S= %/dzx 8, 00" ¢ = /dx*dx‘ I_¢drdp — EOM:¢p= o (x")+od_(x7)

Left and Right movers

Goal: To reproduce Z(r, 7) using light-cone qunatization




2D Chiral bosons in light-cone approach
From Hamiltonian analysis and IVP

Sulg, ", AT = /dx+ / dx T [rT0 ¢ — AT (nt — 0_9)] o o
General Solution:

(c*,¢7)

xt _ X~
o )= [T a3y [Tty + et o)

atx” =c” atx™ = c¢* matching conditions  /___ =t




2D Chiral bosons in light-cone approach
From Hamiltonian analysis and IVP

Sulg, ", AT = /dx*/dx*[ﬁam A" —0_9)) o o
General Solution:
xt _ X~ (ct,e)
o )= [T a3y [Tty + et o)
oF \ ” c— N — N ——

atx” =c” atx™ = c¢* matching conditions  /___ =t

Key results [Barnich, SM, Speziale, Tan (2024)]

@ Lagrange multiplier A\* carries part of initial data
@ Infinite tower of global shift symmetries
@ Matching conditions crucial for zero modes

@ Must quantize on two intersecting light fronts

— treat both x™ and x~ as time




2D Chiral bosons in light-cone approach

From Hamiltonian analysis and IVP

Sul, 7, AT = /dx+/dx*[n+a+¢ ATt — 0_¢)]

General Solution:

xt _ X~
o )= [T a3y [Tty + et o)

T

atx” =c~ at x* = ¢" matching conditions . at=ct
v
Key results [Barnich, SM, Speziale, Tan (2024)] v z° at
@ Lagrange multiplier \™ carries part of initial data
@ Infinite tower of global shift symmetries N
2 2
@ Matching conditions crucial for zero modes 2—0 I~ ol
@ Must quantize on two intersecting light fronts
— treat both x™ and x~ as time
zt =0

“Two notions of light-cone time”
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“Two notions of light-cone time”

Does the LC Poincaré algebra know about this?
1

Carrollian Physics
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Light-cone and Carrollian Physics
Two notions of time: Newtonian and Carrollian [Duval, Gibbons, Hovarthy, Zhang 2014]
Subgroups of 4D light-cone Poincaré
xT Newtonian, x~ Carrollian
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Light-cone and Carrollian Physics
Two notions of time: Newtonian and Carrollian [Duval, Gibbons, Hovarthy, Zhang 2014]

Subgroups of 4D light-cone Poincaré

x* Newtonian, x~ Carrollian x~ Newtonian, x* Carrollian
g, b, ¢ [ b_ g
p, | A | P Po | Pif P-
M || My v || M, My Myl M M,_

Two copies of 3D Carroll ¢4, Bargmann b4, Galilei g+ [SM, arXiv: 2406.10353; Bagehi, Nachiketh, Soni]

xtox—

(9+,b4,¢4) (g—,b_,¢c)

Physical relevance
@ 4D Light-cone physics <> 3D Galilean invariance: g, b [Susskind]
@ ¢, — stability group of light front at x™ = constant

@ ¢_ — stability group of light front at x~ = constant




Carrollian aspects of light-cone field theories

@ Scalar field action: .
S— /dxwx—d”—‘x <a+¢a_¢ - Ea,¢a’¢)

@ Conjugate momenta:
5L
™= ——
5(04+¢9)

=90_¢ = Constraint:x=m—9_¢
@ Hamiltonian density
1 .
H = rop— L = Ea,-qsa'qs —  No &, orwtermsin H

Poisson bracket algebra (or more precisely, Dirac bracket)

[H(x), H(y)] = 0 [Henneaux (1979)]

— Light-cone Hamiltonians are of the magnetic Carroll type!

[SM, arXiv: 2406.10353
v

Shortcut to obtaining Carrollian actions from Lorentzian ones



Some concluding remarks

Lessons
@ Boundary conditions in LC subtle: Consider both fronts + matching conditions

@ LC theories exhibit both Carrollian and Galilean features
E.g., magnetic Carroll nature of LC Hamiltonians
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To-do list

@ Dictionary between symmetries in LC approach and asymptotic symmetries at 7
[Barnich, Ciambelli, Gonzalez, Arxiv: 2405.17722 ]

@ Connections to scattering amplitudes, double copy, Self-dual YM and GR, ...
@ LC BMS symmetries as conformal Carroll symmetries, ...

@ Ambitious goal: Explore flat-space holography

Two intersecting null surfaces, matching conditions, Carrollian aspects, ... [Bekaert, Raj, Arxiv: 2407.17860]




Some concluding remarks

Lessons

@ Boundary conditions in LC subtle: Consider both fronts + matching conditions

@ LC theories exhibit both Carrollian and Galilean features

E.g., magnetic Carroll nature of LC Hamiltonians

To-do list

@ Dictionary between symmetries in LC approach and asymptotic symmetries at 7
[Barnich, Ciambelli, Gonzalez, Arxiv: 2405.17722 ]

@ Connections to scattering amplitudes, double copy, Self-dual YM and GR, ...
@ LC BMS symmetries as conformal Carroll symmetries, ...

@ Ambitious goal: Explore flat-space holography
Two intersecting null surfaces, matching conditions, Carrollian aspects, ... [Bekaert, Raj, Arxiv: 2407.17860]
@ Modest goals
Learn about LC theories from a Carrollian perspective
AND/ OR

Learn about Carrollian field theories from LC theories




Thank you for your attention!



