Holographic Correlators for all A

Massimo Taronna

Naples U. & INFN Naples

based on work in collaboration with Charlotte Sleight!

AdS-CFT

Quantum Gravity in anti-de Sitter space

_

(non-gravitational)Conformal Field Theoryin Minkowski space

Observables ?!

Correlation functions

Constrained non-perturbatively by the Conformal Bootstrap:

- Conformal symmetry
- Unitarity
- Associative operator algebra (crossing symmetry)

$$(\mathcal{O}_1\mathcal{O}_2)\,\mathcal{O}_3=\mathcal{O}_1\,(\mathcal{O}_2\mathcal{O}_3)$$

AdS-CFT

In Anti de Sitter space we can write down the fundamental axioms of Gravity!

Can we extend this understanding to our own universe?

Holography for all \As?

The maximally symmetric cousins of AdS

time

 $\Lambda > 0$ de Sitter

 $\Lambda = 0$ Minkowski

- Cosmological scales
- Primordial inflation

intermediate scales

Holography for all \As?

The strategy: connect dS and Minkowski boundary observables to those in AdS-CFT

AdS, $\Lambda < 0$

Wick rotation

$$t \to -i\tau$$

EAdS

[C.S. & Taronna '19, '20, '21]

[C.S. & Taronna '23] [lacobacci, C.S. & Taronna '24]

dS and Celestial correlators therefore have a similar analytic structure to their EAdS counterparts! On a practical level, can use such identities to import techniques and understanding from AdS.

Outline

$$1. \quad \Lambda < 0$$

$$\parallel \Lambda > 0$$

$$(\parallel \Lambda = 0)$$

IV. Some applications.

Anti-de Sitter space-time

$$\mathrm{AdS}_{d+1} \subset \mathbb{R}^{d,2}$$
:

$$-(X^{0})^{2} - (X^{d+1})^{2} + \sum_{i=1}^{d} (X^{i})^{2} = -R_{AdS}^{2}$$

It is manifest that

Isometry group: $SO(d,2) = \text{conformal group in } \mathbb{M}^d$

Poincaré coordinates:

$$ds^2 = R_{AdS}^2 \frac{dz^2 + \eta_{\mu\nu} dx^{\mu} dx^{\nu}}{z^2}$$

Particles in AdS

Particles in AdS_{d+1} \longleftrightarrow unitary irreducible representations of SO(d,2)

Labelled by a scaling dimension Δ and spin J. Unitarity constrains Δ :

E.g. Spin J=0 representations

Notes:

 \bullet $\Delta \in \mathbb{R}$

 $\bullet \quad \text{Bounded from below} \quad \Delta \geq \frac{d}{2} - 1$

Particles in AdS

Particles in AdS_{d+1} \longleftrightarrow unitary irreducible representations of SO(d,2)

Labelled by a scaling dimension Δ and spin J. Can be realised by fields in AdS_{d+1}:

E.g. Spin J=0 representations

$$\langle \mathcal{C}_2 \rangle = \Delta (\Delta - d)$$

$$(\nabla^2 - m^2) \varphi = 0 \quad \leftrightarrow \quad (\mathcal{C}_2 - \langle \mathcal{C}_2 \rangle) \varphi = 0$$

$$m^2 R_{\text{AdS}}^2 = \Delta (\Delta - d)$$

Quadric Casimir equation

Boundary behaviour ($\Delta_- = d - \Delta_+$):

$$\lim_{z \to 0} \varphi\left(z,x\right) = O_{\Delta_{+}}\left(x\right)z^{\Delta_{+}} + O_{\Delta_{-}}\left(x\right)z^{\Delta_{-}}$$
Dirichlet boundary condition

N.B. Δ_{-} may be ruled out by unitarity

 $O_{\Delta_+}\left(x
ight)$ transform as primary fields with scaling dimension Δ_\pm in Minkowski CFT_d

AdS boundary correlators

$$\lim_{z \to 0} z^{-(\Delta_1 + \dots + \Delta_n)} \langle \varphi_1(x_1, z) \dots \varphi_n(x_n, z) \rangle \stackrel{!}{=} \langle \mathcal{O}_{\Delta_1}(x_1) \dots \mathcal{O}_{\Delta_n}(x_n) \rangle$$

Feynman rules:

Bulk-to-bulk propagator, Δ_{\pm} boundary condition:

Bulk-to-boundary propagator, Δ_{\pm} boundary condition:

de Sitter space-time

$$\mathrm{dS}_{d+1}\subset\mathbb{M}^{d+2}$$
 :

$$-(X^{0})^{2} + \sum_{i=1}^{d+1} (X^{i})^{2} = R_{dS}^{2}$$

Isometry group: $SO(d+1,1) = \text{conformal group in } \mathbb{R}^d$

Poincaré coordinates:

$$\mathrm{d}s^2 = R_{\mathrm{dS}}^2 \frac{-\mathrm{d}\eta^2 + \mathrm{d}\mathbf{x}^2}{\eta^2}$$

Particles in dS

Particles in dS_{d+1} \longleftrightarrow unitary irreducible representations of SO(d+1,1)

Labelled by a scaling dimension $\ \Delta$ and spin J. Unitarity constrains $\ \Delta$:

E.g. Spin J=0 representations

Notes:

ullet Both Δ_+ and Δ_- are unitary

 \bullet Δ can be complex (Principal Series)

Particles in dS

Particles in $dS_{d+1} \longrightarrow unitary$ irreducible representations of SO(d+1,1)

Labelled by a scaling dimension Δ and spin J. Can be realised by fields in dS_{d+1}.

E.g. Spin J=0 representations

Quadric Casimir equation
$$\langle \mathcal{C}_2 \rangle = \Delta \, (d-\Delta)$$

$$(\nabla^2 - m^2) \, \varphi = 0 \quad \Longleftrightarrow \quad (\mathcal{C}_2 - \langle \mathcal{C}_2 \rangle) \, \varphi = 0$$

$$m^2 R_{\mathrm{dS}}^2 = \Delta \, (d-\Delta)$$

Boundary behaviour:

$$\lim_{\eta \to 0} \varphi \left(\eta, x \right) = O_{\Delta_+} \left(\mathbf{x} \right) \eta^{\Delta_+} + O_{\Delta_-} \left(\mathbf{x} \right) \eta^{\Delta_-}$$
 Determined by the initial state

 $O_{\Delta_+}\left(\mathbf{x}
ight)$ transform as primary fields with scaling dimension Δ_\pm in Euclidean CFT_d

dS Boundary Correlators

in-in formalism

[Maldacena '02, Weinberg '05]

$$\lim_{\tau \to \infty} \langle 0 | \hat{\varphi}_1 \left(\mathbf{x}_1, \tau \right) \dots \hat{\varphi}_n \left(\mathbf{x}_n, \tau \right) | 0 \rangle$$

Take $|0\rangle$ to be the de Sitter vacuum which reduces to the Minkowski vacuum at early times.

(Bunch Davies vacuum)

dS Boundary Correlators

in-in formalism

[Maldacena '02, Weinberg '05]

$$\lim_{\tau \to \infty} \langle 0 | \hat{\varphi}_1 \left(\mathbf{x}_1, \tau \right) \dots \hat{\varphi}_n \left(\mathbf{x}_n, \tau \right) | 0 \rangle$$

Feynman rules:

± bulk-to-boundary propagator:

Sum contributions from each branch (±) of the time (in-in) contour!

$$ds^{2} = R_{AdS}^{2} \frac{dz^{2} + d\mathbf{x}^{2}}{z^{2}} \qquad \longleftrightarrow \qquad ds^{2} = R_{dS}^{2} \frac{-d\eta^{2} + d\mathbf{x}^{2}}{\eta^{2}}$$

EAdS and dS are identified under:

$$R_{\rm AdS} = \pm i R_{\rm dS}$$
 $z = \pm i (-\eta)$

 \pm bulk-to- \pm bulk propagator:

[C.S. and M. Taronna '19, '20, '21]

$$=e^{\mp\frac{i\pi}{2}\Delta_{+}}e^{\hat{\mp}\frac{i\pi}{2}\Delta_{+}}$$

 $m^2 R_{\rm dS}^2 = \Delta_+ \Delta_-$

Dirichlet boundary condition

Neumann boundary condition

+ (time-ordered) branch dS **EAdS** $-\eta = z e^{-\left(\frac{\pi}{2} - \epsilon\right)i}$

± bulk-to-boundary propagator:

± bulk integrals:

Examples.

[C.S. and M. Taronna '19]

Non-derivative vertex of scalars fields $V(X) = g\phi_1(X) \dots \phi_n(X)$

Contact diagram:

Where

$$=e^{\pm \frac{i\pi}{2}(d-1)}\prod_{i=1}^{n}e^{\mp \frac{i\pi}{2}\Delta_{j}}$$

Examples.

[C.S. and M. Taronna '19]

Non-derivative vertex of scalars fields $V(X) = g\phi_1(X) \dots \phi_n(X)$

Contact diagram:

Same contact diagram in EAdS

From dS to EAdS, and back

dS boundary correlators are perturbatively recast as Witten diagrams in EAdS:

- ullet Contributions from both $\,\Delta_{\pm}$ modes, which is not always possible in AdS
- $\Delta_{i\pm} \in \text{Unitary Irreducible Representation of } dS$ isometry

Can use to import techniques and results from AdS to dS!

Hyperbolic slicing of Minkowski space

[de Boer and Solodukhin '03]

(d+2)-dimensional Minkowski space $\ \mathbb{M}^{d+2}$, coordinates $\ X^A, \quad A=0,\ldots d+1$

$$\mathcal{A}_{\pm}$$
: $X^2 = -t^2$ (EAdS_{d+1}, radius t)

$$\mathcal{D}: X^2 = R^2$$
 (dS_{d+1}, radius R)

Conformal boundary:

$$Q^2 = 0, \quad Q \equiv \lambda Q, \quad \lambda \in \mathbb{R}^+$$

Introduce projective coordinates:

$$\xi_i=Q^i/Q^0, \quad i=1,\dots,d+1$$

$$\xi_1^2+\dots+\xi_{d+1}^2=1 \quad \begin{bmatrix} \text{d-dimensional Celestial sphere} \end{bmatrix}$$

 $SO\left(d+1,1
ight)$ acts on the celestial sphere as the Euclidean conformal group!

Minkowski boundary correlators

[C.S. and M. Taronna '23]

Radial Mellin transform of Minkowski correlators implements a radial reduction onto the hyperbolic slicing:

Celestial correlators then arise in the boundary limit $\hat{X}_i \rightarrow Q_i$!

Radial Mellin Transform for both massless and massive particles in Minkowski

S-matrix is what we measure in experiments but AdS/CFT puts bulk correlators at the center

From the Celestial Sphere to EAdS

[C.S. and M. Taronna '23; L. Iacobacci, C.S. and M. Taronna '24]

In general, for exchanges of particles of mass $m_i, i = 1, \ldots, n$

Process with M vertices

factorises into:

$$C_1^{\mathrm{contact}} \times \ldots \times C_M^{\mathrm{contact}}$$

From the Celestial Sphere to EAdS

[C.S. and M. Taronna '23; L. Iacobacci, C.S. and M. Taronna '24]

Makes manifest

conformal symmetry

In general, for exchanges of particles of mass m_i , $i=1,\ldots,n$

T TOOOGO WITH IVI VOI HOOO

Compare with de Sitter:

of EAdS exchanges

factorises into:

 $C_1^{\text{contact}} \times \ldots \times C_M^{\text{contact}}$

From the Celestial Sphere to EAdS

[C.S. and M. Taronna '23; L. Iacobacci, C.S. and M. Taronna '24]

In general, for exchanges of particles of mass m_i , $i=1,\ldots,n$

Comments:

 Relation to definition [Pasterski, Shao, Strominger '17] of celestial correlators as scattering amplitudes in a conformal basis?

[Pasterski, Shao, Strominger '17] = LSZ ([Sleight, Taronna '23])?

Celestial correlators defined as an extrapolation of bulk Minkowski correlators give a definition of celestial
correlators for theories without an S-matrix.

What lessons can we draw from Minkowski CFT?

Some applications.

Perturbative OPE data

Perturbative OPE data on the boundary of dS and Minkowski space from EAdS

E.g. Composite operators on the boundary

[C.S. and M. Taronna '20]

dimension

$$[\mathcal{O}\mathcal{O}]_{n,\ell} \sim \mathcal{O}\left(\partial^2\right)^n \partial_{i_1} \dots \partial_{i_\ell}\mathcal{O} + \dots \qquad \text{scaling dimension:} \quad \Delta_{n,\ell} = 2\Delta + 2n + \ell + \gamma_{n,\ell}$$
 Free theory anomalous

• $\gamma_{n,\ell}$ induced by bulk ϕ^4 contact diagram in dS:

• $\gamma_{n,\ell}$ induced by an exchange diagram in dS:

$$= \sin\left(\frac{-d + 2\Delta + \Delta_{+}}{2}\right)\pi \sin\left(\frac{-d + 2\Delta + \Delta_{+}}{2}\right)\pi + (\Delta_{+} \to \Delta_{-})$$

$$\gamma_{n,\ell}^{\phi^3 \operatorname{exch}} = \sin\left(\frac{-d + 2\Delta + \Delta_+}{2}\right) \pi \sin\left(\frac{-d + 2\Delta + \Delta_+}{2}\right) \pi \times (\operatorname{EAdS}) \gamma_{n,\ell}^{\phi^3 \operatorname{exch} \Delta_+} + (\Delta_+ \to \Delta_-)$$

Perturbative OPE data

Perturbative OPE data on the boundary of dS and Minkowski space from EAdS

E.g. Composite operators on the boundary

$$[\mathcal{O}\mathcal{O}]_{n,\ell} \sim \mathcal{O}\left(\partial^2\right)^n \partial_{i_1} \dots \partial_{i_\ell}\mathcal{O} + \dots$$
 scaling dimension: $\Delta_{n,\ell} = 2\Delta + 2n + \ell + \gamma_{n,\ell}$

Free theory dimension

AdS

 $\Delta_{n,\ell}$ is unitary

stable particle (bound state)

VS.

dS

 $\Delta_{n,\ell}$ is (generally) non-unitary

resonance

Conformal Partial Wave Expansion

[Sleight, Taronna '20] [Hogervorst, Penedones, Vaziri '21] [di Pietro, Komatsu, Gorbenko '21]

Perturbative dS and celestial correlators have a similar analytic structure to those in AdS.

Like in AdS they admit a conformal partial wave expansion

Spectral density, meromorphic in Δ

$$\langle \mathcal{O}\left(\mathbf{x}_{1}\right) \mathcal{O}\left(\mathbf{x}_{2}\right) \mathcal{O}\left(\mathbf{x}_{3}\right) \mathcal{O}\left(\mathbf{x}_{4}\right) \rangle = \sum_{J=0}^{\infty} \int_{\frac{d}{2} - i\infty}^{\frac{d}{2} + i\infty} \frac{d\Delta}{2\pi i} \rho_{J}\left(\Delta\right) \mathcal{F}_{\Delta,J}\left(\mathbf{x}_{1}, \mathbf{x}_{2}, \mathbf{x}_{3}, \mathbf{x}_{4}\right)$$
Conformal Partial Wave

The spectral function has to be positive as prescribed by SO(d+1,1) Unitarity (This is EAdS, not AdS, unitarity)

Unitarity:
$$\rho_J(\Delta) \ge 0$$
 + crossing \longrightarrow Bootstrap for Euclidean CFTs?

Cf. Lorentzian CFT:

$$\langle \mathcal{O}(\mathbf{x}_1) \mathcal{O}(\mathbf{x}_2) \mathcal{O}(\mathbf{x}_3) \mathcal{O}(\mathbf{x}_4) \rangle = \sum_{\Delta,J}^{\infty} C_{\Delta,J}^2 G_{\Delta,J}(\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3, \mathbf{x}_4)$$

$$Conformal Block$$

Unitarity:
$$C_{\Delta,J}^2 \ge 0$$
 + crossing \longrightarrow Conformal Bootstrap

Thank you.