

ZUKUNFT

SEIT 1386

Belina VON KROSIGK [\(bkrosigk@kip.uni-heidelberg.de\)](mailto:bkrosigk@kip.uni-heidelberg.de) HighRR Lecture Week, Bergen, 13.06.2024

Liquid (non-HEP) Detectors - What it needs for Future Research

Credit: Roxanne Guenette & Jocelyn Monroe

The science of interest: rare event searches

Slide from:

 R. Guenette, J. Monroe DRD2 Collaboration Meeting 5-7 February 2024

Neutrinos

- Oscillation precision $measurable$ (δ_{CP} , mass ordering, θ_{23} octant, sterile vs)
- Neutrino interactions (from CEvNS to DIS)
- **· Astro neutrinos**

µBooNE

Dark Matter

· Direct detection $(WIMPs, \ldots)$

· Search for Majorana neutrinos

The physics needs (high-level overview)

Dark Matter

· Push Energy thresholds down to 1 meV/10 eV/1 keV

to enable low mass DM/1 GeV DM/ WIMPs.

Reduce background rates

· Scalability

$OvBB$

· Improve Energy Resolution to sub-% FWHM

Reduce background rates

Slide from:

· Scalability

 R. Guenette, J. Monroe DRD2 Collaboration Meeting 5-7 February 2024

Neutrinos

- **Push Energy** thresholds down to \sim 1MeV to enhance oscillation physics, supernovae vs study, to enable solar vs ...
- · Unambiguous readout

Scalability

The basic detection principle

Incoming particle (ν or DM)

Secondary (quasi-)particles which will be observed

Atom within the liquid

Final state particle(s)

The basic detection principle

Figure modified from L. Baudis, ECFA, Plenary Input Session

The liquids

Liquid Noble Gases Liquid Scintillator Water

The liquids

UPW **T** (Ultra-Pure Water) loaded water sea watera.

(Water-based LS)

-
-
- Wax Scintillator,

Primary signals and their energy and time scales

Liquid Noble Gases Liquid Scintillator Water

Cherenkov light

- instantaneous
- O(102) photons / MeV
- visible light

- **Atomic excitation → dimer formation → dimer decay**
- after O(ns μs)
- O(104) photons / MeV
- VUV UV

Ionization

- instantaneous
- O(104) charges / MeV
- **Quasi-particle creation**
	- instantaneous
	- O(105-6) quasi-particles / keV

- **Atomic excitation / ionization → fluorescence and**
	- **phosphorescenc**e
		- after O(ns μs)
		- O(104) photons / MeV
	- UV visible light

不

Primary signals and their energy and time scales

Liquid Noble Gases Liquid Scintillator Water

Cherenkov light

- instantaneous
- O(102) photons / MeV
- visible light
- **Atomic excitation → dimer formation → dimer decay**
- after O(ns μs)
- O(104) photons / MeV
- VUV UV

Ionization

- instantaneous
- O(104) charges / MeV
- **Quasi-particle creation**
	- instantaneous
	- O(105-6) quasi-particles / keV

- **Atomic excitation / ionization → fluorescence and**
	- **phosphorescenc**e
		- after O(ns μs)
		- O(104) photons / MeV
	- UV visible light

NB: signal collection times can be as slow as ms scale!

不

Primary signals and their energy and time scales

light readout

can be as slow as ms scale!

Primary signals and their energy and time scales

light readout

as main target and for veto detectors.

Major detector R&D themes for liquid detectors

- $₂₀₃₀$ </sub> **DRDT 2.1** Develop readout technology to increase spatial and energy resolution for liquid detectors **DRDT 2.2** Advance noise reduction in liquid detectors to lower signal energy **DRDT 2.3** Improve the material properties of target and detector components
- **DRDT 2.4** Realise liquid detector technologies scalable for integration in

Readout development

Develop readout technology to increase **spatial and energy resolution**

Measurement strategy

Advance **noise** reduction to lower **energy thresholds**

- Target properties
- Improve the **material properties** of target and detector components
- Scaling up challenges
	- Realize technologies **scalable** for integration in large systems

Major detector R&D themes for liquid detectors

Major detector R&D themes for liquid detectors

Light dark matter detectors

Hundred-ton scale dark matter detectors

-
-
-

Hundred-ton scale dark matter detectors

Dual-phase xenon and argon TPCs

Scintillation light emitted by LAr and LXe: 128 nm and 178 nm, respectively

Ton scale 0νββ detectors

Ton scale 0νββ detectors

SNO: 1 kt of D₂O SNO+: 0.78 kt of liquid scintillator SNO+: 0.78 kt of liquid scintillator

 7 kt $H₂O$

Ton scale 0νββ detectors

SNO+: 0.78 kt of liquid scintillator SNO+: 0.78 kt of liquid scintillator

 7 kt $H₂O$

Long baseline accelerator-neutrino programmes

- discovery of CP violation in neutrino oscillations
- precision measurement of the PMNS matrix parameters
- study of solar and supernova neutrinos
- proton decay

Deep Underground Neutrino Experiment (DUNE)

- 4 x 10-kt fiducial LAr TPC modules
	- 2 modules horizontal drift
	- vertical drift module
	- 1 "opportunity" module

Deep Underground Neutrino Experiment (DUNE)

LAr TPC technology

- Excellent 3D imaging capabilities $-$ (O(mm) over large volume)
- \blacksquare Excellent energy measurement capability fully active calorimeter
- Particle ID by dE/dx, range, event topology

CPA: Cathode Plane Assembly

Far detector 1 (horizontal drift)

Hyper-Kamiokande

UNIVERSITÄT
HEIDELBERG ZUKUNFT
SEIT 1386

Super-Kamiokande Credit: Kamioka Observatory, ICRR, University of Tokyo

Richards Slide from B. Richards

Hyper-Kamiokande

KM3NeT

- ARCA at 3.5 km depth in front of Sicily $\mathcal{L}_{\mathcal{A}}$
	- neutrinos from supernovae, GRBs or colliding neutron stars
- ORCA at 2.5 km depth in front of Toulon
	- optimized for energies around 10 GeV (atmospheric neutrinos)

KM3NeT

Enabling technologies

intrinsic key properties

- multiple signal channels (light and potentially charge or quasiparticles)
- high scintillation yield

a.

1. Properties of noble liquids 1

- high, interaction-type-dependent charge or quasiparticle yield
- long electron lifetime

- Microphysics of liquids
	- Better understanding of energy partitioning to improve energy resolution and threshold
	- Doping techniques

- **Xe in Ar**: to shift light from VUV to UV for higher quantum efficiency (avoid WLS coatings) **H2 in Xe**: low-mass target to increase sensitivity at low DM masses (e.g. HydroX as upgrade to
- multi-ton scale Xe detectors)

1. Properties of noble liquids - R&D

Light emission / detection

1. Properties of noble liquids - R&D 1

- developing photon detectors with **VUV-sensitivity**
- exploiting sub-dominant emissions (e.g. near-IR light component in LAr)
-

1. Properties of noble liquids - R&D

- Higher voltages to drift electrons over up to 10 m scale
	- HV feed-throughs must deliver 50 kV or more to the cathode
	- Dielectric properties of liquid must be better understood
	- Detailed models of light emission from HV breakdown required
	- Electrodes with large (>2.5 m) diameters: wire, mesh/ woven, micro-pattern

1

NEXT-100, arXiv:2311.03528v2

- New methods needed to ensure calibration capabilities throughout large volumes a.
- \mathcal{L}^{max}

1. Properties of noble liquids - R&D 1

Calibration

. Charge collection in noble liquids

2

- Charges from ionization with density of
- 26,000 e -/cm for 4.0 MeV/cm in LXe
- 9,000 e -/cm for 2.1 MeV/cm in LAr
- Overall acquired charge
- **[≥] 50,000 e- for LXe ~ 20,000 e- for LAr**
-
- O(1 mm/ μs) drift velocity for 1 kV/cm E-field
- Charge di ffusion during drift informs design granularity of the collecting anode

Cathode

. Charge collection in noble liquids - R&D

Liquid impurities

- LXe and LAr must be purified $(H₂O, electronegative impurities)$ for high light and charge yield
- Mean e- lifetimes for LXe / LAr around 1-10 ms in $a \sim 9$ t total mass for impurity concentration around 10 ppt
	- Modern technologies allow notably lower impurity concentrations

2

Xeclipse apparatus at Columbia University, E. Aprile et al.

UNIVERSITÄ HEIDELBERG ZUKUNFT **SEIT 1386**

. Charge collection in noble liquids - R&D 2

- Charge amplification
	- several orders of magnitude amplification in gas phase via electroluminescence
	- amplification in liquid requires R&D
		- doping LAr with small percentages of LXe suggests amplification by factor ≥ 100 in LAr exploitation of localized electroluminescence suggests potential amplification in LXe
		-

A. Breskin, 2022 JINST 17 P08002

Charge readout structures

High lumi applications (e.g. LBN near-detectors): Pixel electrodes on PCBs instead of "standard" wire planes for X-Y measurement, to eliminate risk of reconstruction ambiguities

Taking data Nov-Dec 2017

Multiplexed Pixel LArTPC Demonstrator (1008 pixels readout with 32 channels) **Highly-multiplexed Pixel LArTPC in a Testbeam**

(28,800 pixels readout with 480 channels)

Benchtop chip tests December 2017 with Self-triggered Digitization and Readout

Truely 3d front end ASIC for LArTPC digital LArTPC **Pixel Readout (LArPIX)**

-
- Amplification stability

- Cryogenic low-noise, low-radioactivity, low-heat dissipation readout
- Integrated, simultaneous readout of light and charge

Cryogenic preamp for SiPMs, NIM 936, 2019

Demonstrated

. Charge collection in noble liquids - R&D

2

Images from L. Baudis and J. Asaadi

. Charge collection in noble liquids - R&D

SiPM array, DARWIN demo

2"x 2" flat panel PMT (R12699) R&D for **DARWIN**

3" (R1311 low-rad PMT by XMASS), **JINST 15, 2020**

Light and charge

2

- **Photomultipliers**: established technology, low DCR (~0.02 Hz/mm²), high QE (mean around 34% , up to $> 40\%$ at 175 nm)
	- *issues*: lower radioactivity required, after-pulsing due to vacuum leaks and light emission
- **SiPM arrays**: lower radioactivity / area, lower voltage

pixel x index

- *issues*: dark count rate (too high by ~ factor 50 at least)
- \Rightarrow low-field SiPMs (reduce band-to-band tunneling), digital SiPMs

Images from L. Baudis

. Charge collection in noble liquids - R&D

Light and charge

- **Hybrid sensors**: e.g., ABALONE, VSiPM, SIGHT
	- SiPM + Quartz + photocathode: reduced radioactivity compared to PMTs
	- lower DCR compared to SiPM arrays (photosensitive area difference)
- **Bubble-assisted Liquid Hole Multipliers**: local vapor bubble underneath GEM-like perforated electrode in LXe

Hybrid photosensor: Hamamatsu XE5859

2

Images from L. Baudis

Hybrid photosensor: ABALONE; left (DARWIN R&D with SiPM); right: NIM 954, 2020

. Charge collection in noble liquids - R&D

Cryogenic front-end electronics

- Number of readout channels \sim number of sensors and/or meters-long TPC wires
- Challenges for cryogenic front-end electronics include heat dissipation
- Cryogenic optical transmission of signals (e.g. in DUNE and DarkSide-20k) requires transmission driver and receiver development
- Pixel electronics require independent front-end channels for each pixel, likely operating in a s cold (even immersed in the cryogenic liquid) with a potentially destructive dissipation heat
- The handling of high bandwidths, the improvement of the S/N ratio, and the reduction of cost/channel will be crucial for large-scale pixel readout

2

Target radiopurity

. Purification, cryogenics, infrastructure for noble liquids 3

- Primarily of concern for the low-background experiments
- Near absence of impurities like 39Ar, 222Rn, 85Kr is crucial
- LAr: large-scale cryogenic ⁴⁰Ar distillation efforts currently under development (ARIA project)
- LXe: focus on ²²²Rn: continuous cryogenic distillation needed

Distillation column, ARIA project

. Purification, cryogenics, infrastructure for noble liquids 3

- Cryogenics
- increasingly complex cryogenic systems
- need to facilitate circulation of LAr/LXe to maintain cleanliness
- thermodynamic solutions necessitates ultra-clean compressors and heat exchangers
- technologies needs similar to those of particle accelerators, and detector cooling solutions in HEP experiments
	- for different reasons, both communities need clean, nonpolluting components in their respective cryogenic and cooling systems
- multi-ton storage components with rapid noble liquid recovery systems in case of emergency

Radioassay

. Purification, cryogenics, infrastructure for noble liquids 3

- extensive screening campaigns in UG labs
- highly specialized radon emanation measurements
- R&D for mitigation of emanation backgrounds by investigating material selection procedures and options for surface treatment in systematic way
- ultra-sensitive trace analysis capabilities need to developed for a much larger scale

. Light collection in noble liquids and other liquids

Main challenges:

- photosensor coverage over huge surfaces
- extreme environments (e.g. underground, undersea, and / or at cryogenic temperatures)
- single photon sensitivity
- long term operation and stability (≥ 10 years between detector accesses)
- numbers of readout channels as well as data volume
- very different time scales (both ~ns and ~ms at same time)
- radiopurity of light collection, sensing, front-end electronics and signal transmission technologies

. Light collection in noble liquids and other liquids

Huge photosensitive areas

- reducing dark current rate (DCR)
- reducing channel count through summing SiPM signals in arrays
- increasing S/N through front-end electronics design (mitigate large output capacitance of arrays)
- improving timing resolution

- Radiopurity, radiopurity, radiopurity…
- Liquid composition
- Low temperatures
- **Opacity**

. Liquid scintillator and water detectors

HEIDELBER ZUKUNF1

- Hybrid detectors for event reconstruction
- Liquid doping

. Liquid scintillator and water detectors

 \odot Light collection at origin using fibers + fast readout If Highly improved vertex resolution by light confinement Wax based scintillator (NoWaSH) High metal loading possible (up to 10%), suspensions Potential applications: reactor, geo, 0νββ, solar,...

Opaque scintillators

-
-

Required R&D readiness (high-level, non-exhaustive overview)

Earliest feasible start date, such that R&D is not the limiting factor.