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Machine Learning (ML) & AI in Science: a teaser 

 
Abstract  
``One of the grand challenges of artificial general intelligence is developing agents capable of 
conducting scientific research and discovering new knowledge. While frontier models have already 
been used as aides to human scientists, e.g. for brainstorming ideas, writing code, or prediction 
tasks, they still conduct only a small part of the scientific process. This paper presents the first 
comprehensive framework for fully automatic scientific discovery, enabling frontier large language 
models (LLMs) to perform research independently and communicate their findings. We introduce 
The AI Scientist, which generates novel research ideas, writes code, executes experiments, 
visualizes results, describes its findings by writing a full scientific paper, and then runs a simulated 
review process for evaluation…’’

https://github.com/SakanaAI/AI-Scientist 

Lu-Lu-Lange-Foerster-Clune-Ha 
arXiv:2408.06292v2 [cs.AI] 15 Aug 2024

https://github.com/SakanaAI/AI-Scientist
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•  Other scientific fields have already incorporated aggressively many of the 
recent developments in ML/AI  

•  Our field is not naturally data-driven, it requires rigor & interpretability, but 
ML methods are usually stochastic & error-prone.   
There are, however, examples of rigor & interpretability in ML/AI                   
(see [Gukov-Halverson-Ruehle 2402.13321] for a recent perspective article) 

•  And ML/AI applications to HEP-th are slowly growing: 
- CY metrics: Anderson-et al (2012.04656), Douglas-et al (2012.04797), Jejjala-et al (2012.15821) 

- Conformal bootstrap: VN-CP-et al (2108.08859, 2108.09330, 2209.02801, 2306.15730) 

- Amplitude bootstrap: Cai-…-Dixon (2405.06107 [cs.LG]) 

- And much more… see eg upcoming talks and Ruehle review Phys. Rept. 839 
(2020) 1–117
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• HEP-th is faced with many challenging conceptual & computational 
problems 

• Applying unorthodox approaches (like ML/AI) to such problems will 
require: 
a) Clever reformulations of traditional problems in HEP-th 
 
b) Clever ways to encode complex (typically, infinite-dimensional) 
problems - a CS challenge  
 
c) Suitable incorporation of multiple domain-specific analytical & 
numerical results 

• Exciting, novel research avenues! 
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QFT as a specific domain of exploration 

The non-perturbative dynamics of Quantum Field Theories (QFTs) is a 
fundamental, still largely open problem, which is central in our field 

Using ML/AI we can try to: 

1) Solve `old problems’ in new ways (eg ML for efficient Lattice FT) 

2) Perform efficient searches of solutions satisfying known constraints 
(eg some PDE, or some bootstrap constraints) 

3) Identify structures in tractable corners and generalize to currently 
inaccessible regimes [generative AI techniques can be useful in this context]



6

In this talk 

I want to illustrate 2-3 in the context of a specific problem in Quantum 
Mechanics  

a) I will set up the problem 

b) I will present a more-or-less traditional implementation of Neural-
Network methods to this problem along the lines of 2 

c) I will discuss a less traditional approach using Neural Operators 
along the lines of 3                                                    [VN-CP, 2404.14551]
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Scattering amplitude phases                                

Consider elastic 2→2 scattering in Quantum Mechanics 

The differential cross-section can be deduced from the scattering 
amplitude 

 

The scattering amplitude    (  ), is a complex 
function.  

Question: if we know the modulus  (at fixed energy) can we 

reconstruct the phase ? 

dσ
dΩ

= | f(θ) |2

f(z) = b(z)eiϕ(z) z := cos θ

b(z)
ϕ(z)
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Given an amplitude with a finite partial wave expansion 

 

in terms of a finite number of phase-shifts , one can easily express 

both  and  in terms of  and attempt to reconstruct them. 

The problem is much harder for generic amplitudes that have an 
infinite partial wave expansion.  

This problem was studied in the 60s and 70s by various people (Martin, 
Atkinson,…) and the standard approach goes as follows.

f(z) =
1
k

L

∑
ℓ=0

(2ℓ + 1)sin δℓ eiδℓ Pℓ(z)

δℓ

b(z) ϕ(z) δℓ
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A simple argument shows that unitarity implies the following integral 

relation between the modulus  and the phase  

 

where    

The analysis of this equation yielded some interesting results: 

a) Setting  gives the dual bound  

B(z) := k b(z) ϕ(z)

sin ϕ(z) = ∫
1

−1
dz1 ∫

2π

0
dϕ1

B(z1)B(z2)
4πB(z)

cos [ϕ(z1) − ϕ(z2)]

z2(z, z1, ϕ1) := zz1 + 1 − z2 1 − z2
1 cos ϕ1

z = 1

∫
1

−1
dz1

B(z1)2

2B(1)
≤ 1
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b) Additional bounds on existence and uniqueness can be obtained by 
defining the function 

 

and the `Martin parameter’ 

 

One can prove that given a modulus  a phase  always exists when 

.  

For  solutions may or may not exist, and when they exist they can 
be unique or doubly-ambiguous. It is unclear what happens in general.

K(z) := ∫
1

−1
dz1 ∫

2π

0
dϕ1

B(z1)B(z2)
4πB(z)

sin μ := max
−1≤z≤1

K(z)

B(z) ϕ(z)
sin μ ≤ 1

sin μ > 1
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A more modern ML approach towards this problem would attack the 
unitarity equation  

 

in the following manner. Given a specific modulus  

i) Model   by a Neural Network (NN):    

ii) Formulate a loss function, e.g. 

 

iii) minimize  wrt the NN parameters  

sin ϕ(z) = ∫
1

−1
dz1 ∫

2π

0
dϕ1

B(z1)B(z2)
4πB(z)

cos [ϕ(z1) − ϕ(z2)]

B(z)

ϕ(z) ϕΘ(z)

ℒ(Θ) := N−1
c ∑

i (sin ϕΘ(zi) −
1

4πB(zi) ∫
1

−1
dz1 ∫

2π

0
dϕ1B(z1)B(z2i)cos(ϕΘ(z1) − ϕΘ(z2i)))

2

ℒ(Θ) Θ
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Finding the optimum NN parameters  is called training and involves 
solving a generally hard non-convex optimization problem. 

This approach is called a PINN (Physics-Informed Neural Network) and 
is a standard NN method for solving PDEs etc. 

It was recently used by [Dersy-Schwartz-Zhiboedov, 2308.09451] to solve the 
above unitarity equation producing notable results that include a new 
ambiguous solution with the lowest known Martin parameter 

 (improving the relevant bound for the first time in 50 yrs!) 

Note: this approach requires retraining from scratch for each new input 

, which makes scanning over functions cumbersome.

Θ

sin μ ≃ 1.67

B(z)

[Chen…, Lagaris,… 90’s]

[Raissi et al 2017]
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A different approach                                               [VN-CP, 2404.14551] 

Assume that the unitarity equation is unknown. 

The only tractable information that we will allow ourselves to have 
access to comes from finite partial wave expansions. 

Question: Is it still possible to learn the relation between  and , 

or when a  does not exist? 

Note: Learning maps between infinite-dimensional spaces of functions 
is also interesting from the continuum-QFT perspective, because QFTs 
are naturally structures operating on such spaces. 

B(z) ϕ(z)
ϕ(z)



14

More involved NN architectures (called Neural Operators (NOs)) can be 
used for this purpose 

•  In this case one trains by exposing the NO to many pairs  

•  Train only once 

•  `Zero-shot super-resolution’ 

•  PINN + NO = PINOs     [Li et al 2021]

( ⃗f input , ⃗foutput)

[Chen-Chen 90’s]

[Li et al 2021 Fourier NOs]

⃗f input( ⃗x) ⃗foutput( ⃗x)

integral transforms + linear operations 
         + non-linear activations 

[Supervised learning]



15

Unique phases: Training on 300K valid input-output samples 

•  We trained an FNO on 300K ( ) random samples consisting of       
100K L=1 amplitudes, 100K L=2 amplitudes, 100K L=3 amplitudes 

 

•  was discretized on a uniform grid with 100 points. 

   We can train with this resolution and evaluate on much higher 
   resolution!

B(z), ϕ(z)

F(z) = B(z)eiϕ(z) =
L

∑
ℓ=0

(2ℓ + 1)sin δℓeiδℓPℓ(z)

z ∈ [−1,1]
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Performance within the training dataset: plots of sin(ϕ(z))
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Performance on unseen linear and quadratic moduli  with infinite partial wave 
expansions (ground-truth computed by solving independently the unitarity equation)

B(z)
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Heatmaps of the  of the unitarity loss for linear  and quadratic 

 moduli. Similar results obtained with PINNs in [Dersy et al, 2308.09451]

log10 B(z) = az + b
B(z) = cz2 + d

dual bound

 boundsin μ = 1
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This is promising (the NO has indeed learnt non-trivial features of the 
unitarity constraint) but: 

•  Remember that we cannot use the unitarity equation to check. So, we 
do not really know when a prediction is good or not, or when a phase 
is not supposed to exist. 

•  The above NO has not learnt everything. Testing on higher-L finite 
partial wave expansions is very poor. 

We need something more… 

We need to show the NO what it means to fail…
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Unique phases: Learning false predictions 

•   We trained on 400K samples with the following composition:                  
225K true samples with L=1,2,3, and 175K false samples 

•  The output is now a  prediction + an index  (fidelity index).                 

During training,  for false samples and  for true samples. 

•  We found that we get much better reliability from  when we average 
over several (independently-trained) NOs (we used a group of 56 NOs). 

•  Within the training-test dataset the average fidelity index  was 98.6% 
correct when it predicted a good solution with the criterion . 

•  We also found that  correlated non-trivially in general with the unitarity 
loss.

ϕ(z) ℱ
ℱ = 0 ℱ = 1

ℱ

ℱ
|ℱ − 1 | < 0.01

ℱ
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Heatmaps of the mean fidelity index  for the linear moduli  (right [Dersy et al, ’23]). 
Notice the sharp separation between acceptance and rejection.

ℱ B(z)
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there are two L=2 finite partial-wave 
solutions here!

Heatmaps of the mean fidelity index  for the quadratic moduli                          
(right [Dersy et al, ’23])

ℱ B(z)
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Outlook 

QFTs are a particularly interesting context characterized by 
challenging high-dimensional (∞-dim) structures                  

Question: Can we bring together the progress of recent years (in 
SUSY QFTs, AdS/CFT, numerical/analytic bootstrap…) to devise new 
strategies and to extend (generalize) the knowledge of tractable 
corners into generic inaccessible regimes?  

Question: Can we use ML/AI to improve both numerical and analytical 
results? How will the interplay between numerics & analytics evolve? 

Many interesting contexts and QFTs…
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Ambiguous phases: NOs on the double cover 

•  To test the potential of reproducing ambiguous solutions, we also 
trained on a 100K-sample dataset composed of 30K unique L=3 
solutions and 70K known classified L=2, 3 ambiguous solutions. 

•  In this case, the output function consisted of two  solutions. 

•  Training and generalization were much more subtle and difficult in this 
situation for obvious reasons.

ϕ(z)
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Reproducing an infinite partial-wave solution by [Atkinson et al, 1978]. One NO 
predicts two solutions, another predicts one of the two solutions.


