
Lessons from light-cone formulation for physics at null infinity

Sucheta Majumdar
Centre de Physique Théoreique, Marseille
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Flat-space holography

Focus: This region of spacetime

2



Flat-space holography
Focus: This region of spacetime

This talk

A different setup with two intersecting null hypersurfaces→ Light-cone formulation
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Light-cone formulation

“Forms of relativistic dynamics” [Dirac ’49]

Choice of ‘time’ for Hamiltonian dynamics

(a) Instant form: time x0

Spatial foliations (initial data on x0 = 0)

(b) Front form: time x+ = x0+x3
√

2

Null foliations (initial data on x+ = 0)

Different IVP in GR: Cauchy vs. Characteristics

(a) Instant form (b) Front form

Poincaré algebra (Pµ, Mµν)

Kinematical

Dynamical

Instant Form
Cartesian coords: (x0, xa), a = 1, 2, 3

———————————————–
K = {Pa, Mab} : 6-dim

D = {P0, M0a} : 4-dim

Front Form
Light-cone coords, (x+, x−x i ), i = 1, 2

—————————————————
K = {P−, Pi , M−i , Mij , M−+} : 7-dim

D = {P+, M+i} : 3-dim

Largest Kinematical subgroup possible: Easier to derive interacting actions
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Why light-cone?

Reason 1: Largest kinematical subgroup

Reason 2: Non-relativistic or Galilean aspects [Weinberg ‘66; Susskind’68]

Light-cone Physics←→ non-relativistic Galilean invariance

→ 3D Galilei subgroup within 4D light-cone Poincaré

PµPµ = 2P+P−−Pi P
i = 0

⇒ Hamiltonian P+ =
Pi Pi

2P−

Reason 3: Gauge constraints often solvable→ only physical d.o.f.

“Constrained Hamiltonian Systems” [Dirac 1959; Bergmann 1959]

SH [ϕ, πϕ, λi ] =

∫
dt

∫
d3x

(
πϕϕ̇−H− λiG i

)
, G i gauge constraints

Closer to on-shell physics: Scattering amplitudes, Helicity states, GW waves. . .

Many successes: DLCQ, Loop computations in QCD,
UV finiteness ofN = 4 Super Yang-Mills,
Light-cone quantization of strings,
Higher-spins and supersymmetric theories
Scattering amps.: KLT, MHV Lagrangians, Self-dual YM, ...

Disclaimer: Non-covariant and ugly!
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Brief Outline

Light-cone formulation of QFT

LC approach to Asymptotic symmetries

Some recent works:

a) Null-front canonical analysis

b) Links to Carrollian Physics
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Light-cone Electromagnetism

Gauge-fixing the Maxwell action

Light-cone gauge : A− = −A+ = − A0+A3
√

2
= 0

Maxwell equations: ∂µFµν = 0

Constraint (ν = +): ∂2
−A− + ∂i∂−Ai = 0

A− = −
∂i Ai

∂−
+ a1(x

+
, x i ) x− + a0(x

+
, x i )

“Inverse derivative” [Mandelstam ’83, Leibbrandt ’83]

1

∂−
g(x−) = −

∫
ϵ(x− − y−) g(y−) dy− + “const.”

Trivial equation (ν = −) relates a0 and a1 ⇒ one arbitrary constant Let’s set them to zero

Dynamical equations (ν = i)

(2∂−∂+ − ∂i∂
i )Aj = 2lcAj = 0 → two propagating modes

Light-cone action for Electromagnetism

Complexify the Ai → (A, Ā) : ±1 helicity states of the photon

Slc [A, Ā] =

∫
d4x Ā (∂+∂− − ∂∂̄) A → lc2 formalism
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Boundary conditions are sneaky!

Boundary conditions in light-cone formalism

Constraint: A− = −
∂i Ai

∂−
+ a1(x

+
, x i ) x− + a0(x

+
, x i )

△a0 = ∂+a1 = △Φ ; △ = 2∂∂̄

Fall-off at large x− : Ai = ∂
iΦ +

Ai
(0)

(x−)
+

Ai
(1)

(x−)2
+ . . .

Large gauge transformations Aµ → Aµ + ∂µϵ(x)

Case I: Zero modes a0, a1 set to zero

Fall-off: Ai = O
(

1
x−

)
LC action:

Slc [A, Ā] =
∫

d4x Ā (∂+∂− − ∂∂̄) A

LGTs : ϵ(x, x̄) = f (x)+ f̄ (x̄) → Constrained

Case II: Zero modes a0, a1 ̸= 0

Fall-off: Ai = O (1)

LC action:

S[A, Ā,Φ] = Slc [A, Ā] +
∫
∂Σ

(Φ-term)

LGTs : Arbitrary function ϵ(x, x̄)

[SM (2022)]

Key lesson: Boundary conditions, zero modes in x− subtle: handle with care!
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∫
∂Σ

(Φ-term)

LGTs : Arbitrary function ϵ(x, x̄)

[SM (2022)]

Key lesson: Boundary conditions, zero modes in x− subtle: handle with care!

8



Boundary conditions are sneaky!

Boundary conditions in light-cone formalism

Constraint: A− = −
∂i Ai

∂−
+ a1(x

+
, x i ) x− + a0(x

+
, x i )

△a0 = ∂+a1 = △Φ ; △ = 2∂∂̄

Fall-off at large x− : Ai = ∂
iΦ +

Ai
(0)

(x−)
+

Ai
(1)

(x−)2
+ . . .

Large gauge transformations Aµ → Aµ + ∂µϵ(x)

Case I: Zero modes a0, a1 set to zero

Fall-off: Ai = O
(

1
x−

)
LC action:

Slc [A, Ā] =
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∫
∂Σ

(Φ-term)

LGTs : Arbitrary function ϵ(x, x̄)

[SM (2022)]

Key lesson: Boundary conditions, zero modes in x− subtle: handle with care! 8



Brief Outline

Light-cone formulation of QFT

LC approach to Asymptotic symmetries

Some recent works:

a) Null-front canonical analysis
[Barnich, SM, Speziale, Tan, arXiv: 2401.14873]

b) Links to Carrollian Physics

[SM, arXiv: 2406.10353]
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Back to basics: Chiral Bosons in 2D

Issue: Boundary conditions, zero modes in x− delicate

How to account for boundary conditions or zero modes correctly?

The problem: 2D chiral boson Partition function

Partition function Z (β, α) = Tr e−βĤ+iαP̂

Time x0, Periodic boundary conditions x1 → x1 + L

Z (τ, τ̄) =
1

√
τ2|η(τ)|2

τ modular parameter

[Di Francesco-Mathieu-Sènèchal or your favourite CFT textbook]

Scalar field Lagrangian

S =
1
2

∫
d2x ∂µϕ∂

µ
ϕ =

∫
dx+dx−

∂−ϕ∂+ϕ → EOM: ϕ = ϕ+(x
+) + ϕ−(x−)

Left and Right movers

Goal: To reproduce Z (τ, τ̄) using light-cone qunatization
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[Di Francesco-Mathieu-Sènèchal or your favourite CFT textbook]

Scalar field Lagrangian

S =
1
2

∫
d2x ∂µϕ∂

µ
ϕ =

∫
dx+dx−

∂−ϕ∂+ϕ → EOM: ϕ = ϕ+(x
+) + ϕ−(x−)

Left and Right movers

Goal: To reproduce Z (τ, τ̄) using light-cone qunatization

10



Back to basics: Chiral Bosons in 2D

Issue: Boundary conditions, zero modes in x− delicate

How to account for boundary conditions or zero modes correctly?

The problem: 2D chiral boson Partition function

Partition function Z (β, α) = Tr e−βĤ+iαP̂
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2D Chiral bosons in light-cone approach

From Hamiltonian analysis and IVP

SH [ϕ, π
+
, λ

+] =

∫
dx+

∫
dx−[π+

∂+ϕ− λ
+(π+ − ∂−ϕ)]

General Solution:

ϕ(x+
, x−) =

∫ x+

c+
dy+

λ̄
+(y+)︸ ︷︷ ︸+

∫ x−

c−
dy−

π
+(y−)︸ ︷︷ ︸ + ϕ(c+

, c−)︸ ︷︷ ︸
at x− = c− at x+ = c+ matching conditions

Key results [Barnich, SM, Speziale, Tan (2024)]

Lagrange multiplier λ+ carries part of initial data

Infinite tower of global shift symmetries

Matching conditions crucial for zero modes

Must quantize on two intersecting light fronts

−→ treat both x+ and x− as time

“Two notions of light-cone time”
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“Two notions of light-cone time”

Does the LC Poincaré algebra know about this?

↓

Carrollian Physics
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Does the LC Poincaré algebra know about this?

↓

Carrollian Physics

12



Light-cone and Carrollian Physics
Two notions of time: Newtonian and Carrollian [Duval, Gibbons, Hovarthy, Zhang 2014]

Subgroups of 4D light-cone Poincaré

x+ Newtonian, x− Carrollian

x− Newtonian, x+ Carrollian

Two copies of 3D Carroll c±, Bargmann b±, Galilei g± [SM, arXiv: 2406.10353; Bagchi, Nachiketh, Soni]

(g+, b+, c+)
x+↔x−←−−−−−−−−→ (g−, b−, c−)

Physical relevance

4D Light-cone physics↔ 3D Galilean invariance: g+, b+ [Susskind]

c+ → stability group of light front at x+ = constant

c− → stability group of light front at x− = constant
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Carrollian aspects of light-cone field theories

Scalar field action:

S =

∫
dx+dx−dd−1x

(
∂+ϕ∂−ϕ−

1
2
∂iϕ∂

i
ϕ

)

Conjugate momenta:

π =
δL

δ(∂+ϕ)
= ∂−ϕ ⇒ Constraint : χ = π − ∂−ϕ

Hamiltonian density

Hlc = π∂+ϕ− L =
1
2
∂iϕ∂

i
ϕ → No ∂+ or π terms inH

Poisson bracket algebra (or more precisely, Dirac bracket)

[H(x), H(y)] = 0 [Henneaux (1979)]

→ Light-cone Hamiltonians are of the magnetic Carroll type!

[SM, arXiv: 2406.10353

Shortcut to obtaining Carrollian actions from Lorentzian ones
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Some concluding remarks

Lessons

Boundary conditions in LC subtle: Consider both fronts + matching conditions

LC theories exhibit both Carrollian and Galilean features

E.g., magnetic Carroll nature of LC Hamiltonians

To-do list

Dictionary between symmetries in LC approach and asymptotic symmetries at I
[Barnich, Ciambelli, Gonzalez, Arxiv: 2405.17722 ]

Connections to scattering amplitudes, double copy, Self-dual YM and GR, ...

LC BMS symmetries as conformal Carroll symmetries, ...

Ambitious goal: Explore flat-space holography

Two intersecting null surfaces, matching conditions, Carrollian aspects, ... [Bekaert, Raj, Arxiv: 2407.17860]

Modest goals

Learn about LC theories from a Carrollian perspective

AND/ OR

Learn about Carrollian field theories from LC theories
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Thank you for your attention!
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