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QCD Phase diagram

The Phases of Hot QCD
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e Experiment with relativistic heavy ions: the system is small and has a short

lifetime

Theory: although the underlying theory (QCD) is known, we cannot solve it X

e Numerical methods: zero density region only due to the sign" problem X

e |ndirect methods: Taylor series coefficients/imaginary u — non-zero baryon
density v
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Taylor series expansion

e Consider an arbitrary function expanded around a regular point
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n=0

e What limits the predictive power of this expansion? e.g. f(z) = 1/(e* +1).
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Taylor series expansion

Consider an arbitrary function expanded around a regular point
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What limits the predictive power of this expansion? e.g. f(z) = 1/(e® + 1) .
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R is the radius of convergence

e R. = distance in the complex plane from the expansion point to the nearest

singularity



Are there singularities associated with critical
point/phase transitions?



Example: Landau free energy
F = /dda: (;tqbz + %Aqﬁ‘l — hqs)

E.g.

e near chiral limit: t < T — T, + ku?, h g
e near CP:t, h o< ayp(T — T¢) + Bep(p — fie)
e nearRW:t x T'— T'pyy, h x g — il
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Magnetic equation of state
F = /dd:p ltgb2 + 1A¢4 — ho
2 4

Minimize F'|¢] ~~ equilibrium order
parameter:

e Arbitraryt and h:tp + Ap° = h
e To simplify math A — 1:
td + @3 =h
e Ansatz for the solution ¢ = hl/3 f¢
thl/3 fo + hfg = hor
fe+fo=1

e Scaling form of "magnetic equation of state"

fa(=+ f&) =1, with B=1/2,6 =3



Magnetic equation of state
F = /ddw ltgb2 + 1A¢4 — ho
2 4

Minimize F'|¢] ~~ equilibrium order
parameter:

e Arbitrarytand h:tp + Ap° = h
e Tosimplify math A — 1:

tp + ¢° = h
e Ansatz for the solution ¢ = hl/?’fG
th'/3 fo + hfg = hor
fe+fe=1

e Scaling form of "magnetic equation of state"

fe(-+f&) =1, with B=1/2,6=3



Yang-Lee edge singularity
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Near YLE singularity

fa is singular
fG_ch;’O( (Z_Zc)

The critical exponent is independent of the underlying universality
class

From conformal bootrstrap,

Mean-field approximation gets it wrong: J%ITE — %

Not surprisingly, mean-field gets z. wrong as well

2. is universal: for O(N), z. depends only on N and d



Type of critical point: critical tricritical

Number of relevant variables: 2 4



Type of critical point: critical tricritical

Number of relevant variables: 1 2 4



Type of critical point: protocritical = YLE critical tricritical

Number of relevant variables: 1 2 4

1 independent crit. exp., c.f. standard critical point with 2 independent crit. exp.



lllustration in Ising model: h = 2
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F. Rennecke, G. Johnson, and V.S., Phys.Rev.D 107 (2023) 11, 116013

e |n contrast to the critical point, YLE form lines
e YLE are continuously connected to critical point



Universal location of YLE

e The phase of z. = |z.|e” 2% is defined by the critical exponents of the
underlying universality class. How to find |z, |?

e Ordinary, we rely on two methods: e-expansion and lattice

= c-expansion breaks down: YLE is described by ¢° with upper critical
dimension d. = 6, while underlying universality class has d. = 4

M. Fisher, “Yang-Lee Edge Singularity and ¢3 Field Theory”, Phys. Rev. Lett. 40 1610 (1978)
Only leading order under perturbative control

27In () = (N —1)In2

MF
el = |2, 1+
7] & |z 9(N +8)

€| +e*loge x (---).

= |attice: direct calculations at complex values of parameters are impossible
due to sign problem; indirectly lattice can provide information about YLE

F. Karsch, C. Schmidet, S. Singh, 2311.13530

e Functional Renormalization group provides most precise |z.| ind = 3



Functional/Exact Renormalization Group

Start with bare classical action at small distances/large momentum Sp_x
Gradually include fluctuations of larger size/smaller momentum
Continue until fluctuations of all possible sizes/momenta are accounted for

Equation that does it: Functional Renormalization Group equation

Ok L'k |d] = L STx (T[] + Ry,) " - 8x Ry
2

Wetterich, 1993

Pros: Exact, non-perturbative, no sign problem. Cons: requires truncation.



Truncation: derivative expansion

e Near critical point: long wave excitations ~~» expansion around the uniform
field

e First-order derivative expansion

o) = [ ate (V) + 5 20007

= The average potential

1 3 2
oUMp) = 5 [dadR ()Gl W -1GE], o=
with
1 1
Gy = , G =

Zi (p)a® + Uj(p) + Ri(a?) Z,,(p)a? + U} (p) + 20U} (



Truncation: derivative expansion

Wave function renormalization:
02,0~ | quatRk<q2>{G2 26+ 261 L2y, 2)() (6, + 26 &

T (Z\ly(ﬁb))zGH %%Z\ (Cb)}
FV D@ [ (E +26) L)y, 2L (006, L (2, (9)6 . ]

Z\(¢) —Z, (¢ /
P4l )¢ ( )MGL;(;Z(@;(ZZU)}}

with vy = ¢*Z{(¢) + UP (), 7L =4a"Z](¢) + %(%U’(gﬁ)), G'=%,. ..

G. Johnson, F. Rennecke, and V.S., Phys.Rev.D 107 (2023) 11, 116013



Truncation: series expansion

e Taylor series expansion of Uy(¢) and Z(¢) (orders 12 and 6 respectively)
= Traditionally: expand near k-dependent minimum: U, [¢x] = h = const.
= To locate YLE: expand near U, [¢y] = m?* — 0.
~> U, [pr] = hg # const
~~» Calculations in the broken phase are not feasible
e 18-26 coupled stiff differential equations
= Mathematica to obtain equations (multiple Gb)
= |mplicit solvers for ODE's

= Months on an HPC



Results: importance of fluctuations (/V=1)

approach YLE

asymptotically
near

critical point
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F. Rennecke and V. S, Annals Phys. 444 (2022) 169010



Results: Ising universality class NV = 1

d does not have to be integer in FRG

@ exact
- -~ (4-d)-expansion
— Pade approx.

O FRG

d 1 2 3 A

z|/RYT 1 132504(2) 1.621(4) 3/2%/3

G. Johnson, F. Rennecke, and V. S, Phys.Rev.D 107 (2023) 11, 116013

F. Rennecke and V. S, Annals Phys. 444 (2022) 169010

A. Connelly, G. Johnson, F. Rennecke, and V. S, Phys.Rev.Lett. 125 19, 191602 (2020)

d = 2: H.-L. Xu and A. Zamolodchikov, JHEP 08 (2022) 057 H.-L. Xu and A. Zamolodchikov, 2304.07886



Arbitrary N,d = 3

N 1 2 3 4 5

’Zc‘/R;/’V 1.621(4)(1) 1.612(9)(0) 1.604(7)(0) 1.597(3)(0) 1.5925(2)(1)

G. Johnson, F. Rennecke, and V. S, Phys.Rev.D 107 (2023) 11, 116013
c.f. F. Karsch, C. Schmidt, and S. Singh Phys.Rev.D 109 (2024) 1, 014508



Analytic structure inQCD: 1. < 1T' < Tprw




Analytic structure in QCD: 1" — T.




Analytic structure in QCD: 1" — T'pw




Tracing YLE singularity: RW critical point
Lattice QCD and indirect methods to locate YLE:

input from Im p & analytic continuation

Y
()]
= 190
2
S

Fit Tru
—— Fit 1602.01426v2
this work

4  1602.01426v2

z=z. — Reuyrg < (Trw — T)ﬁ‘s ~ Tew = 211.1 + 3.1MeV.

Christian Schmidt, et. al., 2401.07790



Tracing YLE singularity: chiral critical point

Lattice input from Taylor series coeff. at u = 0 or Im u & analytic continuation

T = 166.6 MeV
T = 157.5 MeV
T = 145.0 MeV
| T =136.1 MeV

00 T'=120.0 MeV

G. Basar, 2312.06952
D. Clarke et. al., 2405.10196

2=z, — Re(p — pe) = c1(T — T,) + ¢o(T — T,)? and Imp = c3(T — T,)"
s T, 7~ 110 MeV, i, ~ 650 MeV



Tracing YLE singularity: chiral critical point

Lattice input from Taylor series coeff. at u = 0 or Im u & analytic continuation

crossover line Tpe(pp) :

parametrization 2: O(u?)

C. Schmidr, CPOD 2024

estimate of CEP:
N =6
—8— N_=38
—6— cont.
—— DSEl
—— DSE2
—il— fRG

1000

2=z, — Re(p — pe) = c1(T — T,) + ¢o(T — T,)? and Imp = c3(T — T,)"
s T, 7~ 110 MeV, i, ~ 650 MeV



Taking it further

e Properties of YLE, e.g. oyLg can be use to validate indirect methods of
locating YLE in QCD, e.g. volume scaling of the density of zeros

e Moreover,

= YLE defines the behavior of the higher order Taylor expansion coefficients
(Darboux's theorem). E.g. for of fa(2):

n—l

I'(0)

e Fourier coefficients are exponentially sensetive to YLE

fén) ~ 2By = "

<B o ) By explif) — lim 162 = fo(z)

=z (1 —2/2.)°

e~

bis1 ~ |Ayrgl 1to cos(ft; "k + ¢, ")
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M. Bryant, C. Schmidt, V. S., 2401.06489



Fourier coefficients

ILE = 1100 04788 157 prapsin, 177 = 910 46711
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M. Bryant, C. Schmidt, V. S., 2401.06489



Conclusions

e Universal location of YLE was one of not many unknown universal quantities
» FRG allowed us to find the universal location of YLE for d > 2.7 and
arbitrary NV
= Xu and Zamolodchikov determined location of YLE in Ising Field Theory,
d=2and N =1
e To map universal location to QCD, one requires non-universal metric factors.
They are generically are not known.
e Nevertheless properties of YLE singularities might be useful in establishing
existence/location of QCD critical point
= YLE is continuously connected to critical point;
= Two distinct approaches based on lattice input from Taylor coefficients
and imaginary u ~» approximately the same 7.
= Critical exponent o at YLE is universal and independent of IV; it predicts
the behaviour of Lee-Yang zeroes and their scaling with volume

= Associated analytic structure of complex u-plane constraints the
behaviour of Fourier coefficients



