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Motivation

Why study 4-pt functions in holography?

• Contain dynamical information

• Non-protected by SUSY

• Strongly coupled CFT data (e.g. anomalous dimensions)

Standard holographic technique is to use Witten diagrams.

• Need to know relevant 3-pt and 4-pt couplings of bulk fields

• For some theories not all Witten diagrams are known

(e.g. IIB on AdS3 × S3 × T4 which is dual to D1-D5 CFT)

New technique that bypasses using Witten diagrams

For AdS3/CFT2 HHLL and LLLL correlators were obtained.

Giusto, Russo, Bombini, Galliani, Moscato, Wen, AT, Ceplak, Hughes; 16’,17’,18’,19’,20’,21’
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AdS5/CFT4 holography

String theory on AdS5 × S5 is dual to N = 4 SU(N) SYM,

λ = N g2
YM . Maldacena 1997

We use the supergravity approximation, N >> 1 and λ >> 1:

leading order in 1/N and 1/λ.

Half-BPS operators:

• N = 4 SYM contains 6 scalars ΦI , I = 1, . . . , 6 in adjoint

• We consider holomorphic combination Z = Φ1 + iΦ2

• Single-trace CPOs are On = trZn with ∆ = J

In this regime local operators in N = 4 SYM are mapped to

quadratic SUGRA fluctuations around AdS5 × S5.

Kim, Romans, van Nieuwenhuizen 1985
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Outline

Compute 2-pt function of probe field in the non-trivial supergravity

background and extract 4-pt function in the vacuum.

• Background is dual to heavy state created by CPOs

• Fluctuations are dual to light operators (descendants)

• Compute HHLL correlator

• Consider light limit and obtain LLLL
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Bubbling LLM geometry

10d metric of the LLM solution

ds2 = −h2(dt + Vidx
i )2 + h2(dy2 + dx idx i ) + yeGdΩ2

3 + ye−GdΩ̃2
3 ,

h−2 = 2y coshG , z =
1

2
tanhG ,

y∂yVi = εij∂jz , y (∂iVj − ∂jVi ) = εij∂yz ,

where i = 1, 2.

∂i∂iz + y∂y

(
∂yz

y

)
= 0

Regularity condition on y = 0 plane

z(x1, x2, y = 0) = ±1

2
,

determine black and white coloring of the two-plane.

Lin, Lunin, Maldacena 2004
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Ripplon deformation

Boundary of black area

r(φ̃) =

√
1 + α cos nφ̃

Vacuum, α = 0 Ripple, n = 2 Ripple, n = 8
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Ripplon deformation

Geometry is dual to a heavy state |Hα〉 which is coherent
superposition of states created by single- and multi-trace
operators. Skenderis, Taylor 2007

Giusto, Rosso 2024

For n = 2:

|Hα〉 = |0〉+ αTr(Z 2)|0〉+ α2
(
Tr(Z 2)2 + ATr(Z 4)

)
|0〉+ O(α3)

Energy above vacuum and R-charge of the solution:

E = J =
1

4
α2N2

• If α << 1, α ∼ O(N0) state |H〉 is perturbatively heavy

• If α ∼ O
(

1
N

)
the state becomes light
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Geometry at O(α0)

At order α0, the profile is a circle, and the background is empty

global AdS

z = − r2 + y2 − 1

2
√

(r2 + 1 + y2)2 − 4r2
,

Vφ̃ = −1

2

(
r2 + y2 + 1√

(r2 + 1 + y2)2 − 4r2
− 1

)
, Vr = 0

Upon making the following change of coordinates,

y = R cos θ , r =
√

R2 + 1 sin θ , φ̃ = φ− t ,

the metric take the form of empty global AdS5×S5:

ds2 = −(R2+1)dt2+
dR2

R2 + 1
+R2dΩ2

3+dθ2+sin2 θdφ2+cos2 θdΩ̃2
3
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Metric expansion

We work perturbatively in small α to second order:

g = g (0) + αg (1) + α2g (2)

To match the fields at O(α) with supergravity fluctuations one

needs to bring the metric into de Donder-Lorentz gauge:

Dah(ab) = Dahaµ = 0

where µ, ν, . . . are AdS5 indices and a, b, . . . are S5 indices.

Kim, Romans, van Nieuwenhuizen 1985

In de Donder-Lorentz gauge the supergravity solution contains only

physical degrees of freedom and one can map linear fluctuations to

single-particle operators of N = 4 SYM.
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Geometry at O(α1)

The order α metric g (1) take the form

g (1)
µν =

∑
n=±2

(
−6

5
|n|snYn g

(0)
µν +

4

|n|+ 1
Yn∇(µ∇ν)sn

)
,

g
(1)
αβ =

∑
n=±2

2|n|snYn g
(0)
αβ ,

where the functions sn and Yn are given by

sn =
|n|+ 1

8|n|(R2 + 1)|n|/2
e int , Yn = e inφ sin|n| θ

These are eigenfunctions of the Laplacians on AdS5 and S5:

�Asn = n(n − 4)sn , �SYn = −n(n + 4)Yn .

Field sn is dual to the CPO On.

Grant, Maoz, Marsano, Papadodimas, Rychkov 200510/21



Geometry at O(α2)

We compute background in closed form at order α2 for the

specified profile.

Again it is convenient to construct a diffeomorphism to put the

second-order metric g (2) into de Donder-Lorentz gauge.

The expressions for components of the metric are rather

complicated, but they can be used to compute the two-point

function of a probe field.
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Perturbation theory for the dilaton

The equation of motion for the linearized fluctuation of the

dilaton/axion is the 10D minimally coupled massless scalar wave

equation on the curved background of interest:

�Φ = 0 .

We expand the d’Alembertian and the scalar field Φ perturbatively

as

Φ = Φ(0) + αΦ(1) + α2Φ(2) ,

� = �(0) + α�(1) + α2�(2) .

The equation of motion expands as

�(0)Φ(0) = 0 ,

�(0)Φ(1) = −�(1)Φ(0) ,

�(0)Φ(2) = −�(2)Φ(0) −�(1)Φ(1) .
12/21



Boundary condition

We expand the scalar field Φ in scalar spherical harmonics on S(5),

Φ =
∑
I1

B I1Y I1 ,

and expand the coefficients perturbatively in α as

B I1 = B(0)I1 + αB(1)I1 + α2B(2)I1

The boundary condition for the correlator at large R:

lim
R→∞

Φ =
δ(~x − ~n)Y I (y)

Rd−∆
+

bI (~x)Y I (y)

R∆
+ · · · ,

where ~n is a point on the boundary R× S3.

We also impose smoothness of Φ in the interior.

The response bI (~x) appears at order α2 and encodes the HHLL

correlator of interest.
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Solution method

We are interested in light probes dual to operators D̄k ∼ Q̄4Ōk+2

with dimension ∆ = k + 4 and R-charge J = −k, which are

descendants of anti-CPOs Ōk ∼ Tr
(
Z̄ k
)
.

The spherical harmonic is Y I = Y (k,−k).

At order α0 boundary condition determines the solution for Φ(0):

Φ(0) = K∆(x |~n)Y (k,−k)(y) ,

where K∆(x |~n) is a bulk-to-boundary propagator.

We use Φ(0) solution to find Φ(1) and Φ(2).

Thus to order α2 bI (~x) encodes correlator:

bI (~x) =
〈
Hα|D̄k(~n)Dk(~x)|Hα

〉∣∣
α2 = α2

〈
O2(0)Ō2(∞)D̄k(~n)Dk(~x)

〉
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We write the sources on the RHS of the order α2 equation

J1 = �(2)Φ(0) , J2 = �(1)Φ(1)

Then the order α2 equation becomes:

�(0)Φ(2) = −(J1 + J2)

To extract B(2), we project the sources J1, J2 on the

highest-weight spherical harmonic Y (k,k):〈
Ji
〉
≡ 1

||Yk ||2

∫
dΩ5 Ji

(
Y (k,−k)

)∗
, i = 1, 2

The 5d equation to be solved:

�(0)
5 B(2) −m2B(2) = −

〈
J1

〉
−
〈
J2

〉
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We now transform to Euclidean Poincaré coordinates with line

element

ds2
EAdS5 =

1

w2
0

(
dw2

0 +
4∑

i=1

dw2
i

)
The bulk-to-boundary propagator with boundary point at ~x :

K∆(w|~x) ≡
(

w0

w2
0 + |~w − ~x |2

)∆

, w = (w0, ~w) ,

Next we need to rewrite the projected sources in terms of sum of

products of three bulk-to-boundary propagators.

The fourth propagator comes from solving 5d equation.

Then the answer can be expressed in terms of D-functions:

D∆1∆2∆3∆4(x1, x2, x3, x4) =

∫
d5
w

√
ḡ

4∏
i=1

K∆i
(w |~x)
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Mellin space representation

For correlators with pairwise equal dimensions the conformal

invariance implies:

〈O1(x1)O2(x2)O3(x3)O4(x4)〉 =
1

(x2
12)∆1(x2

34)∆3
G(U,V ) ,

G(U,V ) =
π2

2

∫
ds

4πi

dt

4πi
U

s
2V

t
2
−∆1+∆3

2 Γ
[
∆1 −

s

2

]
Γ
[
∆3 −

s

2

]
×Γ2

[
∆1 + ∆3 − t

2

]
Γ2

[
∆1 + ∆3 − u

2

]
M(s, t) ,

where s + t + u = 2∆1 + 2∆3.
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Result in Mellin space

Up to the overall normalization the result for the LLLL correlator

of two CPOs and two descendants
〈
O2(0)Ō2(∞)D̄k(~n)Dk(~x)

〉
:

M∼ 1

s − 2

((
k2 + 7k + 12

)
u2 − 2

(
k3 + 10k2 + 41k + 60

)
u

+ k4 + 13k3 + 78k2 + 240k + 304

)
+

8k(k + 1)

u − (k + 4)
+ (k + 3)

(
(k + 4)u − k2 − 2k − 16

)
,

where u = 2k + 12− s − t.
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Superconformal Ward identity

The four-point correlator of CPOs (Op = TrZp, Z = φ1 + iφ2):

〈O2(x1)Ō2(x2)Ōk+2(x3)Ok+2(x4)〉 =
1

(x2
12)2(x2

34)k+2
G(CPO)

2 ,k+2 (U,V ) ,

where

G(CPO)
2 ,k+2 (U,V ) = V 2H(CPO)

2 ,k+2 (U,V ) , H(CPO)
2 ,k+2 = Uk+2 D̄k+2, k+4, 2, 2

The superconformal Ward identity involves the following

differential operator

∆(2) = U∂2
U + V ∂2

V + (U + V − 1) ∂U∂V + 2 (∂U + ∂V )

Drummond, Gallot, Sokatchev 2006

Gonçalves 2014

Comparing the result of WI to supergravity calculation in Mellin

space, the coefficient of the pole at s = 2 determines the overall

normalization. We then find precise agreement for M. 19/21



Conclusions

Summary

• We computed 4-pt functions of 2 CPOs and 2 descendants in

the large N limit by replacing it with 2-pt functions in

non-trivial LLM geometry

• LLLL correlators were related by superconformal WI to known

4-pt correlators of CPOs

• New supergravity method bypasses using Witten diagrams

Future directions

• More general correlators with single-traces O2 → On

• Correlators with multi-traces (On)p
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Thank you for your attention!
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