Orbifold Averages J

Stefan Forste

EUROSTRINGS 24

UNIVERSITAT

based on work with
Hans Jockers, Joshua Kames-King, Alexandros Kanargias and Ida Zadeh
published in: JHEP 05 (2024) 240

1/19



Introduction
Orbifold CFT's
Averaging
Bulk Theory

Conclusions

2/19



e Maldacena 1997: AdS/CFT duality, e.g. type IIB on
AdSs x S° dual to N = 4 super Yang Mills

e more recently AdS/Ensembles of CFT's duality, e.g. JT
gravity in 2d dual to random matrix model (ensemble of
Quantum Mechanics) (Saad, Shenker, Stanford 2019)

@ Here we are interested in ensembles of 2d CFT's
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(Afkhami-Jeddi, Cohn, Hartman, Tajdini 2020; Maloney, Witten 2020)
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with ©4 (0,0, 7) Siegel-Narain Theta function (h encodes moduli
dependence)

average over [pp € O(D,D,Z)\O(D,D) /O (D) x O (D)
(Siegel-Weil formula)
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with real analytic Eisenstein series

Es = Z (Imy7)°, P: 7+ 7+ Integer
v € P\SL(2,Z)
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ZiTD = 2{: Zcs

solid tori

where Zcs = Chern-Simons partition function for U(1)?P, i.e. bulk
dual is Chern-Simons coupled to topological gravity

boundary = T2 with complex structure = 7
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(Benjamin, Keller, Ooguri, Zadeh 2021)

TP =RP/Ap and Z : X e RP — —%

@ lattice Ap is always invariant — moduli space same as before

@ partition function: insert projector (1 + 6)/2 into trace and
trace also over twisted sector

@ contributions with @ insertion and/or over twisted sector do
not depend on moduli

1
(Zro)2,) = §<ZTd>+contributions from 6 insertion and twisted sector

@ in 3D: Chern-Simons U(1)?P x Z,

@ partition functions match if projector is inserted into trace and
vortex contributions are added
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(SF, Jockers, Kames-King, Kanargias, Zadeh 2024)

@ consider Z, acting only on a subspace of R?, e.g.
Zy: (x,y) € R? = (=x,¥)

@ moduli space is reduced:

1
by =b E —b+ Integer — b € {0, 5},

i.e. real part of Kahler structure is zero or 1/2
T2 =C/27N\

A has to be invariant under Z)

7/19



factorisable T2: real part of complex structure is zero
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non factorisable T?2: real part of complex structure is 1/2
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we will consider factorisable T2 with b = 0, non-factorisable T2
with b = 0 (T-dual to factorisable T2 with b =1/2)

factorisable T2:

ZTZ/ZZ (’T, R]_, R2) = Zsl/Z2 (T, R]_) Zsl (T, R2)

with
2
Zs1 (1, R) ’77( )‘2 ZZGXP[ 2TiTIWmM — TTo (ﬁ""m R2>:|
o, 7. ) = 525 (R + [ |+ |
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non factorisable 72 (see e.g. Erler, Klemm 92; Wendland 00):
here, partition function can be expressed in terms of various circle
partition functions:

Zr2yzy = % % 2251 (27; \/§R1> Zoi (27; f2Rz)
)] 2 (5 vem) 22 (v
% % 2251 <TT+1;\/§R1> Zs (T;Ll; \/§R2)

1 1
— 5251 (T; Rl) ZSI (7‘; 2R2) — 5251 (T; 2R1) Zsl (T; Rz)

1 _ 1 T 1 T+1
+ 525 (27, \/ERQ) +52Zs (5, \/§R2> + 525 < : \/§R2>

2

(for Ry = R, same as permutation S orbifold (Kames-King,
Kanargias, Knighton, Usatyuk 23))

11/19



@ lower dimension: moduli spaces have infinity volume, need to
regularise

@ take Ry and R, as moduli, Zamalodchikov measure in
factorisable and non-fractorisable case ~ dTRlldT’? (factorises!)

@ average: just integrate over naive range

Ri, Ry € (0,00) = lim (¢,1/¢)
e—0

@ normalise with volume computed in the same way
(multiplicities due to discrete symmetries cancel)
@ one obtains for factorisablc(e ) )
1 n(r n(r
z = (Zs1)?
< T2/Zz>reg 2< 51>reg+ (’ 0, (7_) 0, (7_)

n(7)
03 (1)

+

> (Zs1)reg

@ regularised non-factorisable average can also be written as sum
of products of regularised averages of circle partition functions

@ circle partition function: limit € — O diverges (Maloney,
Witten 20)
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o consider T20 = TP x TP =RP /A x RP/A

@ take A canonical, i.e. generated by basis
{(1,0,...,0),(0,1,0,...,0),...(0,...,0,1)} and encode
everything in metric (lattice vectors = coordinate basis)

e Zy: (X,y) — (X,—Y)

@ moduli

(5 ) (% )

@ moduli spaces factorise
(Z120/75) = (Z10){ZT0D/2,)
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@ use results of Afkhami-Jeddi, Cohn, Hartman, Tajdini;
Maloney and Witten, respectively of Benjamin, Keller, Ooguri,

Zadeh
Ep2 (1)
<ZT /Z2> 27_2D ”I’](T)’4D
D-1 n(7) b n (1) b n(r) ED/2 (7)
2 <ez(r) 00| [0a(7) ) D7 ()P
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notice: by choice of equivalent basis in T2 lattice we can have Z,
permuting the two basis vectors

Zy
e—e

€1

generalise for T2P:

Zy: (%.7) = (V. %)
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moduli:

G(2D)=1(g+éj g-é}’), B(zD)zl(
2\ g—-& gt&§ 2

Zamalodchikov measure factorises
d (moduli) = det (h~dh) det (F~*dh)

with
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1 A A
ZTZD/Zé = W Z eh <0, 2,27') @77 <O, 2,2T>
" Ae{0,1}?P
1 T T4+1
+5 <ZTD (27, 8,b) + Z71p <§;g, b) + Zo (2;g, b>> .

where ©, (a, b, ¢) Siegel-Narain © function (Siegel 44; see also
Dong, Hartman, Jiang 2021)

It is known how to average it over moduli space {g, b}.
(Siegel-Weil formula)

Ep)> (2r)? + Epj (%)2 + Epo (T21)2

<ZT20/Z§> = 2 (T)’4D Im (T)D (20 — 1)
N 1 EDé2 (27) N EDD/Z (3) ED/§ ()
2 i@ E ™ m (3 (G () ()



factorisable T72P

(Z120/7) = (Z10){ZT0/2,)

@ Each factor can be obtained as partition function from known
3d theory.

o Take two solid tori, one with U(1)?P Chern-Simons theory
(for first factor), one with U(1)?P x Z, (for second factor)
and sum over all pairs of solid tori with boundary T2's
complex structure = 7

non-factorisable T2P: bulk dual is not known
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Considered Z, orbifolds of T2 in which only half the
directions where reflected.

There are several discrete choices for Z’2 invariant
backgrounds.

Computed averages of partition function for two examples.

o factorisable: average= product of known averages
e non-factorisable: average = sum of products of known
averages

Bulk dual?

Extend to other orbifolds, e.g. Zy x Zsy: choice of discrete
torsion.

Thanks for listening!
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