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Machine Learning and Deep Learning

ARTIFICIAL
INTELLIGENCE
Any technique that enables

computers to mimic
human behavior

313472

Figure from "MIT Introduction to Deep Learning” (http://introtodeeplearning.com)
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From Linear Regression to Deep Learning

m We want to find parameters B for a linear model
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Linear regression/logistic regression fails
if output is not linear/ linearly separable
— requires additional feature
engineering.

m We can find the unique solution of the quadratic
function by differentiating w.r.t. 5:

3= (X/TX/>_1X/Ty 3)

m Deep learning aims to learn directly from raw data without feature engineering.
m ldea: stack multiple network layers after each other with nonlinear activation functions.

= Limitation: optimization becomes non-convex & no closed form solution.
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Activation Functions

Activation functions introduce non-linearities into the network.

Basic requirements to learn complex non-linear relations (e.g. XOR Problem).

m The choice of the activation function is a hyperparameter. The most common choice
however is ReLU or one of its variants.
Sigmoid

Tanh RelLU
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m Softmax: special activation for classification output — converts a vector of K real
numbers into a probability distribution of K possible outcomes.
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Feed-Forward Networks/ Multilayer Perceptron

m Feed-Forward networks are composed in a multilayer structure with the following
components:

an input layer
one or multiple hidden layer
one output layer

m where each layer is connected with a non-linear activation function (e.g., ReLU). The

activation function of the output layer (if required) is chosen based on the target value
range.

Input
layer

Hidden

layers
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Backpropagation

Deep neural networks are composed of a complicated set of functions, thus differentiating
the whole expression is not trivial.

— Split all computations of neural network into atomic operations (e.g., addition,
subtraction, multiplication) and use chain rule to decompose derivatives:
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Gradient Descent

Algorithm 1: Gradient Descent

Input: Step size:
Tolerance: e

Initialize w0 randomly;

Q%%

whie vl > cdo " iz i chte iy

Forward pass — L(y; = fw(x;), ¥j) \\ : "IIII”III z:"::“.' "' ' I
Backward pass — Vy L (y,,y,) SN ."IIIII”I l" l'l
end i
Gradient v = Z,N VwL(Pjsyi) N 4 '//,I il 4
Update witl = wt — nv
end

m Challenges with Vanilla Gradient Descent

Choosing a proper learning rate can be difficult: slow convergence/ divergence
Escaping flat regions such as plateaus or saddle points is notoriously hard

Performs same gradient updates for all parameters
a...

= Optimizer with, e.g., adaptive learning rate and/or momentum are often more robust to
mentioned problems. — ADAM Optimizer
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Going Beyond Simple Feed-forward Networks

m Data doesn’t usually come in a tabular structure:
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m Feed-fortward networks often struggle to efficiently learn from complex data:

Example: Parameter Explosion for Dense Networks

MNIST Dataset Cards Dataset (grayscale)
28 x 28 pixel »W; € R784XN 224 x 224 pixel —W; € R50I76xN
N = 128 =~ 100k parameters N = 128 ~ 6 M Parameters
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Convolutional Neural Networks

m For a long time (and still) fundamental component of DL architectures used for image,
signal processing and natural language processing.

m Kernel matrix as a learnable network parameter.
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m Convolutional layer introduces inductive bias in terms of:

Sparse interaction/ parameter sharing
Equivariance to translation
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Padding, Pooling and Stride

m Pooling: Aggregate statistic over input
neighborhood
m output rep. is approximately invariant to
small translations.

m Padding: Added zeros/copied values
around grid topology
m control the spatial size of the output
volumes.

m Stride: Parameter controlling the amount
of movement of kernel
m Reduce size of output volume + improved
comp. efficiency

T. Kortus, A. Schilli
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Convolutional Neural Networks

m Given the introduced components, an entire convolutional network can be constructed
using the following recipe:

Input size: [B, C, (H), W] [B, Cx(H)xW]

1 Filter, | Feature map size

Pooling-stage
Pooling-stage
Flatten
Feed-forward

m The output of each convolution block is defined as:

p: convolution padding size
s: convolution stride size

m nj,: number of input features
nin +2p — k B noyut: number of output features
Nout = s +1 (4) m k: convolution kernel size
u
[ ]

1Detector-stage = non-linear activation
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Model Evaluation

m Never evaluate performance with an example used for training
m Estimate the performance on previously unseen examples
m Get a sense of how well the model generalizes

m Reserve a portion of the available data for testing

m How much data we reserve depends on the problem

m Often a reasonable split: 70% for training, 30% for evaluation
m Training set: used for model learning

m Test set: used for evaluation

m Problems

m Potential waste of data: we want to use as much data for training as possible
m High variance: performance is highly dependent on the data split
m In cases where only little data is available — k-fold cross-validation
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Model Capacity, Underfitting and Overfitting

m Underfitting: Model can not capture the complexity of the data — bigger network or
more training iterations

m Overfitting: Model can not generalize and fits closely to training data — smaller
network or regularization techniques
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m Measuring the model performance during training to detect under and overfitting
requires additional validation dataset.
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Regularization Techniques

m An incomplete list of regularization techniques for deep learning:
m Parameter norm penalties (L1 & L2 regularization)
B Limit the model capacity by penalizing high parameter values with L1 |w| or L2 norm ||w/|| (Also known
as ridge-/ lasso regression in linear models).
= Dropout *

B Randomly "disable” network connections to avoid co-adaption of learned features (creates a new network
architecture from the parent network).

m Batch normalization
® Intermediate layers may take values with widely varying magnitudes — normalize the inputs.
= Data augmentation

®m Generate new training instances from a relatively small dataset by modifying existing samples (e.g.
rotation, noise, blur, crop & resize, ...)

u Early stopping
m Stop training when validatation loss increases.

1Can be used during inference to obtain an approximate Bayesian network. (https://arxiv.org/abs/1506.02142)
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Additional Literature?

= lan Goodfellow, Yoshua Bengio, and Aaron Courville. (2016). Deep Learning. MIT
Press. (https://www.deeplearningbook.org/)

m Zhang, Aston Lipton, Zachary Li, Mu Smola, Alexander. (2021). Dive into Deep
Learning. (https://d21.ai/index.html)

m Hastie, T., Tibshirani, R.,, Friedman, J. (2001). The Elements of Statistical Learning.
New York, NY, USA: Springer New York Inc.

m Kevin P. Murphy. (2022). Probabilistic Machine Learning: An Introduction. MIT Press.
(https://probml.github.io/pml-book/bookl.html)

m Kevin P. Murphy. (2023). Probabilistic Machine Learning: Advanced Topics. MIT Press.
(https://probml.github.io/pml-book/book2.html)

m Christopher M. Bishop. (2006). Pattern Recognition and Machine Learning.
Springer-Verlag, Berlin, Heidelberg.

2All additional references are listed without any particular ordering in mind.
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