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Introduction

Maldacena 1997: AdS/CFT duality, e.g. type IIB on
AdS5 × S5 dual to N = 4 super Yang Mills

more recently AdS/Ensembles of CFT’s duality, e.g. JT
gravity in 2d dual to random matrix model (ensemble of
Quantum Mechanics) (Saad, Shenker, Stanford 2019)

Here we are interested in ensembles of 2d CFT’s
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Introduction: Free Bosons on TD ’s

(Afkhami-Jeddi, Cohn, Hartman, Tajdini 2020; Maloney, Witten 2020)

ZTD =
1

|η (τ)|2D
∑

(pL,pR)∈ΓD,D

q
1
2
p2
L q

1
2
p2
R =

Θh (0, 0, τ)

|η (τ)|2D

with Θh (0, 0, τ) Siegel-Narain Theta function (h encodes moduli
dependence)
average over ΓD,D ∈ O (D,D,Z) \O (D,D) /O (D)× O (D)
(Siegel-Weil formula)

〈ZTD 〉 =
ED/2 (τ)

τD2 |η (τ)|2D

with real analytic Eisenstein series

Es =
∑

γ ∈P\SL(2,Z)

(Imγτ)s , P : τ 7→ τ + Integer
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Introduction: Free Bosons on TD ’s, Bulk Dual

〈ZTD 〉 =
∑

solid tori

ZCS

where ZCS = Chern-Simons partition function for U(1)2D , i.e. bulk
dual is Chern-Simons coupled to topological gravity

boundary = T 2 with complex structure ≡ τ
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Introduction: Free Bosons on TD/Z2’s

(Benjamin, Keller, Ooguri, Zadeh 2021)

TD = RD/ΛD and Z2 : ~x ∈ RD 7→ −~x

lattice ΛD is always invariant → moduli space same as before

partition function: insert projector (1 + θ)/2 into trace and
trace also over twisted sector

contributions with θ insertion and/or over twisted sector do
not depend on moduli

〈ZTD/Z2
〉 =

1

2
〈ZT d 〉+contributions from θ insertion and twisted sector

in 3D: Chern-Simons U(1)2D × Z2

partition functions match if projector is inserted into trace and
vortex contributions are added
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Example: T 2/Z′2

(SF, Jockers, Kames-King, Kanargias, Zadeh 2024)

consider Z2 acting only on a subspace of R2, e.g.

Z′2 : (x , y) ∈ R2 7→ (−x , y)

moduli space is reduced:

bxy = b
!

= −b + Integer→ b ∈
{

0,
1

2

}
,

i.e. real part of Kähler structure is zero or 1/2

T 2 = C/2πΛ

Λ has to be invariant under Z′2
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invariant lattices

factorisable T 2: real part of complex structure is zero

R1

Z′2

u = iR2

R1

κ = b + iR1R2

R2
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invariant lattices

non factorisable T 2: real part of complex structure is 1/2

Z′2

κ = b + i2R1R2

R2

R1 + R1

u = R1+iR2

R1+R1
= 1

2 + i R2

2R1
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Partition Function

we will consider factorisable T 2 with b = 0, non-factorisable T 2

with b = 0 (T-dual to factorisable T 2 with b = 1/2)

factorisable T 2:

ZT 2/Z2
(τ,R1,R2) = ZS1/Z2

(τ,R1)ZS1 (τ,R2)

with

ZS1 (τ,R) =
1

|η (τ)|2
∑

w ,m∈Z
exp

[
−2πiτ1wm − πτ2

(
w2

R2
+ m2R2

)]

ZS1/Z2
(τ,R) =

1

2
ZS1 (τ,R) +

∣∣∣∣ η (τ)

θ2 (τ)

∣∣∣∣+

∣∣∣∣ η (τ)

θ3 (τ)

∣∣∣∣+

∣∣∣∣ η (τ)

θ4 (τ)

∣∣∣∣
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Partition Function

non factorisable T 2 (see e.g. Erler, Klemm 92; Wendland 00):
here, partition function can be expressed in terms of various circle
partition functions:

ZT 2/Z′
2

=
1

4

∣∣∣∣θ2(τ)

η(τ)

∣∣∣∣2 ZS1

(
2τ ;
√

2R1

)
ZS1

(
2τ ;
√

2R2

)
+

1

4

∣∣∣∣θ4(τ)

η(τ)

∣∣∣∣2 ZS1

(τ
2

;
√

2R1

)
ZS1

(τ
2

;
√

2R2

)
+

1

4

∣∣∣∣θ3(τ)

η(τ)

∣∣∣∣2 ZS1

(
τ + 1

2
;
√

2R1

)
ZS1

(
τ + 1

2
;
√

2R2

)
− 1

2
ZS1 (τ ;R1) ZS1 (τ ; 2R2)− 1

2
ZS1 (τ ; 2R1) ZS1 (τ ;R2)

+
1

2
ZS1

(
2τ ;
√

2R2

)
+

1

2
ZS1

(τ
2

;
√

2R2

)
+

1

2
ZS1

(
τ + 1

2
;
√

2R2

)
(for R1 = R2 same as permutation S2 orbifold (Kames-King,
Kanargias, Knighton, Usatyuk 23))
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Ensemble Averages

lower dimension: moduli spaces have infinity volume, need to
regularise

take R1 and R2 as moduli, Zamalodchikov measure in
factorisable and non-fractorisable case ∼ dR1

R1

dR2
R2

(factorises!)

average: just integrate over naive range

R1,R2 ∈ (0,∞) = lim
ε→0

(ε, 1/ε)

normalise with volume computed in the same way
(multiplicities due to discrete symmetries cancel)

one obtains for factorisable

〈ZT 2/Z2
〉reg =

1

2
〈ZS1〉2reg+

(∣∣∣∣ η (τ)

θ2 (τ)

∣∣∣∣+

∣∣∣∣ η (τ)

θ3 (τ)

∣∣∣∣+

∣∣∣∣ η (τ)

θ4 (τ)

∣∣∣∣) 〈ZS1〉reg

regularised non-factorisable average can also be written as sum
of products of regularised averages of circle partition functions

circle partition function: limit ε→ 0 diverges (Maloney,
Witten 20)
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Higher Dimensions,Factorisable Case

consider T 2D = TD × TD = RD/Λ× RD/Λ

take Λ canonical, i.e. generated by basis
{(1, 0, . . . , 0) , (0, 1, 0, . . . , 0) , . . . (0, . . . , 0, 1)} and encode
everything in metric (lattice vectors = coordinate basis)

Z2 : (~x , ~y)→ (~x ,−~y)

moduli

G (2D) =

(
G (D) 0

0 G̃ (D)

)
, B(2D) =

(
B(D) 0

0 B̃(D)

)

moduli spaces factorise

〈ZT 2D/Z′
2
〉 = 〈ZTD 〉〈ZTD/Z2

〉
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factorisable T 2D

use results of Afkhami-Jeddi, Cohn, Hartman, Tajdini;
Maloney and Witten, respectively of Benjamin, Keller, Ooguri,
Zadeh

〈ZT 2D/Z′
2
〉 =

ED/2 (τ)2

2τD2 |η (τ)|4D

+ 2D−1

(∣∣∣∣ η (τ)

θ2 (τ)

∣∣∣∣D +

∣∣∣∣ η (τ)

θ3 (τ)

∣∣∣∣D +

∣∣∣∣ η (τ)

θ4 (τ)

∣∣∣∣D
)

ED/2 (τ)

τ
D/2
2 |η (τ)|D
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non-factorisable T 2D

notice: by choice of equivalent basis in T 2 lattice we can have Z′2
permuting the two basis vectors

e2 − e1
e2

e1

Z′
2

generalise for T 2D :

Z′2 : (~x , ~y)→ (~y , ~x)
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non-factorisable T 2D

moduli:

G (2D) =
1

2

(
g + g̃ g − g̃
g − g̃ g + g̃

)
, B(2D) =

1

2

(
b + b̃ b − b̃

b − b̃ b + b̃

)
Zamalodchikov measure factorises

d (moduli) = det
(
h−1dh

)
det
(
h̃−1dh̃

)
with

h =

(
1
2g
−1 1

2g
−1b

−1
2bg

−1 1
2

(
g − bg−1b

) ) , h̃ =

(
1
2 g̃
−1 1

2 g̃
−1b̃

−1
2 b̃g̃

−1 1
2

(
g̃ − b̃g̃−1b̃

) )
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Partition Function and Average

ZT 2D/Z′
2

=
1

2 |η (τ)|4D
∑

∆∈{0,1}2D

Θh

(
0,

∆

2
, 2τ

)
Θh̃

(
0,

∆

2
, 2τ

)

+
1

2

(
ZTD (2τ ; g , b) + ZTD

(τ
2

; g , b
)

+ ZTD

(
τ + 1

2
; g , b

))
.

where Θh (a, b, c) Siegel-Narain Θ function (Siegel 44; see also
Dong, Hartman, Jiang 2021)
It is known how to average it over moduli space {g , b}.
(Siegel-Weil formula)

〈ZT 2D/Z′
2
〉 =

ED/2 (2τ)2 + ED/2

(
τ
2

)2
+ ED/2

(
τ+1

2

)2

2 |η (τ)|4D Im (τ)D (2D − 1)

+
1

2

 ED/2 (2τ)

Im (2τ)
D
2 |η (2τ)|2D

+
ED/2

(
τ
2

)
Im
(
τ
2

)D
2
∣∣η ( τ2)∣∣2D +

ED/2

(
τ+1

2

)
Im
(
τ+1

2

)D
2
∣∣η ( τ+1

2

)∣∣2D
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Bulk Dual?

factorisable T 2D

〈ZT 2D/Z′
2
〉 = 〈ZTD 〉〈ZTD/Z2

〉

Each factor can be obtained as partition function from known
3d theory.

Take two solid tori, one with U(1)2D Chern-Simons theory
(for first factor), one with U(1)2D × Z2 (for second factor)
and sum over all pairs of solid tori with boundary T 2’s
complex structure ≡ τ

non-factorisable T 2D : bulk dual is not known
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Conclusion

Considered Z′2 orbifolds of T 2D in which only half the
directions where reflected.

There are several discrete choices for Z′2 invariant
backgrounds.

Computed averages of partition function for two examples.

factorisable: average= product of known averages
non-factorisable: average = sum of products of known
averages

Bulk dual?

Extend to other orbifolds, e.g. Z2 × Z2: choice of discrete
torsion.

Thanks for listening!
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