Celestial chiral algebras in higher dimensions

Tim Adamo University of Edinburgh

EuroStrings 2024

3 September 2024

LEVERHULME TRUST

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

to appear, with lustin Surubaru

First things first...

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Welcome to the Flat Holography parallel sessions!

Three(!) sessions this week:

• Today, Wednesday and Friday

Lots of exciting things to hear about from lots of exciting people!

This talk:

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Focus on a particular aspect of a particular approach to flat holography, namely:

Chiral algebras in the context of celestial holography

This talk:

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Focus on a particular aspect of a particular approach to flat holography, namely:

Chiral algebras in the context of celestial holography

What are these things?

Celestial holography

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Pipe dream: \exists CFT living on the celestial sphere (CCFT) s.t. correlators = massless S-matrix in asymp. flat space-times

i.e., some sort of asymptotically flat holography

Celestial holography

Pipe dream: \exists CFT living on the celestial sphere (CCFT) s.t. correlators = massless S-matrix in asymp. flat space-times

i.e., some sort of asymptotically flat holography

0K...

...but in real money, typically less ambitious and much more concrete

Celestial chiral algebras

One of the key outputs of celestial holography is the following:

Observation: the positive helicity soft sector of perturbative GR in Minkowski space forms an algebra (under collinear limit)

$$\left[g_{m,r}^{p}, g_{n,s}^{q}\right] = 2\left(m(q-1) - n(p-1)\right) g_{m+n,r+s}^{p+q-2}$$

Generators $g_{m,r}^{p}$ a re-writing of positive helicity soft gravitons:

- $2p-2\in\mathbb{Z}_{\geq 0}\leftrightarrow\omega^{2p-4} ext{-order soft expansion [Guevara]}$
- $|m| \leq p-1 \leftrightarrow \overline{\operatorname{SL}(2,\mathbb{R})}$ weight in momentum
- $r \in \mathbb{Z} \leftrightarrow$ loop parameter weight \leftrightarrow Laurent expansion on celestial sphere

[Guevara-Himwich-Pate-Strominger, Strominger]

Upshot

There is a *chiral algebra*, $\mathcal{Lham}(\mathbb{C}^2)$ associated with the self-dual sector of gravity

Upshot

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

There is a *chiral algebra*, $\mathcal{Lham}(\mathbb{C}^2)$ associated with the self-dual sector of gravity

u, v holomorphic coords on \mathbb{C}^2 , with natural Poisson bracket

$$\{f,g\} := \frac{\partial f}{\partial u} \frac{\partial g}{\partial v} - \frac{\partial f}{\partial v} \frac{\partial g}{\partial u}$$

Basis of Hamiltonian functions

$$w_m^p = u^{p+m-1} v^{p-m-1}, \qquad 2p-2 \ge 0, \quad |m| \le p-1$$

with $g^p_{m,r} := w^p_m/z^r$, $z \in \mathbb{C}$ complex loop parameter.

Other facts about celestial chiral algebras:

- similar story for self-dual Yang-Mills $\to \mathcal{L}\mathfrak{g}[\mathbb{C}^2]$
- $\mathcal{Lham}(\mathbb{C}^2)$ closely related to $\mathcal{L}w^\wedge_{1+\infty}$ [Hoppe, Bakas]
- can also be derived from asymptotic symmetries, and extended to action on hard gravitons [Himwich-Pate-Singh, Jiang]

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

• natural derivation using *twistor theory* [TA-Mason-Sharma]

Who cares?

- ∞ -dim. algebras \Rightarrow many constraints on scattering
- enable bootstrap of some amplitudes in flat space and beyond [Costello-Paquette, Bittleston, Costello, Zeng]
- all-orders collinear expansions of some helicity sectors [TA-Bu-Casali-Sharma, Ren-Schreiber-Sharma-Wang]
- generalizations/deformations in curved SD spaces

[Bu-Heuveline-Skinner, Costello-Paquette-Sharma, Bittleston-Heuveline-Skinner,

Garner-Paquette, TA-Bu-Zhu, Zhu-Taylor, Bogna-et al.]

underpin only known top-down constructions

[Costello-Paquette-Sharma, Bittleston-Costello-Zeng]

Higher dimensions

Very little work (certainly nothing comparable to 4d)...why?

- conformal group on S^{d-2} finite-dimensional
- asymp. symmetry algebras finite-dimensional

[Hollands-Ishibashi, Hollands-Ishibashi-Wald]

• soft symmetries in d>4 finite-dimensional [Pano-Puhm-Trevisani]

Today

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Celestial chiral algebras actually exist for gauge theory and gravity whenever d = 4k!

Key idea: In 4k-d, there are integrable sectors of GR/YM which have all the features of the self-dual sector in 4d

Hyperkähler sector

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

 (\mathscr{M}_{4k},g) hyperkähler if $\operatorname{Hol}(g)\subset\operatorname{Sp}(k,\mathbb{C})$ HK \Rightarrow Ricci-flat

• $k = 1 \Leftrightarrow$ vacuum + self-duality

Hyperkähler sector

A D N A 目 N A E N A E N A B N A C N

 (\mathscr{M}_{4k},g) hyperkähler if $\operatorname{Hol}(g)\subset\operatorname{Sp}(k,\mathbb{C})$ HK \Rightarrow Ricci-flat

• $k = 1 \Leftrightarrow$ vacuum + self-duality

For HK manifolds, $T\mathscr{M} \cong \mathbb{S} \otimes \tilde{\mathbb{S}}$

- \mathbb{S} rank 2 with flat $SL(2, \mathbb{C})$ connection; indices $\alpha, \beta, \ldots = 1, 2$
- $\tilde{\mathbb{S}}$ rank 2k with Sp (k, \mathbb{C}) connection; indices $\dot{\alpha}, \dot{\beta}, \ldots = 1, \ldots, 2k$.

$$\mathrm{d}\boldsymbol{s}^2 = \epsilon_{\alpha\beta} \, \epsilon_{\dot{\alpha}\dot{\beta}} \, \boldsymbol{e}^{\alpha\dot{\alpha}} \, \boldsymbol{e}^{\beta\dot{\beta}}$$

Flat model

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Let x^a be holomorphic coords on \mathbb{C}^{4k} , encode in matrix

$$\begin{aligned} x^{\alpha\dot{\alpha}} &= \begin{pmatrix} z^{\dot{\alpha}} \\ \tilde{z}^{\dot{\alpha}} \end{pmatrix} \\ &= \begin{pmatrix} x^1 + \mathrm{i}x^{4k} & \mathrm{i}x^2 + x^{4k-1} & \cdots & \mathrm{i}x^{2k} + x^{2k+1} \\ -x^{2k+1} + \mathrm{i}x^{2k} & \mathrm{i}x^{2k+2} - x^{2k-1} & \cdots & -\mathrm{i}x^{4k} + x^1 \end{pmatrix} \end{aligned}$$

Flat metric
$$\mathrm{d}s^2 = \epsilon_{\dot{lpha}\dot{eta}} \,\mathrm{d}z^{\dot{lpha}} \odot \mathrm{d} ilde{z}^{\dot{eta}} = \sum_{a=1}^{4k} (\mathrm{d}x^a)^2$$

HK structure encoded in triplet of 2-forms

$$\Sigma^{11} = \mathrm{d} z^{\dot{lpha}} \wedge \mathrm{d} z_{\dot{lpha}} \,, \quad \Sigma^{12} = \mathrm{d} z^{\dot{lpha}} \wedge \mathrm{d} \tilde{z}_{\dot{lpha}} \,, \quad \Sigma^{22} = \mathrm{d} \tilde{z}^{\dot{lpha}} \wedge \mathrm{d} \tilde{z}_{\dot{lpha}}$$

Twistor space

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Twistor space of \mathbb{C}^{4k} :

$$\mathbb{PT} = \left\{ Z^{\mathcal{A}} = (\mu^{\dot{\alpha}}, \lambda_{\alpha}) \in \mathbb{CP}^{2k+1} \, | \, \lambda_{\alpha} \neq 0 \right\}$$

Points $x \in \mathbb{C}^{4k} \leftrightarrow$ holomorphic curves $\mu^{\dot{\alpha}} = x^{\alpha \dot{\alpha}} \lambda_{\alpha}$ in \mathbb{PT} Some important structures:

- holomorphic fibration $p: \mathbb{PT} \to \mathbb{CP}^1$, $[Z^A] \mapsto [\lambda_{\alpha}]$
- holomorphic, weighted Poisson structure on fibres:

$$\{\cdot,\,\cdot\}=\epsilon^{\dot{\alpha}\dot{\beta}}\frac{\partial}{\partial\mu^{\dot{\alpha}}}\wedge\frac{\partial}{\partial\mu^{\dot{\beta}}}$$

Key result

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Theorem (Penrose, Salamon)

There is a 1:1 correspondence between:

- HK metrics
- complex deformations P\$\T of P\$T which preserve
 p: P\$\T → C\$P\$¹ and the Poisson structure on the fibres
 (+ some technical stuff)

Key result

Theorem (Penrose, Salamon)

There is a 1:1 correspondence between:

- HK metrics
- complex deformations P\$\T of P\$T which preserve
 p: P\$\T → C\$P\$¹ and the Poisson structure on the fibres
 (+ some technical stuff)

Upshot: symmetries of HK sector \leftrightarrow deformations of $\mathbb{P}\mathscr{T}$ preserving fibration over \mathbb{CP}^1 and Poisson structure

Deformations of \mathbb{PT} determined by Hamiltonians g(Z) which are

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

- homogeneous of degree +2
- polynomial in $\mu^{\dot{\alpha}}$
- Laurent in λ_{α}

Deformations of \mathbb{PT} determined by Hamiltonians g(Z) which are

- homogeneous of degree +2
- polynomial in $\mu^{\dot{\alpha}}$
- Laurent in λ_{α}

In real money: can expand g(Z) in modes

$$g[\mathbf{m}; r] := rac{(\mu^{\dot{1}})^{m_1} (\mu^{\dot{2}})^{m_2} \cdots (\mu^{\dot{2k}})^{m_{2k}}}{\lambda_0^{M-2-r} \lambda_1^r}$$

where

• $\mathbf{m} = (m_1, \dots, m_{2k}) \in \mathbb{N}_0^{2k}$ • $M := \sum_{i=1}^{2k} m_i \in \mathbb{N}_0$ • $r \in \mathbb{Z}_k$

HK chiral algebra

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

These modes form a chiral algebra $\mathcal{Lham}(\mathbb{C}^{2k})$ under the Poisson bracket on twistor space:

{g[m; r], g[n; s]} =

$$\sum_{i=0}^{k-1} (m_{i+1} n_{2k-i} - n_{i+1} m_{2k-i}) g[m+n-1_{i+1} - 1_{2k-i}; r+s]$$

for $(\mathbf{1}_i)_j = \delta_{ij}$

Gauge theory

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Similar story for gauge theory!

in 4k-dim., gauge field strength valued in \mathfrak{g} decomposes

$$F_{ab} = \epsilon_{\alpha\beta} \, \tilde{F}_{\dot{\alpha}\dot{\beta}} + \epsilon_{\dot{\alpha}\dot{\beta}} \, F_{\alpha\beta} + \breve{F}_{\alpha\beta\,\dot{\alpha}\dot{\beta}}$$

where
$$ilde{F}_{(\dot{lpha}\dot{eta})}$$
, $F_{(lphaeta)}$ and $ilde{F}_{(lphaeta)[\dot{lpha}\dot{eta}]}$, $\epsilon^{\dot{lpha}\dot{eta}} ilde{F}_{lphaeta\dot{lpha}\dot{eta}}=0$

Gauge theory

Similar story for gauge theory!

in 4k-dim., gauge field strength valued in \mathfrak{g} decomposes

$$F_{ab} = \epsilon_{\alpha\beta} \, \tilde{F}_{\dot{\alpha}\dot{\beta}} + \epsilon_{\dot{\alpha}\dot{\beta}} \, F_{\alpha\beta} + \check{F}_{\alpha\beta\,\dot{\alpha}\dot{\beta}}$$

where $\tilde{F}_{(\dot{\alpha}\dot{\beta})}$, $F_{(\alpha\beta)}$ and $\breve{F}_{(\alpha\beta)[\dot{\alpha}\dot{\beta}]}$, $\epsilon^{\dot{\alpha}\dot{\beta}}\breve{F}_{\alpha\beta\,\dot{\alpha}\dot{\beta}} = 0$ Gauge field is hyperholomorphic if $F_{\alpha\beta} = 0 = \breve{F}_{\alpha\beta\,\dot{\alpha}\dot{\beta}}$ [Ward, Corrigan-Goddard-Kent, Verbitsky]

 $HH \Rightarrow Yang-Mills$

Twistor construction

Theorem (Ward)

There is a 1:1 correspondence between:

- *HH bundles over* \mathbb{C}^{4k}
- holomorphic bundles over \mathbb{PT} (+ some technical stuff)

Twistor construction

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Theorem (Ward)

There is a 1:1 correspondence between:

- HH bundles over \mathbb{C}^{4k}
- holomorphic bundles over \mathbb{PT} (+ some technical stuff)

Upshot: symmetries of HH sector \leftrightarrow deformations of partial connection on holomorphic bundles $E \rightarrow \mathbb{PT}$

HH chiral algebra

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Deformations given by a(Z)

- valued in \mathfrak{g} , homogeneous of weight zero
- polynomial in $\mu^{\dot{lpha}}$
- Laurent in λ_{α}

Modes:
$$S^{a}[\mathbf{m}; r] = T^{a} \frac{(\mu^{1})^{m_{1}} (\mu^{2})^{m_{2}} \cdots (\mu^{2k})^{m_{2k}}}{\lambda_{0}^{M-r} \lambda_{1}^{r}}$$

Algebra: $[S^{a}[\mathbf{m}; r], S^{b}[\mathbf{n}; s]] = f^{abc} S^{c}[\mathbf{m} + \mathbf{n}; r + s]$

This is the chiral algebra $\mathcal{Lg}[\mathbb{C}^{2k}]$

What else can we do?

HK/HH sectors classically described by a 2d CFT $_{\tt [TA-Mason-Sharma, TA-Bu-Casali-Sharma]}$

- Action for holomorphic curves/frames in twistor space
- On-shell, gives potentials for HK metric [Plebanski] / HH connection [Sparling]
- HK/HH perturbations \leftrightarrow vertex operators in 2d CFT

Chiral algebras encoded by OPEs between VOs, e.g.:

$$S^{\mathsf{a}}[\mathsf{m}](z) \, S^{\mathsf{b}}[\mathsf{n}](z') \sim rac{f^{\mathsf{abc}}}{z-z'} \, S^{\mathsf{c}}[\mathsf{m}+\mathsf{n}](z')$$

 \Rightarrow these really are algebras living in 2-dimensions

Who cares?

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Not terribly surprising that these sectors have infinite-dim. symmetry algebras (classically integrable),but:

- linked with 4k-dim. versions of MHV scattering [TA-Surubaru]
- contrast with general expectations
- underlying structure still 2d CFT...
- ...challenges expectations for celestial/twisted holography

Lots to do!

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- Connection if any with conformal primary representations
- Soft and collinear limits?
- Link with asymptotic symmetries and radiative data
- Top-down manifestations a HK version of twisted holography?

Lots to do!

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- Connection if any with conformal primary representations
- Soft and collinear limits?
- Link with asymptotic symmetries and radiative data
- Top-down manifestations a HK version of twisted holography?

Thanks, and stay tuned for an exciting week of talks!