Four-point correlators in $\mathcal{N} = 4$ SYM from AdS₅ bubbling geometries

Alexander Tyukov

in collaboration with David Turton

based on 2408.16834

September 5, 2024

University of Southampton

Motivation

Why study 4-pt functions in holography?

- Contain dynamical information
- Non-protected by SUSY
- Strongly coupled CFT data (e.g. anomalous dimensions)

Standard holographic technique is to use Witten diagrams.

- Need to know relevant 3-pt and 4-pt couplings of bulk fields
- For some theories not all Witten diagrams are known (e.g. IIB on $AdS_3 \times S^3 \times \mathbb{T}^4$ which is dual to D1-D5 CFT)

New technique that bypasses using Witten diagrams

For AdS_3/CFT_2 HHLL and LLLL correlators were obtained.

Giusto, Russo, Bombini, Galliani, Moscato, Wen, AT, Ceplak, Hughes; 16',17',18',19',20',21'

$\mathrm{AdS}_{5}/\mathrm{CFT}_{4}$ holography

String theory on ${
m AdS}_5 imes {
m S}^5$ is dual to ${\cal N}=$ 4 SU(N) SYM, $\lambda=N\,g_{YM}^2.$ Maldacena 1997

We use the supergravity approximation, N>>1 and $\lambda>>1$: leading order in 1/N and $1/\lambda$.

Half-BPS operators:

- $\mathcal{N}=4$ SYM contains 6 scalars Φ^I , $I=1,\ldots,6$ in adjoint
- We consider holomorphic combination $Z = \Phi^1 + i\Phi^2$
- Single-trace CPOs are $\mathcal{O}_n = \operatorname{tr} Z^n$ with $\Delta = J$

In this regime local operators in $\mathcal{N}=4$ SYM are mapped to quadratic SUGRA fluctuations around $AdS_5 \times S^5$.

Kim, Romans, van Nieuwenhuizen 1985

Compute 2-pt function of probe field in the non-trivial supergravity background and extract 4-pt function in the vacuum.

- Background is dual to heavy state created by CPOs
- Fluctuations are dual to light operators (descendants)
- Compute HHLL correlator
- Consider light limit and obtain LLLL

Bubbling LLM geometry

10d metric of the LLM solution $ds^{2} = -h^{2}(dt + V_{i}dx^{i})^{2} + h^{2}(dy^{2} + dx^{i}dx^{i}) + ye^{G}d\Omega_{3}^{2} + ye^{-G}d\tilde{\Omega}_{3}^{2},$ $h^{-2} = 2y\cosh G, \qquad z = \frac{1}{2}\tanh G,$ $y\partial_{y}V_{i} = \epsilon_{ij}\partial_{j}z, \qquad y(\partial_{i}V_{j} - \partial_{j}V_{i}) = \epsilon_{ij}\partial_{y}z,$ where i = 1, 2. $\partial_{i}\partial_{i}z + y\partial_{y}\left(\frac{\partial_{y}z}{y}\right) = 0$

Regularity condition on y = 0 plane

$$z(x_1, x_2, y = 0) = \pm \frac{1}{2},$$

determine black and white coloring of the two-plane.

Ripplon deformation

Boundary of black area

$$r(ilde{\phi}) \,=\, \sqrt{1+lpha \cos n ilde{\phi}}$$

Vacuum, $\alpha = 0$

Ripple,
$$n = 2$$

Ripple, n = 8

Ripplon deformation

Geometry is dual to a heavy state $|H_{\alpha}\rangle$ which is coherent superposition of states created by single- and multi-trace operators. Skenderis, Taylor 2007

Giusto, Rosso 2024

For n = 2:

$$|H_{\alpha}\rangle = |0\rangle + \alpha \operatorname{Tr}(Z^{2})|0\rangle + \alpha^{2} \left(\operatorname{Tr}(Z^{2})^{2} + A \operatorname{Tr}(Z^{4})\right)|0\rangle + O(\alpha^{3})$$

Energy above vacuum and R-charge of the solution:

$$E = J = \frac{1}{4}\alpha^2 N^2$$

- If $\alpha << 1, \, \alpha \sim {\cal O}(N^0)$ state $|H\rangle$ is perturbatively heavy
- If $\alpha \sim O\left(\frac{1}{N}\right)$ the state becomes light

At order $\alpha^{\rm 0},$ the profile is a circle, and the background is empty global AdS

$$z = -\frac{r^2 + y^2 - 1}{2\sqrt{(r^2 + 1 + y^2)^2 - 4r^2}},$$

$$V_{\tilde{\phi}} = -\frac{1}{2} \left(\frac{r^2 + y^2 + 1}{\sqrt{(r^2 + 1 + y^2)^2 - 4r^2}} - 1 \right), \qquad V_r = 0$$

Upon making the following change of coordinates,

$$y = R\cos\theta$$
, $r = \sqrt{R^2 + 1}\sin\theta$, $\tilde{\phi} = \phi - t$,

the metric take the form of empty global $AdS_5 \times S^5$:

$$ds^{2} = -(R^{2}+1)dt^{2} + rac{dR^{2}}{R^{2}+1} + R^{2}d\Omega_{3}^{2} + d\theta^{2} + \sin^{2} heta d\phi^{2} + \cos^{2} heta d\tilde{\Omega}_{3}^{2}$$

Metric expansion

We work perturbatively in small α to second order:

$$g = g^{(0)} + \alpha g^{(1)} + \alpha^2 g^{(2)}$$

To match the fields at $O(\alpha)$ with supergravity fluctuations one needs to bring the metric into de Donder-Lorentz gauge:

$$D^a h_{(ab)} = D^a h_{a\mu} = 0$$

where μ, ν, \ldots are AdS₅ indices and a, b, \ldots are S⁵ indices.

Kim, Romans, van Nieuwenhuizen 1985

In de Donder-Lorentz gauge the supergravity solution contains only physical degrees of freedom and one can map linear fluctuations to single-particle operators of $\mathcal{N}=4$ SYM.

Geometry at $O(\alpha^1)$

The order α metric $g^{(1)}$ take the form

$$g_{\mu\nu}^{(1)} = \sum_{n=\pm 2} \left(-\frac{6}{5} |n| s_n Y_n g_{\mu\nu}^{(0)} + \frac{4}{|n|+1} Y_n \nabla_{(\mu} \nabla_{\nu)} s_n \right) \,,$$

$$g_{\alpha\beta}^{(1)} = \sum_{n=\pm 2} 2|n|s_n Y_n g_{\alpha\beta}^{(0)},$$

where the functions s_n and Y_n are given by

$$s_n = \frac{|n|+1}{8|n|(R^2+1)^{|n|/2}}e^{int}, \qquad Y_n = e^{in\phi}\sin^{|n|}\theta$$

These are eigenfunctions of the Laplacians on AdS_5 and S^5 :

$$\Box_{\mathrm{A}} s_n = n(n-4)s_n, \qquad \Box_{\mathrm{S}} Y_n = -n(n+4)Y_n.$$

Field s_n is dual to the CPO \mathcal{O}_n .

Grant, Maoz, Marsano, Papadodimas, Rychkov 200510/21

We compute background in closed form at order α^2 for the specified profile.

Again it is convenient to construct a diffeomorphism to put the second-order metric $g^{(2)}$ into de Donder-Lorentz gauge.

The expressions for components of the metric are rather complicated, but they can be used to compute the two-point function of a probe field.

Perturbation theory for the dilaton

The equation of motion for the linearized fluctuation of the dilaton/axion is the 10D minimally coupled massless scalar wave equation on the curved background of interest:

 $\Box \Phi = 0.$

We expand the d'Alembertian and the scalar field Φ perturbatively as

$$\Phi = \Phi^{(0)} + \alpha \Phi^{(1)} + \alpha^2 \Phi^{(2)},$$

$$\Box = \Box^{(0)} + \alpha \Box^{(1)} + \alpha^2 \Box^{(2)}.$$

The equation of motion expands as

$$\begin{split} & \Box^{(0)} \Phi^{(0)} \ = \ 0 \ , \\ & \Box^{(0)} \Phi^{(1)} \ = \ - \Box^{(1)} \Phi^{(0)} \ , \\ & \Box^{(0)} \Phi^{(2)} \ = \ - \Box^{(2)} \Phi^{(0)} \ - \Box^{(1)} \Phi^{(1)} \end{split}$$

Boundary condition

We expand the scalar field Φ in scalar spherical harmonics on S⁽⁵⁾,

$$\Phi = \sum_{I_1} B^{I_1} Y^{I_1},$$

and expand the coefficients perturbatively in $\boldsymbol{\alpha}$ as

$$B^{I_1} = B^{(0)I_1} + \alpha B^{(1)I_1} + \alpha^2 B^{(2)I_1}$$

The boundary condition for the correlator at large R:

$$\lim_{R\to\infty} \Phi = \frac{\delta(\vec{x}-\vec{n})Y'(y)}{R^{d-\Delta}} + \frac{b'(\vec{x})Y'(y)}{R^{\Delta}} + \cdots,$$

where \vec{n} is a point on the boundary $\mathbb{R} \times S^3$.

We also impose smoothness of Φ in the interior.

The response $b^{l}(\vec{x})$ appears at order α^{2} and encodes the HHLL correlator of interest.

Solution method

We are interested in light probes dual to operators $\bar{\mathcal{D}}_k \sim \bar{Q}^4 \bar{\mathcal{O}}_{k+2}$ with dimension $\Delta = k + 4$ and R-charge J = -k, which are descendants of anti-CPOs $\bar{\mathcal{O}}_k \sim \text{Tr}(\bar{Z}^k)$.

The spherical harmonic is $Y^{I} = Y^{(k,-k)}$.

At order α^0 boundary condition determines the solution for $\Phi^{(0)}$:

$$\Phi^{(0)} = K_{\Delta}(x|\vec{n}) Y^{(k,-k)}(y),$$

where $K_{\Delta}(x|\vec{n})$ is a *bulk-to-boundary propagator*. We use $\Phi^{(0)}$ solution to find $\Phi^{(1)}$ and $\Phi^{(2)}$.

Thus to order $\alpha^2 b'(\vec{x})$ encodes correlator:

 $b^{\prime}(\vec{x}) = \left\langle H_{\alpha} | \bar{\mathcal{D}}_{k}(\vec{n}) \mathcal{D}_{k}(\vec{x}) | H_{\alpha} \right\rangle \Big|_{\alpha^{2}} = \alpha^{2} \left\langle \mathcal{O}_{2}(0) \bar{\mathcal{O}}_{2}(\infty) \bar{\mathcal{D}}_{k}(\vec{n}) \mathcal{D}_{k}(\vec{x}) \right\rangle$

We write the *sources* on the RHS of the order α^2 equation

$$\mathcal{J}_1 = \Box^{(2)} \Phi^{(0)}, \qquad \mathcal{J}_2 = \Box^{(1)} \Phi^{(1)}$$

Then the order α^2 equation becomes:

$$\Box^{(0)}\Phi^{(2)} = -(\mathcal{J}_1 + \mathcal{J}_2)$$

To extract $B^{(2)}$, we project the sources \mathcal{J}_1 , \mathcal{J}_2 on the highest-weight spherical harmonic $Y^{(k,k)}$:

$$\langle \mathcal{J}_i \rangle \equiv \frac{1}{||Y_k||^2} \int d\Omega_5 \, \mathcal{J}_i \, \left(Y^{(k,-k)} \right)^* \,, \qquad i=1,2$$

The 5d equation to be solved:

$$\Box_5^{(0)}B^{(2)} - m^2B^{(2)} = -\langle \mathcal{J}_1 \rangle - \langle \mathcal{J}_2 \rangle$$

We now transform to Euclidean Poincaré coordinates with line element

$$ds_{\rm EAdS_5}^2 = \frac{1}{w_0^2} \left(dw_0^2 + \sum_{i=1}^4 dw_i^2 \right)$$

The bulk-to-boundary propagator with boundary point at \vec{x} :

$$\mathcal{K}_{\Delta}(\mathbf{w}|\vec{x}) \equiv \left(\frac{w_0}{w_0^2 + |\vec{w} - \vec{x}|^2}\right)^{\Delta}, \quad \mathbf{w} = (w_0, \vec{w}),$$

Next we need to rewrite the projected sources in terms of sum of products of three bulk-to-boundary propagators.

The fourth propagator comes from solving 5d equation.

Then the answer can be expressed in terms of *D*-functions:

$$D_{\Delta_1\Delta_2\Delta_3\Delta_4}(x_1, x_2, x_3, x_4) = \int d^5 \boldsymbol{w} \sqrt{\bar{g}} \prod_{i=1}^4 K_{\Delta_i}(\boldsymbol{w}|\vec{x})$$

For correlators with pairwise equal dimensions the conformal invariance implies:

$$\langle \mathcal{O}_1(x_1)\mathcal{O}_2(x_2)\mathcal{O}_3(x_3)\mathcal{O}_4(x_4)
angle \, = \, rac{1}{(x_{12}^2)^{\Delta_1}(x_{34}^2)^{\Delta_3}}\mathcal{G}(U,V) \, ,$$

$$egin{aligned} \mathcal{G}(U,V) &= rac{\pi^2}{2} \int rac{ds}{4\pi i} rac{dt}{4\pi i} U^{rac{s}{2}} V^{rac{t}{2} - rac{\Delta_1 + \Delta_3}{2}} \Gamma\left[\Delta_1 - rac{s}{2}
ight] \Gamma\left[\Delta_3 - rac{s}{2}
ight] \ & imes \Gamma^2 \left[rac{\Delta_1 + \Delta_3 - t}{2}
ight] \Gamma^2 \left[rac{\Delta_1 + \Delta_3 - u}{2}
ight] \mathcal{M}(s,t) \,, \end{aligned}$$

where $s + t + u = 2\Delta_1 + 2\Delta_3$.

Up to the overall normalization the result for the LLLL correlator of two CPOs and two descendants $\langle \mathcal{O}_2(0)\bar{\mathcal{O}}_2(\infty)\bar{\mathcal{D}}_k(\vec{x})\rangle$:

$$\begin{split} \mathcal{M} &\sim \frac{1}{s-2} \bigg(\left(k^2 + 7k + 12 \right) u^2 - 2 \left(k^3 + 10k^2 + 41k + 60 \right) u \\ &\quad + k^4 + 13k^3 + 78k^2 + 240k + 304 \bigg) \\ &\quad + \frac{8k(k+1)}{u - (k+4)} + (k+3) \left((k+4)u - k^2 - 2k - 16 \right) \,, \end{split}$$

where u = 2k + 12 - s - t.

Superconformal Ward identity

The four-point correlator of CPOs $(\mathcal{O}_p = \text{Tr } Z^p, \ Z = \phi_1 + i\phi_2)$: $\langle \mathcal{O}_2(x_1)\bar{\mathcal{O}}_2(x_2)\bar{\mathcal{O}}_{k+2}(x_3)\mathcal{O}_{k+2}(x_4)\rangle = \frac{1}{(x_{12}^2)^2(x_{34}^2)^{k+2}}\mathcal{G}_{2,k+2}^{(\text{CPO})}(U,V),$

where

$$\mathcal{G}_{2,k+2}^{(\text{CPO})}(U,V) = V^2 \mathcal{H}_{2,k+2}^{(\text{CPO})}(U,V), \quad \mathcal{H}_{2,k+2}^{(\text{CPO})} = U^{k+2} \bar{D}_{k+2,k+4,2,2}$$

The superconformal Ward identity involves the following differential operator

$$\Delta^{(2)} = U\partial_U^2 + V\partial_V^2 + (U + V - 1)\partial_U\partial_V + 2(\partial_U + \partial_V)$$

Drummond, Gallot, Sokatchev 2006

Gonçalves 2014

Comparing the result of WI to supergravity calculation in Mellin space, the coefficient of the pole at s = 2 determines the overall normalization. We then find precise agreement for \mathcal{M} . 19/21

Conclusions

Summary

- We computed 4-pt functions of 2 CPOs and 2 descendants in the large N limit by replacing it with 2-pt functions in non-trivial LLM geometry
- LLLL correlators were related by superconformal WI to known 4-pt correlators of CPOs
- New supergravity method bypasses using Witten diagrams

Future directions

- More general correlators with single-traces $\mathcal{O}_2 \to \mathcal{O}_n$
- Correlators with multi-traces $(\mathcal{O}_n)^p$

Thank you for your attention!