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§ Spatial resolution pops up everywhere…

§ Good to know same basic mechanisms

§ I love the topic since my PhD.
Always wanted to write a paper…
Some parts are now written up in N. Wermes’s book..

§ Mathematics can be fun.

§ There will be some ‘take home messages…’

§ Sorry for the old-fashioned style file. This used to be the 
’corporate design’ of Uni Heidelberg…

Why this talk?
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§ In Strips / Pixels / …, ‘Hits’ (particles going through, X-rays, 
Photon) produce signals

§ These are measured
on one or more channels

§ The data is used to
reconstruct the position.

§ Questions: 
• What is the spatial resolution?
• How does it depend on the reconstruction algorithm?
• How does it depend on noise?
• How does it depend on the ‘charge sharing’ mechanism?
• …

What is it about
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§ Warmup:
Resolution with binary readout, optimal signal width

§ Error of Center-of-Gravity: When do we need a fit?

§ Influence of noise on spatial resolution
• Higher Moments
• Correlated Noise
• 2D structures
• Wide signals

§ Error when doing ‘Eta-reconstruction’
• Search for ‘best’ response function

Overview
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BINARY READOUT OF BOX SIGNALS



§ Consider very narrow signal
§ → Only one strip is hit → Binary ‘yes/no’ - readout
§ Reconstructed position = strip center. Error = offset in strip.

§ Sigma of Error:

Spatial Resolution of Narrow Signals
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§ Average Error is 0! (No bias)

50 µm pitch -> s=12 µm, FWHM = 28 µm



§ Consider ‘Box’ Signals for simplicity. Still binary readout.
§ When 2 strips are hit ® reconstruct at edge ® small error

§ Minimum Error for b = p/2. Error becomes half: s = ½ p/Ö12
§ Note that we have 50% single and 50% double hits
§ Note: Signals wider than p add no information!

Resolution with wider Signals (‘Binary’ Readout!)
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ANALOG READOUT



§ When we know the AMPLITUDE in each strip/pixel, ce can 
do better.

§ Simplest approach: xrek = Center of Gravity of the signals 

§ Thick detector, Inclined track -> Box
• -> Tilt detector!
• Lorentz Angle helps

§ Perfect reconstruction of w = p

§ Diffusion -> Gauss
• Reconstruction ?
• Fit !
• Can we do simpler ? How good is CoG?

Realistic wide Signals
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CENTER-OF-GRAVITY RECONSTRUCTION:
WHEN IS IT SUFFICIENT   - OR -
WHEN DO WE NEED A FIT?



§ A 1D signal with (spatial) shape f(x) falls onto a strip 
structure with pitch a
• We assume òf(x)dx = 1 and f(x) symmetric.

§ This generates (analogue) signals on several strips.
§ We assume for now that noise = 0.
§ Question:

What is the reconstruction error for CoG reconstruction?
• More precisely: Error for a single event? Average error? Sigma?

§ We expect the answer to depend on
• signal shape
• Strip pitch a
• signal position (for single events)

The question:
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§ The following calculation involves partial integrals over 
arbitrary function.

§ Normally we must give up soon analytically (consider 
Gaussians..)

§ But it turns out that 
we can go quite a way…

§ Maybe showing the derivation would not really be 
necessary, but I like the fact that so many ‘simple’ aspects 
of basic analysis show up…

Remark
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‘never give up’



1. Signal on Strips
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x

xc

This is the signal in strip 
m when the charge cloud 

is centered around xc 

We assume the 
signal on a strip m is 

the integral of f(x)

Strip centers 
are at m·a

Box of width a 
centered at m·a-xc

0

‘Signal’ function 
centered at xc



2. Reconstructed Position with Center of Gravity
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xrek ?

S0 S1

Staircase = g(x)

position reconstructed by CoG
(we assumed a normalized signal)



3. Divide Staircase in sym. / antisym. parts
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0 a 2a-2a -a

xc

0 a 2a-2a -a

0 a 2a-2a -a

g(x) 

g(-x) NB: this is only valid for 

a-2xc >0, i.e. xc < a/2. 

This will be sufficient. 



§ Integral of gantisym(x) is zero because f is assumed symmetric
§ We are left with

§ To solve this, move to Fourier Space with

§ We can use                                                  and
(for symmetrical a, b) 

4. Simplify the integrals. Move to Fourier Space
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Write Sum of Boxes 
as convolution of a 

single Box with 
Dirac Comb



5. Get rid of the Integral
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sinc

This is again a 
Dirac Comb, i.e. a 
sum of peaks at 

distances 1/a

integral can be carried out.
Sum is left

k k



6. Use Symmetry, Simplify the Sin() function
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Use symmetry 
m ⇔ -m.

Treat m=0:
~f(0) = 1,

Sin(m k)/m → k
-> 1-2xc/a 

Center position 
xc shows up !



PUH…..



§ For very narrow f(x), f(x) → Dirac(x) and therefore                   
so that

§ This is the Fourier Series of a Saw-Tooth, as expected!

A First Check
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§ For a box of width a,                          is zero for mÎN.
→ reconstruction is perfect. Same for width = multiple of a. 

Check with f(x) = Box
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xerr

xc

w= 0.1 a

w= 0.2 a

w= 0.5 a

w= 1.0 a

w= 1.2 a f(x)

x



§ Error already very small for s = 0.5a

Check with Gaussians
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xerr

xc

s = 0.01 a

s = 0.1 a

s = 0.2 a

s = 0.5 a



Going Further: Sigma of xerr?
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sin() are 
orthorgonal!



§ For very narrow signals, we have again                  so that

                                                         as expected….

•  This is probably the most complicated way to get the 1/12…

Check This for Narrow Signal
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p2/6



§ For a Gaussian signal with width s

we get 

§ For a Box of width s·a:

§ For integer width s, cos(..)=1, so the sum is not 0…
§ But s becomes zero thanks to S(1/m4) = p4/90..

f(x) = Gaussian(x)  or  Box(x)
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m

=1/48 for s=0.5
=0 for s integer



The result ‘Error ≈ 0 for FWHM ≈ a’ can be found for many 
pulse shapes. We knew this… but now we know for sure…

Plot this for f(x) = Gauss(x)
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For fun: Slope is

 

Error becomes 
negligible for
s ≈ 0.4 a, or 
FWHM ≈ a



§ Error is zero for integer box width.
§ Behavior in-between is not trivial (see next slide)…

Plot this for f(x) = Box(x)
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width / a



1/3

§ Why does the error → 0 for wider Gauss while it is ≠ 0 also 
for wide boxes?
• This very reasonable question has been asked after the talk.

§ We consider an example case:
a = 1, b = 1.5, xc = 0.25

• The central part has weight 2/3 and position 0
• The right part has weight 1/3 and position 1

→ reconstructed position is 1/3 and NOT 0.25
§ This shows: the ‘central parts’ of the box carry no 

information, the edges are badly assigned to bins

Understanding the BOX-Behavior
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0 1/2-1/2 1

1

2/3

1/3

Box Signal 
with area 1

0 1/2-1/2 1

2/3
Integration /

Binning



§ This was for an ideal, noise-free case.
§ The ‘reconstruction error’ was systematical, or from 

insufficient knowledge (small box)

§ But even for wide signals with ‘good’ shape, NOISE will 
degrade the reconstruction

Noise
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LIMIT OF SPATIAL RESOLUTION FROM NOISE



§ How is spatial resolution degraded by noise?

§ We all ‘know’                                       .                              

This states, that the resolution degrades with noise ‘linearly 
to first order’.

§ The proportionality k is empirical. We want to calculate it

§ We also want to check what happens with correlated noise
§ We want to see what happens to higher order

• What is this here? It is the distribution of the noise…

§ We assume we can reconstruct with CoG (more later…)
§ We restrict on a 1D treatment, but 2D is straight forward

The Question
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§ A Signal at     is distributed over N strips at positions 
§ Signal on i-th strip is
§ The sum of all signals shall be normalized to 1 (‘trivial’):

§ Assume we can perfectly reconstruct the position as center 
of gravity:

§ Now assume noise      on all strips, signals are then Si+ni

§ the reconstructed position is:

1. Write down xrek with noise
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1

2



§ This becomes (Trick: Taylor Expansion of Denominator):

§ The reconstruction error (xerr=xrek-x) is:

§ We need the standard deviation:

2. Assume noise is small. Get the standard dev.
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We need to average over
- ALL possible positions x
- ALL noise values

Average error is zero!



3. Do the averaging
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For uncorrelated 
noise

3

This is k2 !

§ If we chose the origin such that

this simplifies to:



§ Consider two strips at x1 = -a/2 and x2 = +a/2   (N = 2)
§ Signals for a hit at x shall depend linearly on x:

§        ,        and         are fulfilled:

S1 + S2 = 1;      x1 S1 + x2 S2 = x;      x1 + x2 = 0

§ We get

§ Or

§ For sn = 0.1 (Signal/Noise = 10), resolution = 8% × a
§ Resolution is better than optimal binary readout for S/N>5.6

Example: Two Strips with linear signal sharing
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1 2 3

S1 S2

50 µm pitch
S/N =10

 -> s=4 µm
(FWHM = 10 µm)



§ For FULLY correlated noise, ni = nj and

§ We get

§ For the strip example

                  serr = a sn / √3 = 0.57 a sn  (instead of 0.816..)

§ Correlated noise is less harmful than ‘normal’ noise
§ Note: For mixed noise, superimpose both components
§ Note: If the Amplitude of the signal is KNOWN (X-ray), 

noise becomes correlated and resolution improves!

Correlated Noise ?
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§ Noise can have different distributions.
§ They have different higher moments:

§ They are

§ We need then higher order correlations (not trivial..):

Higher Orders (in noise)
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§ Repeating the derivation yields

§ Only the correction depends on the ‘type’ (shape) of noise.

§ Remember:
• For small noise, there is no need to simulate Gaussian noise
• Randomly adding or subtracting ± sn has the same effect!

Higher Orders
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Previous result

Correction



• Reconstruction for Gauss noise fails completely in few cases 
due to very high noise values

Is this true? → Small Monte Carlo: Error vs. Noise
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Noise: 2 peaks
Red: Simulation
Blue: Linear Theory
Green: higher order

Noise: Box
Red: Simulation
Blue: Linear Theory
Green: higher order

Noise: Gauss
Red: Simulation
Blue: Linear Theory
Green: higher order



§ Can be treated similarly
§ Observations:

• Small number of electrodes is good
• Well confined acceptance is good (‘circle’)

§ Hexagons are best (least sensitive to noise!)

2D Structures
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Value



BACK TO COG
NOW WITH NOISE



§ Resolution for small s is bad → make f(x) wide

§ BUT: Summing up many strips creates increasing noise

§ Must chose N small but such that reconstruction is ‘just’ ok.

§ The choice is fairly arbitrary
§ And:

• In real system, there is often a threshold (hits below this are 
not read out)

• The reconstructed amplitude is wrong (signals below threshold 
are lost)

• Broken pixels need special treatment

Problems with Centroid
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§ Many possibilities… I do not go in details

§ Error does not go to 0 for wide signals when we have noise.
§ The optimum signal width is still close to FWHM = a!

Monte Carlo Simulation 
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ETA FUNCTION



§ Often the Signals Distribution function (e.g. on 2 strips) is 
not linear.

§ This is related to the ‘famous’ eta-function. 

§ The position then cannot be calculated by CoG, but by 
using the inverse function (or the ‘eta’-lookup table)

§ Question: How does resolution depend on f(x)?

Motivation
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Linear Charge Sharing Arbitrary function



§ The signals on the two strips shall be

(we assume no signal is lost, i.e. we require S1+S2 = Q 

§ We require
• f(x) is strictly monotonic (obvious)
• f(x) shall be symmetric in x (may not always be the case) 

§ Obviously

1D Case: Reconstruction with Inverse Function
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Adding Noise
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§ With Noise on S1 and S2 we get

Add noise

Taylor (as before)

Only 1st order in noise

Taylor Series for f-1 around f(x)

A ‘forgotten’ math theorem: 
The derivative of the inverse 
function is the inverse of the 

derivative



§ To get

§ we average first over noise. We get

• Coefficients depend on the shape of the response function
• They are small where the response function is steep (obvious..)
• Vice versa: Flat parts in eta are bad.

§ For uncorrelated noise, only the first term matters 

Sigma – Averaging over Noise
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Average over 
position



§ What does this mean for linear interpolation, f(x) = x+0.5 ?
§ Let us first look at the position dependent error

§ This is NOT constant. It doubles at the edges !!!
• When we reconstruct in the middle, we know the error is smaller!

§ The average error is 

   as before.

Back to linear Interpolation 
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§ Very exciting: Can we find a f(x) such that the integral is 
better than with linear interpolation
• Probably not (?) But let’s see…

Finding New Distribution functions 
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§ Easier: Can we find a distribution function so that the error 
is independent of position? 

§ One line of Mathematica is enough:

The average s2 is 0.643, which is (a little bit) better than 2/3=0.66 !!

We found a distribution which is better than linear interpolation!
(it is less noise sensitive)



§ Are there better functions???

Better!  (but just a little…)
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§ Basic Algebra is fun…..

§ CoG is ‘perfect’ as soon as signal width >≈ strip width
§ Wider (too wide) signals are more sensitive to noise
§ Ideal k for strips is 0.816
§ Analogue readout for S/N<6 is useless.
§ Noise shape (distribution) does not matter for S/N > 10
§ Correlated noise is less harmful
§ Hexagons have better res. and are less sensitive to noise
§ Linear interpolation has more error at the edges (on the 

stips)
§ There is a better reconstruction function than linear

• but the difference is negligible….
• I did not find better so far…

Summary: What did we learn ?
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Thank you for your attention!
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