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Motivation : Electric charge fluctuations

Electric charge fluctuations : 
• Directly accessible in both the theory and experiment!! 
• Sensitive probe for freeze out parameter determination.
L. Adamczyk et al. (STAR Collaboration) 

Phys. Rev. Lett. 113, 092301, (2014)
A. Adare et al. (PHENIX Collaboration) 

Phys. Rev. C 93, 011901(R) (2016)

• Pions, being the pseudo-Goldstone bosons of spontaneous 
chiral symmetry breaking, control a large part of the low-energy 
dynamics. 

• Electric charge fluctuations are sensitive to the pion spectrum in 
the hadronic phase in the QCD phase diagram. 

• We chose Möbius Domain Wall Fermions for these calculations. 
• Better Symmetry Control: Domain Wall Fermions (DWF) has a 

better control on chiral symmetry —>  Better control on the pion 
spectrum at finite lattice spacing.
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Tuning of the bare input quark masses on the 
line of constant physics (LCP)

Tuning of bare input quark 
masses (  ) in the 
Domain Wall action:  

minput
f

mlatt
f = minput

f + mres , f = {u, d, s}

Y. Aoki et al, PoS LATTICE2021 (2022) 609
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Quark number susceptibility and conserved 
charge fluctuations in (2+1)-flavor QCD
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In QCD with two light  and one strange flavor , pressure is 
expressed via a Taylor expansion in quark chemical potentials ( ).
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Quark number susceptibility with 
Domain wall fermions 

Z = ∫ DU ∏
f=u,d,s

detM(mf )exp[−Sg], det M(mf , ̂μf ) = [
det D(mf , ̂μf )DWF

det D(mPV, ̂μf )DWF ]
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⟩
M. Cheng et al, 

Phys.Rev.D81:054510,2010 ; 
P. Hegde et al, PoS 

LATTICE2008:187,2008
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, where ,  is the quark chemical potential for flavor f.̂μf = μf /T μf
The diagonal and off-diagonal quark number susceptibilities can be 
written as,

χ fg
11 =

Nτ

N3
σ

∂2 ln Z
∂ ̂μf∂ ̂μg

̂μf=0

=
Nτ

N3
σ

⟨D f
1Dg

1 ⟩, f ≠ g, f, g = {u, d, s}

J. Bloch and T. Wettig, Phys. Rev. 
Lett. 97, 012003 (2006) 

U4(x) → exp( ̂μf )U4(x), U†
4 (x) → exp(− ̂μf )U†

4 (x),

=
Nτ

N3
σ

⟨D f
2⟩ + ⟨(D f

1)2⟩, f = {u, d, s}

 are the most noisy part 
in our calculation

(D f
1)2 and D f

1 Dg
1

The QCD partition function can be written as,



Stochastic estimation of traces
One can express all the quark number fluctuations in terms of the , 

D f
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FIG. 1. Contributions of di↵erent Dn to the �
B
n . Each blob

represents insertion of the 0th component of the conserved
current. Solid red and dotted black lines represent directly
exponentiated and cross terms respectively.
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Dn(T ) = D̄n · n! =
@
n ln det[M(T, µB)]

@(µB/T )n

����
µB=0

, (3)

and the h·i denotes average over gauge field ensembles
at µB = 0, i.e. hOi =

R
Oe

�S det[M(T, 0)]DU/Z. The
physical interpretation of Dn is simple for the continuum
theory: Dn =

R
dx1 · · · dxnJ0(x1) · · · J0(xn) is the inte-

grated n-point correlation function of the 0th component
of the conserved (baryon) current J0(x) at a space-time
point x. Note that, due to CP symmetry of QCD all Dn

for n = odd(even) are purely imaginary(real) and only
the n = even terms contribute to Eq. 1. In practice, lat-
tice QCD computations of the �

B
N involve computations

of all Dn for n  N as intermediate steps, and �
B
N are

obtained from combinations of Dn and their powers.
Contributions of various combinations of Dn to the few

lowest order Taylor coe�cients are sketched in FIG. 1. If
one considers the factorials and the powers of µB/T asso-
ciated with each Dn in the sum of Eq. 1, it is not di�cult
to realize that all contributions of each Dn to �P

E can
be resummed into exponential forms. For example, con-
tributions of Dn

1 from all �B
n in Eq. 1 can be resummed as

exp
⇥
D̄1(µB/T )

⇤
. Similarly, contributions of all Dn
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be resummed as exp

⇥
D̄2(µB/T )2

⇤
, and so on. Also it is

easy to see that the contributions of the mixed terms like
D

n
1D

m
2 arise from exp

⇥
D̄1(µB/T )

⇤
⇥ exp

⇥
D̄2(µB/T )2

⇤
.

Thus, it is possible to write down a resummed version
of Eq. 1, viz.
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providing the EoS up to infinite orders in µB . The
�P

R
N can be considered as a µB-dependent e↵ective

action obtained by resumming up to N -point corre-
lation functions of the conserved current. Expansion

of �P
R
N in powers of µB/T yields an infinite series

in µB/T , in addition to the truncated Taylor series:
�P

E
N +

P1
n>N hD̄

i
1 · · · D̄

j
N i(µB/T )n, where i, j = 0, . . . , N

satisfying 1 · i + · · · + N · j = n. The Taylor expanded
(NE

N ) and the resummed (NR
N ) net baryon-number den-

sities can be straightforwardly obtained as a single µB-
derivative of �P

E and �P
R in Eq. 1 and Eq. 4, respec-

tively.
The resummed version in Eq. 4 also highlights

the connection between the Taylor expansion and
the reweighting method. In the reweighting method
Z(T, µB)/Z(T, 0) = hdet[M(T, µB)]/ det[M(T, 0)]i can
be calculated, if computationally feasible, by exactly
evaluating the ratio of the fermion matrix determinants
on the gauge fields generated at µB = 0. In more realistic
lattice calculations with large volumes, exact evaluations
of the determinant ratios might not be computationally
feasible and one may consider evaluating det[M(T, µB)]
within some approximation scheme to obtain approxi-
mate partition function Z

R
N (T, µB) ⇡ Z(T, µB). Follow-

ing the spirit of the Taylor expansion, one such approx-
imation scheme can be expansion of det[M(T, µB)] in
powers of µB/T . Keeping in mind det[M ] = exp[Tr lnM ]
and Eq. 3, one can immediately recognize

Z
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=
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Since CP symmetry dictates that the even(odd) Dn are
purely real(imaginary) and the partition function must
be real, a measure of the severity of the sign problem is
given by the average phase factor for ZR

N (with µB real),

⌦
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=
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An expansion of
⌦
cos⇥R

N

↵
in µB/T leads to the Tay-

lor expanded measure of the average phase of the parti-
tion function [23, 26], which we will denote by ⇥E

N . As
the sign problem becomes more severe the average phase⌦
cos⇥R

N

↵
⇡ 0 and resummed results will also show signs

of breakdown. Furthermore, although �P
E
N can be eval-

uated for any complex value of µB , �P
R
N becomes un-

defined when Re[ZR
N ]  0 for a given N and statistics,

leading to a natural breakdown of the resummed results.
The location of the zeros of ZR

N in the complex-µB plane
will indicate the µB region where such resummation can
be applicable. Obviously, for any given N the region of
applicability of �P

E
N cannot exceed the same for �P

R
N .

Lattice QCD computations.– For this work, we used the
data for �B

n and Dn generated by the HotQCD collabora-
tion for calculations of the QCD EoS [11] and the chiral
crossover temperature [28] at µB > 0 using the Taylor ex-
pansion method. The HotQCD ensembles were generated
with 2+1-flavors of Highly Improved Staggered Quarks

D f
1 = Tr [D(mf )−1

dD(mf )
d ̂μf

− D(mpv)−1
dD(mpv)

d ̂μf ]
Two independent source of 
error : 

1.   finite number of random 
noises.


2.   finite number of gauge 
configurations.

 Sourav Mondal et al, 2106.03165 [hep-lat]

We will focus on 
stochastic error 
reduction  for  .Df

1
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Stochastic trace estimation
D f

1 = Tr [D(mf )−1
dD(mf )

d ̂μf
− D(mpv)−1

dD(mpv)
d ̂μf ]

D f
1 =
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∑
j [η†

j D(mf )−1
dD(mf )

d ̂μf
ηj − η†

j D(mpv)−1
dD(mpv)

d ̂μf
ηj]

The product of the traces are done with the unbiased estimator method.
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Stochastic error reduction using dilution vectors :

 is the gaussian 
random noise.

ηj

 is the diluted 
gaussian random 

noise.

ηaj

Timeslice dilution : splitting the  into four parts, using  .ηj (Nτ mod 4)

We use 500 Gaussian random noise for estimating  in each 
configuration for the physical quark masses.

(Df
1)2
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Stochastic trace estimation
D f

1 ≃
1
Nn
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∑
j
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∑
a=1
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dD(mf )
dμf
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∑
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dμf

ηaj

We see 2-3 times error reduction using Spin and time slice dilution.

Timeslice dilution : 
splitting the  into four 

parts, using  .

ηj

(Nτ mod 4)
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Quark number susceptibility with Möbius Domain 
Wall Fermions in (2+1)-flavor QCD

’s rise rapidly in the vicinity of the .  

At high T:  ’s are smaller than the Ideal gas limit. 

  reaches closer to Ideal gas limit.

χ f
2 Tpc

χ f
2

χ fg
11

In high T PT : ,  χ f
2 ∼ χ f,ideal

2 + O(g2) χ fg
11 ∼ O(g6lng) A. Vuorinen, PRD68, 054017 (2003)



Comparison of calculations with different light 
quark masses

χQ
2

• In a non interacting HRG,  is dominated by pions. 

• We see that  is sensitive to the pion mass in the temperature, 
. 

•  for  and  for .

χQ
2

χQ
2

Tpc ≤ 160 MeV
mπ ∼ 220 MeV ml = 0.1ms mπ ∼ 135 Mev ml = 0.036ms
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Comparison of  calculations with Möbius 
Domain Wall Fermions and Staggered fermions

χQ
2

• We saw larger value in the  in the hadronic phase, compared to 
the HISQ and stout smeared staggered quarks calculations at finite 
lattice spacing. 

• But our results at finite lattice spacing are closer to the Hadron 
Resonance Gas model calculations below .

χQ
2

T ≤ 160 MeV

N3
σ × Nτ = 363 × 12

Refs: HotQCD : D. Bollweg et al, arXiv:2107.10011 [hep-lat]. 
WB : R. Bellwied et al, arXiv:1507.04627 [hep-lat]



Comparison of  calculations with Möbius 
Domain Wall Fermions and Staggered fermions

χB
2

• Data Comparison: Our lattice data are systematically higher than those from 
HISQ and stout smeared staggered quarks near the pseudo-critical 
temperature. Although, as expected this observable is much more noisier than 

. 

• Measurements: Performed on 150 gauge configurations per temperature, 
with 100 trajectory separations. 

• Further Analysis: Additional lattice spacing and more statistics required to 
better understand this discrepancy.

χQ
2
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Refs: HotQCD : D. Bollweg et al, arXiv:2107.10011 [hep-lat]. 
WB : R. Bellwied et al, arXiv:1910.14592 [hep-lat]



Leading order kurtosis of electric 
charge cumulants
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Summary and Conclusions

• We present results of conserved charge fluctuations 
using (2+1)-flavor QCD with a chiral fermion formalism, 
specifically Möbius Domain Wall Fermions. 

• We compare our calculations of  and  with the 
staggered fermion formalism calculations at finite lattice 
spacing. 

• We also present fourth order conserved charge 
fluctuations for the physical value of the quark masses. 

• In future, we will extend our calculations to smaller 
lattice spacings to study the cut-off dependence of 
conserved charge fluctuations.

χB
2 χQ

2

Thank you for your attention !!


