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First things first...

Welcome to the Flat Holography parallel sessions!

Three(!) sessions this week:

• Today, Wednesday and Friday

Lots of exciting things to hear about from lots of exciting
people!



This talk:

Focus on a particular aspect of a particular approach to flat
holography, namely:

Chiral algebras in the context of celestial holography

What are these things?
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Celestial holography

Pipe dream: ∃ CFT living on the celestial sphere (CCFT) s.t.
correlators = massless S-matrix in asymp. flat space-times

i.e., some sort of asymptotically flat holography

OK...

...but in real money, typically less ambitious and much more
concrete
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Celestial chiral algebras

One of the key outputs of celestial holography is the following:

Observation: the positive helicity soft sector of perturbative
GR in Minkowski space forms an algebra (under collinear limit)[

gp
m,r , g

q
n,s

]
= 2 (m(q − 1)− n(p − 1)) gp+q−2

m+n,r+s

Generators gp
m,r a re-writing of positive helicity soft gravitons:

• 2p − 2 ∈ Z≥0 ↔ ω2p−4-order soft expansion [Guevara]

• |m| ≤ p − 1 ↔ SL(2,R) weight in momentum

• r ∈ Z ↔ loop parameter weight ↔ Laurent expansion on
celestial sphere

[Guevara-Himwich-Pate-Strominger, Strominger]



Upshot

There is a chiral algebra, Lham(C2) associated with the
self-dual sector of gravity

u, v holomorphic coords on C2, with natural Poisson bracket

{f , g} :=
∂f

∂u

∂g

∂v
− ∂f

∂v

∂g

∂u

Basis of Hamiltonian functions

wp
m = up+m−1 vp−m−1 , 2p − 2 ≥ 0 , |m| ≤ p − 1

with gp
m,r := wp

m/z
r , z ∈ C complex loop parameter.
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Other facts about celestial chiral algebras:

• similar story for self-dual Yang-Mills → Lg[C2]

• Lham(C2) closely related to Lw∧1+∞ [Hoppe, Bakas]

• can also be derived from asymptotic symmetries, and
extended to action on hard gravitons [Himwich-Pate-Singh, Jiang]

• natural derivation using twistor theory [TA-Mason-Sharma]



Who cares?

• ∞-dim. algebras ⇒ many constraints on scattering

• enable bootstrap of some amplitudes in flat space and
beyond [Costello-Paquette, Bittleston, Costello, Zeng]

• all-orders collinear expansions of some helicity sectors
[TA-Bu-Casali-Sharma, Ren-Schreiber-Sharma-Wang]

• generalizations/deformations in curved SD spaces
[Bu-Heuveline-Skinner, Costello-Paquette-Sharma, Bittleston-Heuveline-Skinner,

Garner-Paquette, TA-Bu-Zhu, Zhu-Taylor, Bogna-et al.]

• underpin only known top-down constructions
[Costello-Paquette-Sharma, Bittleston-Costello-Zeng]



Higher dimensions

Very little work (certainly nothing comparable to 4d)...why?

• conformal group on Sd−2 finite-dimensional

• asymp. symmetry algebras finite-dimensional
[Hollands-Ishibashi, Hollands-Ishibashi-Wald]

• soft symmetries in d > 4 finite-dimensional [Pano-Puhm-Trevisani]



Today

Celestial chiral algebras actually exist for gauge theory and
gravity whenever d = 4k!

Key idea: In 4k-d, there are integrable sectors of GR/YM
which have all the features of the self-dual sector in 4d



Hyperkähler sector

(M4k , g) hyperkähler if Hol(g) ⊂ Sp(k ,C)

HK ⇒ Ricci-flat

• k = 1 ⇔ vacuum + self-duality

For HK manifolds, TM ∼= S⊗ S̃
• S rank 2 with flat SL(2,C) connection; indices
α, β, . . . = 1, 2

• S̃ rank 2k with Sp(k ,C) connection; indices
α̇, β̇, . . . = 1, . . . , 2k .

ds2 = εαβ εα̇β̇ e
αα̇ eββ̇
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Flat model

Let xa be holomorphic coords on C4k , encode in matrix

xαα̇ =

(
z α̇

z̃ α̇

)
=

(
x1 + ix4k ix2 + x4k−1 · · · ix2k + x2k+1

−x2k+1 + ix2k ix2k+2 − x2k−1 · · · −ix4k + x1

)
Flat metric ds2 = εα̇β̇ dz

α̇ � dz̃ β̇ =
∑4k

a=1(dxa)2

HK structure encoded in triplet of 2-forms

Σ11 = dz α̇ ∧ dzα̇ , Σ12 = dz α̇ ∧ dz̃α̇ , Σ22 = dz̃ α̇ ∧ dz̃α̇



Twistor space

Twistor space of C4k :

PT =
{
ZA = (µα̇, λα) ∈ CP2k+1 |λα 6= 0

}
Points x ∈ C4k ↔ holomorphic curves µα̇ = xαα̇λα in PT

Some important structures:

• holomorphic fibration p : PT→ CP1, [ZA] 7→ [λα]

• holomorphic, weighted Poisson structure on fibres:

{·, ·} = εα̇β̇
∂

∂µα̇
∧ ∂

∂µβ̇



Key result

Theorem (Penrose, Salamon)
There is a 1:1 correspondence between:

• HK metrics

• complex deformations PT of PT which preserve
p : PT → CP1 and the Poisson structure on the fibres
(+ some technical stuff)

Upshot: symmetries of HK sector ↔ deformations of PT
preserving fibration over CP1 and Poisson structure
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Deformations of PT determined by Hamiltonians g(Z ) which
are

• homogeneous of degree +2

• polynomial in µα̇

• Laurent in λα

In real money: can expand g(Z ) in modes

g [m; r ] :=
(µ1̇)m1 (µ2̇)m2 · · · (µ2̇k)m2k

λM−2−r0 λr1

where

• m = (m1, . . . ,m2k) ∈ N2k
0

• M :=
∑2k

i=1mi ∈ N0

• r ∈ Z
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HK chiral algebra

These modes form a chiral algebra Lham(C2k) under the
Poisson bracket on twistor space:

{g [m; r ], g [n; s]} =
k−1∑
i=0

(mi+1 n2k−i − ni+1 m2k−i) g [m+ n− 1i+1− 12k−i ; r + s]

for (1i)j = δij



Gauge theory

Similar story for gauge theory!

in 4k-dim., gauge field strength valued in g decomposes

Fab = εαβ F̃α̇β̇ + εα̇β̇ Fαβ + F̆αβ α̇β̇

where F̃(α̇β̇), F(αβ) and F̆(αβ)[α̇β̇], ε
α̇β̇F̆αβ α̇β̇ = 0

Gauge field is hyperholomorphic if Fαβ = 0 = F̆αβ α̇β̇ [Ward,

Corrigan-Goddard-Kent, Verbitsky]

HH ⇒ Yang-Mills
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HH chiral algebra

Deformations given by a(Z )

• valued in g, homogeneous of weight zero

• polynomial in µα̇

• Laurent in λα

Modes: Sa[m; r ] = Ta (µ1̇)m1 (µ2̇)m2 · · · (µ2̇k)m2k

λM−r0 λr1

Algebra:
[
Sa[m; r ], Sb[n; s]

]
= f abc Sc[m + n; r + s]

This is the chiral algebra Lg[C2k ]



What else can we do?

HK/HH sectors classically described by a 2d CFT [TA-Mason-Sharma,

TA-Bu-Casali-Sharma]

• Action for holomorphic curves/frames in twistor space

• On-shell, gives potentials for HK metric [Plebanski] / HH
connection [Sparling]

• HK/HH perturbations ↔ vertex operators in 2d CFT

Chiral algebras encoded by OPEs between VOs, e.g.:

Sa[m](z) Sb[n](z ′) ∼ f abc

z − z ′
Sc[m + n](z ′)

⇒ these really are algebras living in 2-dimensions



Who cares?

Not terribly surprising that these sectors have infinite-dim.
symmetry algebras (classically integrable),
...but:

• linked with 4k-dim. versions of MHV scattering [TA-Surubaru]

• contrast with general expectations

• underlying structure still 2d CFT...

• ...challenges expectations for celestial/twisted holography



Lots to do!

• Connection – if any – with conformal primary
representations

• Soft and collinear limits?

• Link with asymptotic symmetries and radiative data

• Top-down manifestations – a HK version of twisted
holography?

Thanks, and stay tuned for an exciting week of talks!
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