Entanglement and Connectivity in de Sitter holography

Victor Franken CPHT, Ecole Polytechnique

Based on: Arxiv:2305.12861 (JHEP) with H. Partouche, F. Rondeau, and N. Toumbas.

Eurostrings, Southampton, 2024

...

A very useful tool: Connection between geometry and entanglement:

AdS

- Subregion-subregion duality [Dong, Harlow, Wall '16]
- Black hole information paradox [Penington '20, Almheiri et al. '20]

• Emergence of spacetime [Maldacena '03, Van Raamsdonk '10]

Entanglement builds bridges [Van Raamsdonk '10]

What happens if we entangle two identical CFT dual to AdS? Eigenstates $|\Psi_i\rangle$ of energy E_i

$$|\Psi\rangle = |\Psi\rangle_L \otimes |\Psi\rangle_R \qquad \qquad |\Psi\rangle = \sum_i e^{-\frac{\mu L_i}{2}} |\Psi_i\rangle_L \otimes |\Psi_i\rangle_R$$

("Thermofield-double state")

RE

Two copies of AdS spacetime

Entanglement builds bridges [Van Raamsdonk '10]

What happens if we entangle two identical CFT dual to AdS? Eigenstates $|\Psi_i\rangle$ of energy E_i

$$|\Psi\rangle = |\Psi\rangle_L \otimes |\Psi\rangle_R \qquad \qquad |\Psi\rangle = \sum_i e^{-\frac{\rho E_i}{2}} |\Psi_i\rangle_L \otimes |\Psi_i\rangle_R$$

0 -

de Sitter space

- An observer cannot observe the full spacetime
 → cosmological horizons
- 2 observers at the poles have disconnected causal patches

Holographic description of de Sitter?

There is no spatial boundary \rightarrow 3 interpretations

- Solution to the second second
- **3 dS/CFT**: hologram located at null infinity \mathcal{I}^+ [Strominger '01]
- There are no dynamical degrees of freedom

 \rightarrow Consistent with path integral computations, and the island formula [Almheiri et al.'20]

Static patch holography

- Physically meaningful observables should be measured by an observer
- Explicitly including such observer is necessary to get a consistent theory! [Chandrasekaran et al. '22, Witten '23]
- Including an observer implicitly selects a static patch
- Static patch of the observer has an effective boundary
 - \Rightarrow Holographic d.o.f. located on the cosmological horizon

Static patch holography

• Natural interpretation of Bekenstein-Hawking formula

 $S_{BH} = \frac{\text{Area(Horizon)}}{4G\hbar}$

 Consistent with the covariant entropy bound [Bousso '99]

The state of the causal patch of an observer in de Sitter space is described by a quantum system defined on the cosmological horizon of the observer. [Susskind '21]

How can a closed and connected de Sitter spacetime emerge from a holographic theory that describes only open and finite regions of space-time?

A covariant entropy prescription in dS

- In AdS/CFT, RT formula : Geometry ↔ Entanglement [Hubeny, Rangamani, Takayanagi '07]
- The monolayer and bilayer proposals offer a modification of RT for the time-symmetric slice of dS [Susskind, Shaghoulian '21,'22] .
- We define a covariant holographic entropy prescription, taking into account quantum corrections
 [V.F., Partouche, Rondeau, Toumbas (FPRT) '23]

A covariant entropy prescription in dS

- Consider spatial slice of the screens
- Horizons define three bulk regions
- Entropy prescription ~ 3 coupled HRT prescriptions in 3 regions

A covariant entropy prescription in dS

Subsystem A of the screens $\mathcal{S}_L \cup \mathcal{S}_R$

- In each region R_i, look for the minimal quantum extremal surface homologous to A
- Homology: $\partial C_i = \chi_i \cup (A \cap R_i)$

$$S(A) = \sum_{i} \frac{\operatorname{Area}(\chi_i)}{4Gh} + S_{\operatorname{semicl}}(\bigcup_{j} C_j)$$

- Assuming **entanglement wedge** (EW) reconstruction [Wall '14] ,
 - The union of the three causal diamonds of C_L, C_E, C_R is completely reconstructible from the subsystem A of the quantum theory

"Bridging the static patches"

Consider
$$A = S_L \cup S_R$$

•
$$\emptyset \cup S_i = \Sigma_i \implies \emptyset$$
 is homologous

•
$$S(S_{\rm L} \cup S_{\rm R}) = 0 \implies$$
 Pure state

- $\mathcal{W}(\mathcal{S}_{\mathrm{L}} \cup \mathcal{S}_{\mathrm{R}})$ covers complete Cauchy slices
- Conjecture [Shaghoulian 21', FPRT '23] : The full de Sitter spacetime can be described holographically by a theory living on the two (stretched) horizons of antipodal observers.

"Bridging the static patches"

Reminescent of the double sided black hole in AdS

• Static patch:
$$\rho = e^{\beta H} (\beta \rightarrow 0)$$

- Thermofield-double state: $|\Psi_{\rm BD}\rangle = \frac{1}{\sqrt{Z}} \sum e^{-\frac{1}{2}\beta E_i} |\Psi_i\rangle_{\rm L} \otimes |\Psi_i\rangle_{\rm R}$,
- Entanglement between the screens \leftrightarrow Exterior region

Entropy of an horizon

• At the classical level [Shaghoulian, Susskind '22],

$$S(\mathcal{S}_L) = \frac{\operatorname{Area}(\mathcal{S}_L)}{4G\hbar} + \mathcal{O}((G\hbar)^0)$$

→ Entropy of the de Sitter horizon [Gibbons, Hawking '77]

• γ_E is **degenerate** \rightarrow EW not determined at the classical level

A phase transition for the entanglement wedges

- First order quantum corrections produce a phase transition
- Two competing quantum extremal surfaces: \mathcal{S}_L and \mathcal{S}_R
- One of the screens always encodes the exterior
- Transfer of a type III compex factor from W(S_L) to W(S_R)? [Engelhardt, Liu '23]

Conclusion

- Defined a covariant prescriptions to compute holographic entanglement entropies in de Sitter space
- Extension of static patch holography where the whole spacetime is encoded
- Spatial connection between the static patches emerges from entanglement
- Exchange of dominance between quantum extremal surfaces
 Transfer of entanglement wedge between the screens

