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AdS-CFT
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IN Minkowski space
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Observables ?! — Correlation functions
CFT on the Constrained non-perturbatively by
boundary ~ the Conformal Bootstrap:

e (Conformal symmetry

time

e Unitarity

e Associative operator algebra (crossing symmetry)
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AdS-CFT

In Anti de Sitter space we can write down the fundamental axioms of Gravity!

CFT on the
boundary .

Can we extend this understanding to our own universe?



Holography for all As?

The maximally symmetric cousins of AdS

A > 0 de Sitter A = 0 Minkowski

I —|— Celestial

sphere

swih

-

e (Cosmological scales e intermediate scales

o 3 ‘..‘. A:.‘ 7 2 *: $oa '“:-.;‘ ..5‘ e
»il e v % s Ta - . ".‘.73,_: ? -
- % 4 ke JG~ + 300 3 " : 5 J
=L ANS e
T L s T
e St
AR SR s
-
\ / Pri dial inflati




Holography for all As? [Sleight, Taronna]

The strategy: connect dS and Minkowski boundary observables to those in AdS-CFT

Wick rotation

—

t — —11

AdS, A <0 EAAS

/(®)

dS, A >0 “AQS C—AJS
Minkowski, A =0

[C.S. & Taronna ’19, ’20, '21] C.S. & Taronna "23]
[lacobacci, C.S. & Taronna '24]

dS and Celestial correlators therefore have a similar analytic structure to their EAdS counterparts!
On a practical level, can use such identities to import technigues and understanding from AdS.




Outline
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'\/. Some applications.
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Anti-de Sitter space-time
Ade—I—l C Rd’z :

d \
— (X0 = (XY Y (X)) = —R3as ' AdSy

. I
1=1 I
/
/

It Is manifest that

Isometry group: SO (d,2) = conformal group in M*

Poincaré coordinates: /

dz* + n,, detdz”

2 2
dS — RAdS

22 T




Particles in AdS

-

U

Particles in AdSq+1  «——  unitary irreducible representations of SO (d,2)

N

)

Labelled by a scaling dimension A and spin J. Unitarity constrains A :

E.g. Spin J=0 representations

Im [A]

Notes:

e ANcR

e Bounded from below A > g —1



Particles in AdS

-

Particles in AdSq4+1 <« unitary irreducible representations of SO (d, 2)

U

>

)

Labelled by a scaling dimension A and spin J. Can be realised

E.g. Spin J=0 representations

by fields in AdSq+1 :

Quadric Casimir equation

(C2) = A (A —d)

Im [A] (VZ=m?) =0 <> (C2—{(Ca))p=0

212
m~Ragqg =

z—0

Dirichlet
boundary conditio

A (A — d)

Boundary behaviour ( A_ =d — A):

lim ¢ (2,2) = Oa, (z) 22+ + Oa_ (7) 22~

Neuman
n boundary condition

N.B. A_ may be ruled out by unitarity

Oa, (z) transform as primary fields with scaling dimension A_

- in Minkowski CFT4




AdS boundary correlators

Feynman rules:

Bulk-to-bulk propagator, A, boundary condition:




A >0



de Sitter space-time

de_|_1 C Md—I_Q :

Isometry group: SO (d +1,1)
Poincare coordinates:

—dn2 + dx?
">

d32 — R(st

conformal group in R

Rd

swin




Particles in dS

4 ™
Particles in dSq+1  «——  unitary irreducible representations of SO (d+1,1)
N Y

Labelled by a scaling dimension A and spin J. Unitarity constrains A :
E.g. Spin J=0 representations

Im [A] _
A A, Notes:

e Both A, and A_ are unitary

e /A can be complex



Particles in dS

4 p
Particles in dS4+1 «—— unitary irreducible representations of SO (d +1,1)
N Y

Labelled by a scaling dimension A and spin J. Can be realised by fields in dSqg.1.

E.g. Spin J=0 representations Quadric Casimir equation
(C2) = A(d—A)

Im [A] :

(V2—m?) o =0 < (C2—(Ca))p=0
— e ——— . —————P Re[A] Boundary behaviour:
A

lim ¢ (9, ) = Oa, (X) N>+ + Oa_ (x)1

n—0
N !
Determined by
the initial state

Oa. (x) transform as primary fields with scaling dimension A in Euclidean CFT4




dS Boundary Correlators

IN-iNn formalism [Maldacena 02, Weinberg '05]

lim (0o (xX1,7) ... Py (Xn, T) |0)

T—>00
P2 (x2,00) Pn (X’n? 00) Boundar
. y
Y1 (Xl’ Of) o ° at future infinity
A
o
=
— branch + branch
(Anti-time-ordered) (time-ordered)
(0| 0)

Take |0) to be the de Sitter vacuum which reduces to the Minkowski vacuum at early times.

( )



dS Boundary Correlators

IN-iNn formalism [Maldacena 02, Weinberg '05]

lim (0o (xX1,7) ... Py (Xn, T) |0)

T—00

Feynman rules:

N

+ bulk-to- & bulk propagator:

Boundary
at future infinity

+ bulk-to- propagator:

Boundary

at future infinity
7

Sum contributions from each branch (+) of the time (in-in) contour!



From dS to Euclidean AdS

Euclidean AdS dS

Boundary
at future infinity

Boundary
at spatial infinity

2 =00 <« z=0

—d772 + dx?
2

dZ2 + dX2 2 2
d82 — Rids 2 b g ds® = RdS N

EAdS and dS are identified under:

time




From dS to Euclidean AdS

N

+ bulk-to- - bulk propagator: [C.S. and M. Taronna 19, °20, ’21]
m? .

. . — T 2B+ T T A e FEA_ FEA
€I ZT:

mQR?iS — A_|_A_

R Dirichlet Neumann

. boundary condition boundary condition
ds + (time-ordered) branch

+ bulk-to-boundary propagator:

A
—eT3A
+ bulk integrals:
Ay
A, :
) Ay _ ezlz(d,—l)%”
\ 4 A

— (anti-time-ordered) branch




From dS to Euclidean AdS

Examp|es_ [C.S. and M. Taronna ’19]

Non-derivative vertex of scalars fields V (X) = g¢; (X)... ¢, (X)

Contact diagram:

s
|

?
€

E

Where

Same contact diagram in EAdS



From dS to Euclidean AdS

Examp|es_ [C.S. and M. Taronna ’19]

Non-derivative vertex of scalars fields V (X) = g¢; (X)... ¢, (X)

Contact diagram:

S AN

Same contact diagram in EAdS




From dS to EAdS, and back

dS boundary correlators are perturbatively recast as Witten diagrams in EAdS:

e.g. four-points

Combines contributions from
each branch of the in-in contour

|
— Z CAif AL

A14... A+

Sum over boundary conditions
for exchanged particles

NOteS: Cfomafﬁt N Cﬁ;maCt

e Contributions from both AL modes, which is not always possible in AdS

® A, € Unitary Irreducible Representation of dS isometry

[ Can use to import technigues and results from AdS to dS! ]







Hyperbolic slicing of Minkowski space

[de Boer and Solodukhin ‘03]

(d+2)-dimensional Minkowski space M?*2 |, coordinates X*, A=0,...d+1

Ay X? = _—¢?  (EAdSq.1,radius t)

\// D: X?=FR? (dSq+1, radius R)

> Q2 — ()
b Conformal boundary:

Q?=0, Q=)Q, NeRT
Introduce projective coordinates:
E=QY/Q°% i=1,...,d+1
A G+ =1 | Goneen

SO (d+ 1,1) acts on the celestial sphere as the Euclidean conformal group!



Minkowski boundary correlators

[C.S. and M. Taronna ’23]

Radial of Minkowski correlators implements a radial reduction
onto the hyperbolic slicing:

N (Ql) Hyperbolic coordinate
° OAQ (QQ) l
° dt; . .
= H lim / —t <¢1(t1X1) : --¢n(tan)>
X; —Q; ti

radial coordinate

Celestial correlators then arise in the boundary limit  X; —» @, !

Radial Mellin Transform for both massless and massive particles in Minkowski

S-matrix is what we measure in experiments but AAS/CFT puts bulk correlators at the center



From the Celestial Sphere to EAdS

[C.S. and M. Taronna ’23; L. lacobacci, C.S. and M. Taronna ’24]
In general, for exchanges of particles of mass m;, t=1,...,n

Unitary Principal Series

O representations of SO(d+1,1)

A

- O, — _

OAQ — T . e e e . CA]_ An (m1, ] mn)
4 _i0o 27'('@ 27TZ

. 2 e O l... :

Minkowski exchanges are a continuum
of EAdS exchanges

Process with M vertices factorises into:

contact contact
C X ... xC%y



From the Celestial Sphere to EAdS

[C.S. and M. Taronna ’23; L. lacobacci, C.S. and M. Taronna ’24]
In general, for exchanges of particles of mass m;, +1=1,...,n

Unitary Principal Series
representations of SO(d+1,1)

Oa,
[ OAg . d ) . . .
¢ RS dAl dAn
Os: = Jas 2w 2w CAeean (M
° OA4 §—ZOO |

o \ f
Minkowski exchanges are a continuum l
of EAdS exchanges l

Process with M vertices factorises into:

Makes manifest
contact contact
Cl X ... X CM conformal symmetry

Compare with de Sitter:

AjtL... A\t

Voot

dS exchanges are a discrete sum
of EAdS exchanges

Process with M vertices



From the Celestial Sphere to EAdS

[C.S. and M. Taronna ’23; L. lacobacci, C.S. and M. Taronna ’'24]
In general, for exchanges of particles of mass m;, t=1,...,n

o OAg

dyico A A

* 2 dAl dAn

O, = 5 CA,..a, (M1,
d_soo 2T 271
® 0A4 2 :
o \ f
Minkowski exchanges are a continuum l

of EAdS exchanges l

Process with M vertices factorises into:

Makes manifest
Ocontact Ccontact
1 X ... XUy conformal symmetry

Comments:

® Relation to definition [Pasterski, Shao, Strominger "17] of celestial correlators as scattering amplitudes in a
conformal basis?

[Pasterski, Shao, Strominger ’17] = LSZ ([Sleight, Taronna '23]) ?

e Celestial correlators defined as an extrapolation of bulk Minkowski correlators give a definition of celestial
correlators for theories without an S-matrix.

What lessons can we draw from Minkowski CFT?



Some applications.



Perturbative OPE data

Perturbative OPE data on the boundary of dS and Minkowski space from EAdS

E.g. Composite operators on the boundary [C.S. and M. Taronna ’20]

[OO]n’g ~ O (82)n i, ...0;,0+ ... scaling dimension: A, s =2A 4+ 2n+ 0+ v, 0

anomalous
dimension

® “Yn,/ induced by bulk (b4 contact diagram in dS:

:5 f; an (1 . [ _d EAdS) . ¢
_sm(—§+2A>7T S ’yjig — S11 (—§+2A)ﬂ' X ( )ﬁyziﬁ

e “/n,¢ induced by an exchange diagram in dS:

3
. ’Y,ﬁf’geXCh — din ( > ) T sin ( > ) T % (EAdS),YS;eXCh Ay 4+ (A_|_ N A_)



Perturbative OPE data

Perturbative OPE data on the boundary of dS and Minkowski space from EAdS

E.g. Composite operators on the boundary

[OO]n,g ~ O (32)n i, -..0;,0+ ... scaling dimension: A, ; = 2A 4+ 2n + {4 vy 4
nomalou
dS acliir(:ler?s(i)or?
VS.
A, ¢ is unitary A,.¢ is (generally) non-unitary
— stable particle (bound state) — fesonance

[Bros et al '06-’09, Marolf and Morrison '10, Krotov and Polyakov 10, Arkani-Hamed and Maldacena ’15]



Conformal Partial Wave Expansion

[Sleight, Taronna ’20] [Hogervorst, Penedones, Vaziri '21] [di Pietro, Komatsu, Gorbenko '21]

Perturbative dS and celestial correlators have a similar analytic structure to those in AdS.

—— Like in AdS they admit a conformal partial wave expansion

A

—— PJ (A) ]:A,J (le X2, X3, X4)

Ciag 2T | :

(0(x1) 0 x2) O (x) O (x)) = Y [

Conformal Partial Wave

The spectral function has to be positive as prescribed by SO(d+1,1) Unitarity (This is EAdS, not AdS, unitarity)

Unitarity: pJ (A) > () +crossing — Bootstrap for Euclidean CFTs?

Cf. Lorentzian CFT:

(O (x1) O (x2) O (x3) O (x4)) = ¥ CA.;Ga,s(X1,%2,X3,X4)
A, J | |

Conformal Block

Unitarity: C’i) 7 =20 +crossing — Conformal Bootstrap



Thank you.






