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Non-perturbative string theory

Only non-perturbative def of string theory from holography. e.g.:

IIB string theory on AdS5 × S5 ⇔ 4d N = 4 SU(N) SYM.

String length ℓs and complex string coupling τs = χ+ i/gs related to
SYM τ ≡ 4πi

g2
YM

+ θ
2π as τs = τ and L4

AdS/ℓ
4
s = λ ≡ g2

YMN.

M-theory on AdS4 × S7/Zk ⇔ 3d U(N)k × U(N)−k ABJM.

Planck length ℓ11 related as L9
AdS/ℓ

9
11 = kN3/2.

Graviton scattering on AdS ⇔ stress tensor correlator in CFT.
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Bootstrapping holography

AdS/CFT has recast quantum gravity into easier problem of CFT,
but CFTs still strongly coupled so cannot compute in practice.

At leading large N (i.e. classical string) can use integrability for
finite λ, but cannot study quantum string (or M-theory).

For SYM can do weak coupling, but gravity at strong coupling.

Today we combine three non-perturbative constraints to
numerically study holographic CFTs (and thus quantum gravity):

1 Unitarity: OPE coefficients real and ∆ bounded.

2 Crossing: combine with unitarity for numerical bootstrap algorithm.

3 Localization: Input protected coupling-dependence to bootstrap.
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4d N = 4 SYM stress tensor correlator

Expand stress tensor superprimary correlator in blocks:

⟨S(x1)S(x2)S(x3)S(x4)⟩ = Gprot(c, xi) + Θkin(xi)
∑
∆,ℓ

λ2
∆,ℓg∆,ℓ(xi)

Susy ward identities solved by this expansion, where all dynamical
info in λ,∆ of long multiplets in singlet of SU(4)R .

Theory specified by c ∼ N2 and τ .

1/c enters linearly into Gprot(c, xi).

Both τ and c effect long multiplet CFT data nontrivially.
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Localization constraints

Derivatives of free energy F (m) deformed by hyper mass relate to
S4 integrals of correlator [Binder, SMC, Pufu, Wang ’19; SMC, Pufu ’20] :

1
8c

∂2
m∂τ∂τ̄F
∂τ∂τ̄F

∣∣∣
m=0

= I2
[∑

∆,ℓ

λ2
∆,ℓg∆,ℓ(xi)− fprot(c, xi)

]
,

−48ζ(3)c−1 − c−2∂4
mF

∣∣
m=0 = I4

[∑
∆,ℓ

λ2
∆,ℓg∆,ℓ(xi)− fprot(c, xi)

]
.

LHS can be computed as function of N and τ in terms of N
dimensional matrix model from localization [Pestun ’08] .

LHS computed in closed form for any N and τ to high accuracy
[Alday, SMC, Dorigoni, Green, Wen ’23] .

For any N, allows us to input τ into numerical bootstrap, as
two extra linear constraints on CFT data [SMC, Dempsey, Pufu ’21] .
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Perturbative results

Small gYM expansion at finite N, e.g. Konishi [Velizhanin ’09]

∆ =2 +
3λ
4π2 − 3λ2

16π4 +
21λ3

256π6

+
λ4 (−1440

( 12
N2 + 1

)
ζ(5) + 576ζ(3)− 2496

)
65536π8 + O(λ5)

Integrability gives leading large N at finite λ, indistinguishable from
resummed weak coupling in regime we’ll bootstrap.

Large N finite τ from analytic bootstrap (i.e. crossing but NOT
unitarity) + localization [SMC ’19; SMC, Green, Pufu, Wang, Wen ’19] :

∆ = 4 − 4
c
+

135
7
√

2π3/2c7/4
E( 3

2 , τ) +
1199
42c2 − 3825

32
√

2π5/2c9/4
E( 5

2 , τ) + . . .
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Bootstrap bounds on lowest ∆ for various N

0 20 40 60 80
2.0

2.5

3.0

3.5

4.0
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SU(9)

SU(8)

SU(7)

SU(6)

SU(5)

SU(4)

SU(3)

SU(2)

Bounds are converging to Planar integrability spectrum (similar to
Pade resummed 4-loop weak coupling in this regime).

Planar integrability for double trace is trivially 4 = 2 + 2.
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Bounds on lowest λ2 for various N
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No planar integrability results to compare to now.

Shai Chester (Imperial College London) August 28, 2024 8 / 18



Bounds on lowest λ2 for various N

0 20 40 60 80
0.00

0.05

0.10

0.15

0.20

SU(3)

SU(4)

SU(5)

SU(6)

SU(7)

SU(8)

SU(9)

SU(10)

SU(11)

No planar integrability results to compare to now.

Shai Chester (Imperial College London) August 28, 2024 8 / 18



Bounds: Lowest ∆ for SU(10)

0.0 0.2 0.4 0.6 0.8 1.0

2.5

3.0

3.5

4.0 SU(10)

Matches BOTH weak coupling and strong coupling expansions!

Observe non-pert level repulsion, in between weak coupling for
single trace and strong coupling for double trace.
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Sensitivity to stringy corrections
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For largish N (e.g. SU(10)), we see that analytic bootstrap result
gets closer to bound as we include more 1/c corrections.

1/c is supergravity, 1/c7/4 is R4 correction [SMC, Green, Pufu, Wang, Wen

’19] , 1/c2 is 1-loop correction [Alday, Bissi ’17; Aprile, Drummond, Heslop, Paul

’17] (which included contact term fixed from localization [SMC ’19] ).

So bootstrap sensitive to stringy corrections!
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3d ABJM stress tensor correlator

Expand stress tensor superprimary correlator in superblocks:

⟨Sa(x1)Sb(x2)Sc(x3)Sd(x4)⟩ =
1

x2
12x2

34

[∑
∆,ℓ

λ2
∆,ℓG

abcd
∆,ℓ (xi) +

∑
M

λ2
MGabcd

M (xi)
]

Susy ward identities solved by superblocks, written as linear
combos of 3d blocks in terms of structures

∑6
i=1 T abcd

i
Gi (U,V )

x2
12x2

34
.

Protected multiplets are nontrivial, include (A,2) for odd spin, (A,+)
for even spin, (B,2), (B,+) and stress tensor for spin zero. Can
bootstrap both upper and lower bounds (i.e. islands)!

Theory specified by c ∼ N3/2 and k = 1,2.

For k = 2 two theories U(N)2 × U(N)−2 ABJM and
U(N)2 × U(N + 1)−2 ABJ.

For k = 1, theory has free and interacting parts.
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Localization constraints

Derivatives of F (mi) deformed by three masses mi relate to S3

integrals of correlator [Agmon, SMC, Pufu ’17; Binder, SMC, Pufu ’18] :

∂4
m±F

∣∣
m=0 = −

π4c2
T

213 [4G1(1,4) + 2G2(4,1) + 16G4(1,4)− G4(4,1)] ,

∂2
m+

∂m−F
∣∣
m=0 = −

πc2
T

212

∫
d3x⃗

G1(|1 − x⃗ |4, |x⃗ |2)
|1 − x⃗ |2|x⃗ |2

, m± ≡ m1 ± m2 .

Integral trivializes in first constraint due to 1d theory [Yacoby, SMC,

Pufu ’14] , can be written in terms of λ2
(B,2), λ

2
(B,+), and cT .

LHS can be computed as function of N and k in terms of N2

dimensional matrix model from localization [Kapustin, Willett, Yaakov ’09] ,
solved for finite N, k [Nosaka ’23] .
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Bootstrap islands: Sensitivity to M-theory corrections
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-
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For largish N, we see that analytic bootstrap result for k = 1,2
gets closer to island as we include more 1/cT corrections.

1/cT is supergravity [SMC ’18] , 1/c2
T is 1-loop correction [Alday, SMC,

Raj ’21,’22] (which included contact term fixed from localization),
1/c7/3

T is D6R4 correction [Binder, SMC, Pufu ’18] .

So bootstrap sensitive to ALL protected M-theory corrections!
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Bootstrap islands: Unprotected D8R4 term
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k = 1, M = 0, Spin 1: Slope = (22.3 ± 0.52)/9

Island is sensitive to corrections beyond D6R4 at cT−7/3, i.e. the
first unprotected correction D8R4 at c−23/9

T .

The residual between bootstrap data and O(c−7/3
T ) expansion is

consistent with c−23/9
T correction! Similar plots for k = 2.
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Conclusion

Bounds from bootstrap+localization give non-perturbative solution
to holographic CFTs at finite N and coupling!

For N = 4 SYM, evidence from comparing upper bound to both
weak and strong coupling.

For ABJM, have rigorous upper and lower bounds (i.e. islands), and
also matches strong coupling.

Bounds accurate enough to read off lowest few protected
corrections from string/M-theory to supergravity.

For ABJM, can also read off prediction for unprotected D8R4

correction to M-theory S-matrix!

Shai Chester (Imperial College London) August 28, 2024 16 / 18



Conclusion

Bounds from bootstrap+localization give non-perturbative solution
to holographic CFTs at finite N and coupling!

For N = 4 SYM, evidence from comparing upper bound to both
weak and strong coupling.

For ABJM, have rigorous upper and lower bounds (i.e. islands), and
also matches strong coupling.

Bounds accurate enough to read off lowest few protected
corrections from string/M-theory to supergravity.

For ABJM, can also read off prediction for unprotected D8R4

correction to M-theory S-matrix!

Shai Chester (Imperial College London) August 28, 2024 16 / 18



Conclusion

Bounds from bootstrap+localization give non-perturbative solution
to holographic CFTs at finite N and coupling!

For N = 4 SYM, evidence from comparing upper bound to both
weak and strong coupling.

For ABJM, have rigorous upper and lower bounds (i.e. islands), and
also matches strong coupling.

Bounds accurate enough to read off lowest few protected
corrections from string/M-theory to supergravity.

For ABJM, can also read off prediction for unprotected D8R4

correction to M-theory S-matrix!

Shai Chester (Imperial College London) August 28, 2024 16 / 18



Conclusion

Bounds from bootstrap+localization give non-perturbative solution
to holographic CFTs at finite N and coupling!

For N = 4 SYM, evidence from comparing upper bound to both
weak and strong coupling.

For ABJM, have rigorous upper and lower bounds (i.e. islands), and
also matches strong coupling.

Bounds accurate enough to read off lowest few protected
corrections from string/M-theory to supergravity.

For ABJM, can also read off prediction for unprotected D8R4

correction to M-theory S-matrix!

Shai Chester (Imperial College London) August 28, 2024 16 / 18



Conclusion

Bounds from bootstrap+localization give non-perturbative solution
to holographic CFTs at finite N and coupling!

For N = 4 SYM, evidence from comparing upper bound to both
weak and strong coupling.

For ABJM, have rigorous upper and lower bounds (i.e. islands), and
also matches strong coupling.

Bounds accurate enough to read off lowest few protected
corrections from string/M-theory to supergravity.

For ABJM, can also read off prediction for unprotected D8R4

correction to M-theory S-matrix!

Shai Chester (Imperial College London) August 28, 2024 16 / 18



Future directions

More accurate bounds ⇒ more unprotected corrections.

Get greater accuracy from imposing more localization constraints
(e.g. from the squashed sphere), or from mixing with lowest
dimension long operator (which is also relevant).

Combine localization + bootstrap to numerically solve ANY 3d
N = 2, 4d N = 2, or 5d N = 1 Lagrangian CFT, e.g.:

4d N = 2 dual to open strings [SMC ’22; Behan, SMC, Ferrero ’23] .

3d N = 6 ABJ(M) in string, M-theory, and higher spin regimes
[Binder, SMC, Jerdee, Pufu ’20] .

Once we can access ∆ ∼ c higher twist operator, can study
statistics of black hole states as function of c and coupling.
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