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Motivation

Why study 4-pt functions in holography?

e Contain dynamical information
e Non-protected by SUSY
e Strongly coupled CFT data (e.g. anomalous dimensions)

Standard holographic technique is to use Witten diagrams.

e Need to know relevant 3-pt and 4-pt couplings of bulk fields
e For some theories not all Witten diagrams are known
(e.g. 1B on AdS3 x S? x T* which is dual to D1-D5 CFT)

New technique that bypasses using Witten diagrams
For AdS3/CFTy HHLL and LLLL correlators were obtained.

Giusto, Russo, Bombini, Galliani, Moscato, Wen, AT, Ceplak, Hughes; 16',17',18',19',20',21’
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AdS;/CFT, holography

String theory on AdS; x S° is dual to ' = 4 SU(N) SYM,
A — Ng\%M Maldacena 1997

We use the supergravity approximation, N >> 1 and A >> 1:
leading order in 1/N and 1/A.

Half-BPS operators:

e N =4 SYM contains 6 scalars &/, | =1,...,6 in adjoint
e We consider holomorphic combination Z = ®! + j®?
e Single-trace CPOs are O, = trZ" with A = J

In this regime local operators in N' =4 SYM are mapped to
quadratic SUGRA fluctuations around AdSs x S°.

Kim, Romans, van Nieuwenhuizen 1985
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QOutline

Compute 2-pt function of probe field in the non-trivial supergravity
background and extract 4-pt function in the vacuum.

e Background is dual to heavy state created by CPOs
e Fluctuations are dual to light operators (descendants)
e Compute HHLL correlator

e Consider light limit and obtain LLLL
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Bubbling LLM geometry

10d metric of the LLM solution
ds? = —h?(dt 4+ Vidx')? + h*(dy? + dx’dx’) 4+ ye®dQ3 + ye ©dQ3,
h2 = 2y cosh G, z:%tanhG7

yoyVi = €j0jz,  y(0iV;—9;Vj) = €jjOyz,

where | =1, 2.

00z + y, (a;z> =0

Regularity condition on y = 0 plane
1
2000,y = 0) = &,

determine black and white coloring of the two-plane.

Lin, Lunin, Maldacena 2004
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Ripplon deformation

Boundary of black area

r(¢) = \/1+ acosng

Vacuum, a =0 Ripple, n =2 Ripple, n =38

oo @
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Ripplon deformation

Geometry is dual to a heavy state |H,) which is coherent

superposition of states created by single- and multi-trace
operators. Skenderis, Taylor 2007

Giusto, Rosso 2024

For n = 2:

|Ho) = [0) + a Tr(Z?)|0) + o (Trx(Z%)* + ATr(Z%)) |0) + O(a?)
Energy above vacuum and R-charge of the solution:

E=J= 1oﬂNz
4

o If a << 1, a ~ O(NO) state |H) is perturbatively heavy
e If a ~ O () the state becomes light
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Geometry at O(a?)

At order a®, the profile is a circle, and the background is empty
global AdS

rP+y?—1
2/ (PP +1+y?2)2 —4r2’
1 24 y?+1
Vi = —= rry s ~1), V.=o0
2 \/(r2 +1+4y2)2 —4r?
Upon making the following change of coordinates,

y=Rcosh, r=+R2+1sinf, d=¢—t,

the metric take the form of empty global AdSsxS®:
2

ds®> = —(R*4+1)dt>+ aR

1 +R2dQ3+d6%+sin d p*+cos? 0d 3
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Metric expansion

We work perturbatively in small o to second order:

To match the fields at O(«) with supergravity fluctuations one
needs to bring the metric into de Donder-Lorentz gauge:

D?h(apy = D?hay = 0
where 1, v, ... are AdSs indices and a, b, ... are S° indices.

Kim, Romans, van Nieuwenhuizen 1985

In de Donder-Lorentz gauge the supergravity solution contains only
physical degrees of freedom and one can map linear fluctuations to
single-particle operators of N’ =4 SYM.
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Geometry at O(a?)

The order o metric g(1) take the form

6 4
1) _ 2 : 0
g;gu) - <_5|n|SnYn gl(ll’) + ‘n‘ +1 an(uvy)sn> )

n==42

gl = > 2nlsyYagld.
n==42

where the functions s, and Y/, are given by
‘n‘ + 1 int
8|n|(R2 + 1)\”|/2 ’

These are eigenfunctions of the Laplacians on AdSs and S°:

Y, = eMsinl"l g

n

Oasn = n(n—4)s,, OsY,=—n(n+4)Y,.

Field s, is dual to the CPO O,,.

Grant, Maoz, Marsano, Papadodimas, Rychkov 200510/2]_



Geometry at O(a?)

We compute background in closed form at order a? for the
specified profile.

Again it is convenient to construct a diffeomorphism to put the
second-order metric g(?) into de Donder-Lorentz gauge.

The expressions for components of the metric are rather
complicated, but they can be used to compute the two-point
function of a probe field.
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Perturbation theory for the dilaton

The equation of motion for the linearized fluctuation of the
dilaton/axion is the 10D minimally coupled massless scalar wave
equation on the curved background of interest:

0o =0.

We expand the d'Alembertian and the scalar field ¢ perturbatively
as

® = 0O 4 aoM 4 20?)
0 = 00 4+ o0® 1+ 200,
The equation of motion expands as
0@¢©) = o,
00¢eM = _OMe©)

00?2 — _@e0) _ oM e@)
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Boundary condition

We expand the scalar field ® in scalar spherical harmonics on S(),
®=> By,
h
and expand the coefficients perturbatively in « as
Bh — pOh 4 gMh 4 (2B2)h

The boundary condition for the correlator at large R:

: S(x—mY'(y) , b'(x)Y!(y)
am ¢ = —fia  tga

where 7 is a point on the boundary R x S3.

We also impose smoothness of ® in the interior.

The response b(X) appears at order o and encodes the HHLL
correlator of interest.
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Solution method

We are interested in light probes dual to operators Dy ~ 64@k+2
with dimension A = k 4 4 and R-charge J = —k, which are
descendants of anti-CPOs Oy ~ Tr (Z¥).

The spherical harmonic is Y/ = Y(k—K),

At order o boundary condition determines the solution for (%)
*® = Ka(x|MY (),

where Ka(x|A) is a bulk-to-boundary propagator.

We use ¢(©) solution to find (1) and (2.

Thus to order a? b/(X) encodes correlator:

bl(f) = <Ha‘ﬁk(ﬁ')pk(>_<’)‘Ha>{a2 == a2<02(0)@2(oo)25k(ﬁ)2)k()?)>
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We write the sources on the RHS of the order o equation
Ji = 0@ I = 0We®)
Then the order o equation becomes:

00e@ = —(7 + 7)

To extract B, we project the sources J1, J2 on the

highest-weight spherical harmonic Y (k).
1 *
N = —— [ dQs T (YRR [ =1,2

The 5d equation to be solved:

OB - mB = ()~ (%)
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We now transform to Euclidean Poincaré coordinates with line

4
1
2 2 2
dSEAdS5 = m <dW0 + Z dWI- >
0 i=1

element

The bulk-to-boundary propagator with boundary point at X:

Ka(w|x) = ( _)?|2>A, w = (wo, W),

wo
wg + |w

Next we need to rewrite the projected sources in terms of sum of
products of three bulk-to-boundary propagators.

The fourth propagator comes from solving 5d equation.

Then the answer can be expressed in terms of D-functions:

4
Dpynonsng(x1,x2, x3,xa) = /d5W\/§HKA;(W|>?)
i=1
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Mellin space representation

For correlators with pairwise equal dimensions the conformal
invariance implies:

(01(x)0a(x2)O3(x)0a(x)) = 75—z G(U. V)
(xi2)21(x34)

ds dt D144z S 5

vy =T vt (a 2l fas -2
g(u.v) 2 4-7TI47TIU o { ! 2} [ 3 2]
X2 [Al +2A3 — t] r2 [Al +2A3 — ”] M(s, 1),

where s+t + u = 2A1 + 2A3.
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Result in Mellin space

Up to the overall normalization the result for the LLLL correlator
of two CPOs and two descendants {0>(0)Ox(c0) Dk (M) Dk(X)):

M ~

S_2<(/<2+7/<+12) u? — 2 (k> 4+ 10k® + 41k + 60) u

+ k* + 13k3 + 78Kk> + 240k + 304)

8k(k +1)

m+(/<+3)((/<+4)u—/<2—2/<—16) :

where u = 2k + 12 — s — t.
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Superconformal Ward identity

The four-point correlator of CPOs (O, = Tr ZP, Z = ¢1 + i¢h):

_ _ 1 CPO
(02(x)0202)Ors2(0)Oks2(00)) = Gz Gonea (U V).
where
T, v) = v vy, HETD) = U2 Diia ka2

The superconformal Ward identity involves the following

differential operator

A® = U} + VIY + (U+ V —1)dydy +2(dy + dv)
Drummond, Gallot, Sokatchev 2006

Gongalves 2014

Comparing the result of WI to supergravity calculation in Mellin
space, the coefficient of the pole at s = 2 determines the overall

normalization. We then find precise agreement for M. 19/21



Conclusions

Summary

e We computed 4-pt functions of 2 CPOs and 2 descendants in
the large N limit by replacing it with 2-pt functions in
non-trivial LLM geometry

e LLLL correlators were related by superconformal WI to known
4-pt correlators of CPOs

e New supergravity method bypasses using Witten diagrams

Future directions

e More general correlators with single-traces O, — O,

e Correlators with multi-traces (O,)P
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Thank you for your attention!
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