A new non-relativistic holography

Andrea Fontanella (Trinity College Dublin)

Talk at Eurostrings 2024

Based on:

▶ Non-Relativistic Holography from AdS₅/CFT₄, arXiv:2409.02267, to appear in Physical Review Letters

Longer version: Constructing non-relativistic AdS_5/CFT_4 holography, arXiv:2403.02379, with J.M. Nieto

► A perturbative approach to the non-relativistic string spectrum, arXiv:2403.09563, with M. de Leeuw and J.M. Nieto

Motivations

- Non-relativistic holography is a natural example of (i) non-AdS, and
 (ii) non-Lorentzian holography
- timely with the current effort of exploring how general holography is (see e.g. flat space holography)
- ▶ is non-relativistic holography working as in the relativistic case? If not, in what does it differ?
- are the differences helping us understand how holography behaves universally?
- is non-relativistic holography a simplified setting where to test holography?

In this talk, we discuss:

- ▶ the first example of non-relativistic AdS₅/CFT₄ holography (with relativistic w.s.), proposed in arXiv:2403.02379 [AF, Nieto]
- ▶ possible quantitative tests to support this claim

Non-relativistic limit in String Theory

- first proposed by Gomis-Ooguri in flat spacetime [Gomis, Ooguri (2000)][Danielsson, Guijosa, Kruczenski (2000)]
- ▶ generalised to $AdS_5 \times S^5$ by Gomis-Gomis-Kamimura

[Gomis, Gomis, Kamimura (2005)]

- ▶ it requires a critical closed B-field
- ▶ Features: 1) NR target space, 2) relativistic world-sheet
- \triangleright β -function vanishes

RELATIVISTIC

[Gomis, Oh, Yan (2019)][Gallegos, Gursoy, Zinnato (2019)]

Target space is a String Newton-Cartan (SNC) geometry Review: [Oling, Yan (2022)]

NON - RELATIVISTIC

Foliation "2+8" $\hat{A} = (A, a)$ A = 0, 1 a = 2, ..., 9

Non-relativistic limit in Gauge Theory

Non-relativistic limit has been applied to several gauge theories. E.g.:

► Maxwell + scalar field → Galilean Electrodynamics (GED) [Santos, de Montigny, Khanna, Santana (2004)][Bergshoeff, Rosseel, Zojer (2016)]

 $\blacktriangleright\,$ Super Yang Mills $\rightarrow\,$ Galilean version of SYM

[Bagchi, Basu, Kakkar, Mehra (2016)]

and much more. (see the review arxiv:2311.00027 of S. Baiguera)

It is quite natural to ask:

Are non-relativistic string and gauge theories related by holography? If yes, how?

conjectured duality between NR strings with Galilean world-sheet and Spin Matrix Theory (see talks by J. Hartong and S. Baiguera) [Harmark, Orselli (2006)][Harmark (2016)]

▶ in this talk: world-sheet is relativistic (i.e. Gomis-Ooguri action)

Our approach: constructing non-relativistic AdS_5/CFT_4 correspondence

Take Maldacena's setting of the AdS_5/CFT_4 correspondence.

- ▶ how does the non-relativistic limit enter in this construction?
- ▶ are the non-relativistic $(c \to \infty)$ and near-horizon/decoupling $(\alpha' \to 0)$ limits commuting?

[[]AF, Nieto (2024)]

Supported by a holographic realisation of symmetries:

boundary Killing vectors On-shell symmetries of GED of SNC $AdS_5 \times S^5$ = +5 scalars in 3+1 [AF, Nieto (2024)] [Festuccia, Hansen, Hartons, Obers (2016)]

Penrose boundary realisation of this duality:

Penrose boundary of SNC $AdS_5 \times S^5 = 3+1 \text{ NC Mink}_4$

Few detail of the derivation

String theory side:

- stack of D3-brane metric in NR limit retains a notion of horizon (useful to apply Maldacena's argument)
- \blacktriangleright "Gomis-Gomis-Kamimura" NR limit, where SNC ${\rm AdS}_5{\times}{\rm S}^5$ is

 $\tau_{\mu}{}^{A}$: AdS₂ $e_{\mu}{}^{a}$: warped_{AdS₂} $\mathbb{R}^{3} \times \mathbb{R}^{5}$

Gauge theory side:

- what is the analogue of Gomis-Gomis-Kamimura limit on the DBI? It is a "stringy" NR limit acting on Minkowski's coordinates.
- ▶ Two possible ways to do it:

1. $t \to ct$, $x^1 \to cx^1$, $x^i \to x^i$ and $c \to \infty \implies$ Galilean SYM in 3+1 d

2. $t \to t, \ x^1 \to x^1, \ x^i \to \frac{1}{c} x^i$ and $c \to \infty \implies N^2$ copies of GED + 5 scalars

▶ option 2 requires an overall rescaling of gauge fields $A \rightarrow \frac{1}{c}A$ that abelianise the theory (resembles weak-coupling limit)

▶ option 1 does not realise some of the string symmetries, only option 2 does.

Generalisations

Regarding the non-relativistic limit:

- ▶ the NR limit is not "unique". There are many NR limits.
- ▶ in this work: Gomis-Gomis-Kamimura NR limit
- Recent generalisation to new NR limits by N. Lambert and J. Smith, arXiv:2405.06552
- Similar construction have also been applied to M2-branes in M-theory
 [Lambert, Smith (2024)]

Regarding other limits:

- repeat this construction for the Carroll limit? [AF, Nieto, In progress]
- ▶ flat space limit is more complicated, as the D3-brane metric loses the horizon

Quantitative test: $E = \Delta$

Famous test of AdS/CFT: $E = \Delta$ (string spectrum = scaling dimensions of gauge invariant operators)

- ▶ in AdS/CFT, integrability was crucial to solve this problem
- ► Is GGK theory integrable? We have a Lax pair [AF, van Tongeren (2022)] [AF, Nieto (2022)]
- ▶ its associated spectral curve is trivial [AF, Nieto, Ohlsson Sax (2022)]

Recently we solved the spectrum problem with heavy perturbative analysis, arXiv:2403.09563 [de Leeuw, AF, Nieto (2024)]

- ► famous BMN vacuum does not survive the NR limit [AF, Nieto (2023)]
- simplest NR vacuum compatible with light-cone gauge quantisation: folded version of the BMN string (infinitely extended) [AF, Nieto (2021)]
- ▶ After performing complicated field redefinitions, perturbatively:

Spectrum:free massive and massless fields in AdS2(we computed interactions up to six fields: all vanish!!)

[de Leeuw, AF, Nieto (2024)]

Summary and future directions

Summary

- ▶ new approach to construct non-relativistic AdS₅/CFT₄ correspondence
- ▶ proposed a new duality:

Gomis-Ooguri string theory N^2 copies of SNC AdS₅×S⁵ \iff GED + 5 scalars in 3+1 d

Future directions

- compute Δ for GED + 5 scalars, and check against E (i.e. spectrum of free fields in AdS₂)
- other quantitative tests: confinement/Hagedorn transition? Also with temperature/NR stringy black hole?
- ▶ generalisations to other limits: Carroll, new NR limits, more?

"Non-Lorentzian Geometries and their Applications"

Organisers: E. Bergshoeff, A. Fontanella

Workshop at Trinity College Dublin. Preliminary dates: April 29 - May 1, 2025

Topics:

- 1. non-relativistic strings, M-theory and holography
- 2. Carroll-related phenomena
- 3. Mathematics of non-Lorentzian geometries

Stay tuned!