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PATTERNS
Regularly repeated arrangements; spatial modulations. Ubiquitous in nature

materials animals vegetation

[Robert Fotograf]
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PATTERN FORMATION[ 37 ]

T H E  C H E M IC A L  BASIS O F  M O R P H O G E N E S IS

By  A. M. TURING , F.R.S. University of Manchester 

( . Received9 November 1951— Revised 15 March 1952)

It is suggested that a system of chemical substances, called morphogens, reacting together and 
diffusing through a tissue, is adequate to account for the main phenomena of morphogenesis.
Such a system, although it may originally be quite homogeneous, may later develop a pattern 
or structure due to an instability of the homogeneous equilibrium, which is triggered off by 
random disturbances. Such reaction-diffusion systems are considered in some detail in the case 
of an isolated ring of cells, a mathematically convenient, though biologically unusual system.
The investigation is chiefly concerned with the onset of instability. It is found that there are six 
essentially different forms which this may take. In the most interesting form stationary waves 
appear on the ring. It is suggested that this might account, for instance, for the tentacle patterns 
on Hydra and for whorled leaves. A system of reactions and diffusion on a sphere is also con-
sidered. Such a system appears to account for gastrulation. Another reaction system in two 
dimensions gives rise to patterns reminiscent of dappling. It is also suggested that stationary 
waves in two dimensions could account for the phenomena of phyllotaxis.

The purpose of this paper is to discuss a possible mechanism by which the genes of a zygote 
may determine the anatomical structure of the resulting organism. The theory does not make any 
new hypotheses; it merely suggests that certain well-known physical laws are sufficient to account 
for many of the facts. The full understanding of the paper requires a good knowledge of mathe-
matics, some biology, and some elementary chemistry. Since readers cannot be expected to be 
experts in all of these subjects, a number of elementary facts are explained, which can be found in 
text-books, but whose omission would make the paper difficult reading.

1. A  MODEL OF THE EMBRYO. MORPHOGENS

In  this section a mathematical model of the growing embryo will be described. This model 
will be a simplification and an idealization, and consequently a falsification. I t is to be 
hoped that the features retained for discussion are those of greatest importance in the 
present state of knowledge.

The model takes two slightly different forms. In  one of them the cell theory is recognized 
but the cells are idealized into geometrical points. In the other the matter of the organism 
is imagined as continuously distributed. The cells are not, however, completely ignored, 
for various physical and physico-chemical characteristics of the matter as a whole are 
assumed to have values appropriate to the cellular matter.

With either of the models one proceeds as with a physical theory and defines an entity 
called * the state of the system ’. One then describes how that state is to be determined from 
the state at a moment very shortly before. With either model the description of the state 
consists of two parts, the mechanical and the chemical. The mechanical part of the state 
describes the positions, masses, velocities and elastic properties of the cells, and the forces 
between them. In the continuous form of the theory essentially the same information is 
given in the form of the stress, velocity, density and elasticity of the matter. The chemical 
part of the state is given (in the cell form of theory) as the chemical composition of each 
separate cell; the diffusibility of each substance between each two adjacent cells must also
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was used and h was about 0*7. In the figure the set of points where f(x , y) is positive is shown 
black. The outlines of the black patches are somewhat less irregular than they should be 
due to an inadequacy in the computation procedure.

Fig u r e  2. An example of a ‘dappled’ pattern as resulting from a type ( morphogen system.
A marker of unit length is shown. See text, §9, 11.

10. A NUMERICAL EXAMPLE

The numerous approximations and assumptions that have been made in the foregoing 
analysis may be rather confusing to many readers. In  the present section it is proposed to 
consider in detail a single example of the case of most interest, (d). This will be made as 
specific as possible. It is unfortunately not possible to specify actual chemical reactions with 
the required properties, but it is thought that the reaction rates associated with the imagined 
reactions are not unreasonable.

The detail to be specified includes
(i) The number and dimensions of the cells of the ring.

/ii) The diffusibilities of the morphogens.
(iii) The reactions concerned.
(iv) The rates at which the reactions occur.
(v) Information about random disturbances.

(vi) Information about the distribution, in space and time, of those morphogens which 
are of the nature of evocators.

These will be taken in order.
(i) I t will be assumed that there are twenty cells in the ring, and that they have a diameter 

of 0T mm each. These cells are certainly on the large rather than the small side, but by 
no means impossibly so. The number of cells in the ring has been chosen rather small in 
order that it should not be necessary to make the approximation of continuous tissue.

(ii) Two morphogens are considered. They will be called and 7, and the same letters 
will be used for their concentrations. This will not lead to any real confusion. The diffusion 
constant for X will be assumed to be 5 x 10~8 cm2 s-1 and that for 7  to be 2*5 x 10~8 cm2 s-1. 
With cells of diameter 0*01 cm this means that X  flows between neighbouring cells at the
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∂t (ϕ
χ) =

Zϕ
⃗∇2 + M2
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χ
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reaction-diffusion equation
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PATTERN FORMATION
Characterize possible solutions through "Hessian" .H
Example: Brusselator model

∂t (ϕ
χ) = H(ϕ, χ) ⋅ (ϕ

χ)

t = t0

ϕ(x)

t = t1 t = t2

inhomogeneous phase : Turing pattern
instability of homogeneous ground state, det H(ϕ0, χ0) ≤ 0
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PATTERN FORMATION

homogeneous moat inhomogeneous

ϕ(x)

|ϕ(p) |

favored momentum
(wavenumber)

patterns

in momentum space

0
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PATTERNS IN EXTREME CONDITIONS
We are familiar with patterns under (relatively) normal conditions: flora, fauna, crystals, ... 

Can they also form under the most extreme conditions in the universe?
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QCD PHASE DIAGRAM
in nature/experiment:

patterns in the phase diagram? 

how do they arise and where are they found?



PATTERN FORMATION IN QCD
Intuition tells us there are two important ingredients for pattern formation:

competition between attractive 
and repulsive interactions

a large Fermi surface

2

FIG. 1. Static density-density potential Vb(r) (12) as a func-
tion of distance r in the nuclear liquid, computed from QCD
correlation functions in [13]. We identify the position of the
minimum of the potential, db, with a typical length scale for
the distance between nucleons in the nuclear liquid, and the
depth of the minimum with the binding energy ✏b. These are
found to be db ⇡ 8.5(3)GeV�1 and ✏b ⇡ 21(5)MeV.

is not fully taken into account in simple mean-field cal-
culations. We note that this momentum dependence is
reminiscent of the e↵ective nuclear potential, such as the
Skyrme interaction and the Gogny interaction, that is
density-dependent, for a recent review, see [18]. This
can be understood from the correspondence between the
density and the Fermi momentum, or that between the
characteristic inter-particle distance at a certain density
and the momentum scale. In this sense first principles
data on �!(~p) sheds light on the density-dependent phe-
nomenological potential in nuclear physics.

II. THE NUCLEAR LIQUID FROM
DENSITY-DENSITY CORRELATIONS

In this section we put forward an approach for com-
puting the binding energy ✏b in a nuclear liquid at the

saturation density n(sat)
b from quark and baryon correla-

tion functions in first principles QCD. These observables
are encoded in the static potential between nucleons or
the density-density potential Vb(r) in the liquid at a dis-
tance r, and its estimate from QCD correlation functions
is presented in Figure 1. In particular, the density is ob-
tained from the location db of the minimum of the po-
tential, as db is related to the distance between nucleons
in the nuclear liquid. The depth of the potential at db
o↵ers an estimate for the binding energy ✏b.

A. Density-density potential in the nuclear liquid

We proceed with extracting the density-density poten-
tial Vb(r) in the nuclear liquid from density-density corre-
lations in first principles QCD: the static baryon density

nb(~x) with @tnb(x) = 0 describes a number of nucleons
in Nx,

Z

~x2Nx

nb(x) , (1)

where Nx is some infinitesimal neighbourhood of ~x. In
the present spatially homogeneous situation, (1) is di-
rectly related to the average density, the first density mo-
ment, computed by a µb-derivative of the grand potential
⌦ in QCD,

nb =
1

V4

Z

x
hn̂b(x)i = � 1

V4

@⌦

@µb
, (2)

where we have divided out the space-time volume V4.
The grand potential ⌦ is nothing but the e↵ective ac-
tion �QCD of QCD, evaluated on the equations of motion
(EoM), i.e.,

⌦ = �QCD|EoM . (3)

For µb < µos
b , the density is vanishing. Here, µos

b is the
onset chemical potential. For larger baryon chemical po-
tentials, µb > µos

b , the density is non-vanishing. At the
onset chemical potential for symmetric nuclear matter,
the density jumps to the saturation density

n(sat)
b = nb(µ

(os)
b ) 6= 0 , (4)

at the first order nuclear liquid-gas transition. In the

present work we estimate the size of n(sat)
b from Vb(r), but

in Section III we also discuss its derivation from e↵ective
field theory considerations.

The two-body potential Vb(r) is the second static mo-
ment of local density fluctuations in position space and
is given by

Z

x,y
hn̂b(x)n̂b(y)ic =

@2⌦

@µ2
b

, (5)

where the subscript c indicates that the second derivative
of the grand potential w.r.t. the baryon chemical poten-
tial provides the connected part of the density-density
correlation,

hn̂b(x)n̂b(y)ic = hn̂b(~x)n̂b(~y)i � nb(~x)nb(~y) . (6)

The integrand (6) of (5) comprises both observables un-

der investigation: n(sat)
b and ✏b.

It is left to compute the density correlation (5) from
correlation functions in first principles QCD. While (5) is
the integrated correlation, we are interested in the local
one, (6),

hn̂b(x)n̂b(y)ic =
�2�QCD

�µb(x)�µb(y)
, (7)

evaluated for a static situation. Note that in contrast
to (5), the derivatives in (7) are functional derivatives,

∼ α2
s ∼ (ψ̄Tα ψ)2

potential between quark-bilinears 
in the vector channel, ψ̄γ0ψ

EXCITATIONS AROUND A LARGE FERMI SPHERE

E(p) = ± p2 + m2

pF = μ2 − m2

E

p

μ

pF−pF

m

• energy of a relativistic particle

large-  excitations 
around Fermi surface

μ

ψ̄+(pF) ψ+(−pF)

net-momentum :
inhomogeneous excitation

2pF
• Fermi momentum E(pF) = μ

Intuition 2: finite-wavenumber excitations possible at large  μ

net-momentum excitation around 
Fermi-surface 

ψ̄+(pF) ψ+(−pF)

spatial modulations
(Friedel oscillations)

[Fukushima, Horak, Pawlowski, Wink, Zelle (2023)]

[FR, Yin (in preparation)]



DENSE QCD MATTER AND CK SYMMETRY
Dμ = ∂μ − igAa

μ Ta
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[Dμ, Dν]

q̄q ⟶ q̄q
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C μ
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QCD at finite density:
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• retains symmetry under  ( : complex conjugation)
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Intuition from -extended -theory:CK ϕ4

• scalar field , vector field 

• linear coupling between  and : mixing 

• imaginary coupling : repulsion

• possesses  symmetry

ϕ ωμ

ϕ ω0

ig
CK

ℒ =
1
2 (∂μϕ)2 −

1
2

m2ϕ2 − λϕ4

 −
1
2 (∂i ω0)2 −

1
2

mω(ω0)2 +igϕω0

modified dispersion of ϕ

E2( ⃗p2) = ⃗p2 + m2 +
g2

⃗p2 + m2
ω

non-Hermitian Hessian ( )p0 = 0

H = ( ⃗p2 + m2 −ig
−ig ⃗p2 + m2

ω)
from integrating-out ω0

[Schindler, Schindler, Medina, Ogilvie (2019)]

QCD at finite density:

Non-relativistic EoM is like the reaction-diffusion equation from earlier!

The system has two peculiar features:



MODIFIED DISPERSION
in the small-momentum regime:

E2( ⃗p2) = (1 −
g2

m4
ω ) ⃗p2 +

g2

m6
ω

⃗p4 + m2 +
g2

m2
ω

+ 𝒪( ⃗p6)
z

 for strong repulsive mixing:  moat regimez < 0
[Pisarski, FR (2021)]
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MODIFIED HESSIAN
Diagonalize to get physical degrees of freedom

H = ( ⃗p2 + m2 −ig
−ig ⃗p2 + m2

ω) ⟶ (
⃗p2 + M2

+ 0
0 ⃗p2 + M2

−) , M± =
m2 + m2

ω

2
± 1

2 (m2 − m2
ω)2 − 4g2

strong repulsive mixing: eigenvalues/masses come in complex conjugate pairs

These masses determine screening properties of the physical fields

lim
r→∞

⟨χ(r)χ(0)⟩ ∼ e−Mr

• real M: ordinary exponential decay of disordered fields

• complex M: spatial modulations ∼ e−Re[M] r sin(Im[M] r)
⟨χ(r) χ(0)⟩

r

spatial modulations for 
strong repulsive mixing

(follows from  symmetry)CK



MIXING, MOATS AND MODULATIONS IN QCD

The intuition from this simple model is directly applicable to QCD!



MIXING, MOATS AND MODULATIONS IN QCD

ϕi ϕj

[Haensch, FR, von Smekal (2023)]

Eigenvalues of the Hessian at  in a low-energy model (PQM model with vector repulsion)T = TCEP

Re H1
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• chiral condensate  (chiral symmetry breaking)

• Polyakov loops  (confinement)

• density mode  ( -symmetry breaking)

σ
L, L̄

ω0 C

Extensive repulsive mixing in QCD at finite density from fundamental interactions between quarks

ϕ = (σ, ω0, L, L̄)



[Fu, Pawlowski, FR (2019)]

Lattice: [Bazavov et al. '18]
Lattice: [Borsanyi et al. '20]

FRG: crossover
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not computed

z < 0

μB

T
≳ 4 : systematic error 

potentially large

indication for extended region with  in QCD:  moat regimez < 0

MIXING, MOATS AND MODULATIONS IN QCD

• direct calculation in QCD using 
the FRG

• CEP at  
consistent with DSE results and 
extrapolations of lattice data

(T, μ) = (107,635) MeV

[Gao, Pawlowski (2020+)]
[Gunkel, Fischer (2021)]
[Basar et al. (2023)]
[Schmidt et al. (2024)] 

• need to improve systematics for 
definitive statements

The QCD phase diagram
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FIG. 9. The bosonic wave-function renormalization
Z(⌃̄(µ, T ), µ, T ) (heat map), line of vanishing wave-function
renormalization Z(⌃̄(µ, T ), µ, T ) = 0 (thick black dashed
line), and the line of vanishing bosonic two-point function
�(2)(⌃̄(µ, T ), µ, T,Q) = 0 (thick, black solid line) in the µ-
T -plane. In region marked by the diagonal hatching us-
ing thin black solid lines (bottom-right corner) we find
�(2)(⌃̄(µ, T ), µ, T,Q) < 0, i.e., the homogeneous minimum
is unstable with respect to an inhomogeneous perturbation.

In summary, an inhomogeneous field configuration
with momentum q that lowers the e↵ective action can
only be guaranteed to exist through our analysis, when
�(2)(⌃̄(µ, T ), µ, T, q) < 0 and ⌃̄(µ, T ) = 0, which corre-
sponds to the hatched region (bottom, right) in Fig. 9.

C. The wave vector of the inhomogeneous
perturbation and the wave vector of the true

inhomogeneous condensate

Even though the stability analysis is expected to work
only for very small perturbations about a vanishing ho-
mogeneous condensate, we found that it even correctly
predicts inhomogeneous condensation at points to the
right of the homogeneous first-order phase transition at
extremely small temperatures which are far away from
the second-order SP$ IP phase transition line. At these
points one still uses the appropriate expansion point
⌃̄(µ, T ) = 0, but the perturbations are no longer small
and the true condensate has a spectrum of wave vectors
instead of a single frequency/wave vector, cf. Fig. 2.

One might thus wonder, if the single wave vector Q
at the phase transition line actually matches the wave-
vector of the true solution, i.e., the dominating wave vec-
tor of the Jacobi elliptic functions.

Therefore, this section is used to compare the dominat-
ing wave vector of the correct inhomogeneous condensate
minimizing the e↵ective action

q⌃ ⌘ argmaxq ⌃̃(µ, T, q) (44)

FIG. 10. The minimum of the bosonic two-point func-
tion Q(µ) and the dominating wave vector of the true in-
homogeneous condensate q⌃(µ) as a function of the chemi-
cal potential at constant temperatures T/⌃̄0 2 {0.0, 0.15}.
The colored regions mark the range of momenta q, where
�(2)(⌃̄(µ, T ), µ, T, q) < 0.

with the wave vector that minimizes the two-point func-
tion Q as defined in Eq. (43). While Q is the direction
of the largest curvature of the action at the saddle point,
it does not necessarily coincide with q⌃.

In Fig. 10 these two quantities are plotted for two
di↵erent temperatures. At T = 0, Q approaches q⌃ for
increasing chemical potential22 and at T/⌃̄0 = 0.15 the
two momenta match at the phase boundary. This is ex-
pected as the amplitude of the inhomogeneous conden-
sate ⌃(µ, T, x) at this point is infinitesimal and therefore
the stability analysis becomes exact. At small chemi-
cal potential – as already discussed before – the stability
analysis does not detect an inhomogeneous phase unless
⌃̄(µ, T ) = 0, right of the homogeneous first-order phase
transition. At intermediate chemical potential, Q and q⌃
do not agree. However, q⌃ is within the interval where
�(2) < 0 is predicted by the stability analysis, which
means that the latter at least captures the dominating
wave vectors.

In Fig. 11 we again compare Q and q⌃. This time we
plot Q, Q � q⌃, and q⌃ in the µ-T -plane in using di↵er-
ent color maps. The previously discussed trend extends
to the whole temperature range. The di↵erence Q � q⌃
approaches zero close to the IP$ SP boundary and its
magnitude is the largest close to the HBP$ IP bound-
ary, where Q is zero (because the stability analysis is
ill-conditioned) and q⌃ is maximal. On the other hand,
Q is also non-zero in the region of Z < 0 above the phase
transition line, but does not correspond to an inhomo-

22 Plots similar to Fig. 10 of the wave vector of some inhomogeneous
condensate plotted over baryon density (chemical potential), can
be found in, e.g., Fig. 2 of Ref. [30], Fig. 2 of Ref. [31], Figs. 6 &
7 of Ref. [33].

z

The energy gap might close at lower T and larger  :μB

instability towards formation of an 
inhomogeneous condensate

Zero energy cost to condense particles with 
nonzero momentum k0

Lattice: [Bazavov et al. '18]
Lattice: [Borsanyi et al. '20]

FRG: crossover
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p20

 for all E2 > 0 p2

 at :E2 = 0 p2 > 0

E2

p20
k2

0

• Example: Gross-Neveu Model 
in 1+1 dim. at large Nf

moat regime

[Koenigstein et al. (2021)]

FROM HOMOGENEOUS TO TOURING PATTERNS



TYPES OF PATTERNS

No: formation of inhomogeneous phases depends on dynamics of soft (massless) modes.

other types of phases possible (possibly without long-range order, but always patterned)

fluctuation-induced instabilities of inhomogeneous phases

inhom. phase
no instability

(typical in mean-field)

⟨ϕ(r)ϕ(0)⟩ ∼ sin(k0 r)

liquid crystal
Landau-Peierls instability

(Goldstones from spatial SB) 

⟨ϕ(r)ϕ(0)⟩ ∼ sin(k0r) r−α

quantum pion liquid
PTV instability

(Goldstones from flavor SB) 

⟨ϕ(r)ϕ(0)⟩ ∼ sin(k0r) e−mr

[Pisarski, Tsvelik, Valgushev, PRD 102 (2020)]
[Pisarski, PRD 103 (2021)]
[Valgushev, Winstel (2024)]

[Landau, Lifshitz, Stat. Phys. I, §137]
[Lee et al., PRD 92 (2015)]
[Hidaka et al., PRD 92 (2015)]

[Fukushima, Hatsuda, RPP 74 (2010)]
[Buballa, Carignano, PPNP 81 (2014)]

Will an inhomogeneous instability automatically lead to Touring patterns?



THE PHASES OF QCD

hadrons
color superconductor

quark-gluon plasma
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?
FAIR, HIAF and others

patterns are expected in the "unknown" region of the phase diagram

search for patterns in heavy-ion collisions!

this will be covered by future fixed target experiments

neutron stars

WHERE DO WE EXPECT PATTERNS?



SEARCH FOR PATTERNS IN HICS

Characteristic feature of patterns: modes with minimal energy at nonzero momentum 

 enhanced particle production at nonzero momentum⇒

look for signatures in the momentum dependence of particle correlations 

intuitive idea: [Pisarski, FR (2021)]



SPECTRA & INTERFERENCE

experiments count particles particle number correlations

n1(p) = ωp⟨N̂1⟩ = ωp⟨a†
pap⟩

n2(p, q) = ωpωq⟨N̂1 N̂2⟩ = ωpωq⟨a†
papa†

qaq⟩• compute particle spectra, e.g.,

• Gaussian approximation captures relevant effects:

n2(p, q) ∼ ⟨a†
pap⟩⟨a†

qaq⟩ + ⟨a†
paq⟩

2
+ ⟨apaq⟩

2

= n1(p) n1(q) + n1(p, q)
2

+ n̄1(p, q)
2

particle-particle interference 
(Hanbury-Brown Twiss correlation)

particle-antiparticle interference
(negligible here)

• interference from two-particle scattering: encoded in n2

study interference in a moat regime

• most elementary correlation: interference (follows from identical particles; no other fluctuations 
necessary)



INTERFERENCE ON A HYPERSURFACE

[Schenke, Jeon, Gale (2010)] 

To connect the fireball created in a HIC to the phase diagram, 
we need to fix : defines hypersurface T, μ Σ

consider correlations in appropriate 
foliation of spacetime

t t

Interference in local thermal equilibrium (fluctuation-dissipation relation + sufficiently isotropic system)

in-medium effects enter through -dependence 
of the spectral function 

P
ρ(x, y) = ⟨[ϕ(x), ϕ(y)]⟩

n1(P, ΔP) =
1
2 ∫dΣX e−iΔP⋅X ∫

dP∥

2π [(P∥ + P∥)2 −
1
4

ΔP2
∥] f(X; P∥, P⊥) ρ(X; P∥, P⊥)

single-particle distribution,
e.g., Bose-Einsteinaverage and relative pair momentum

average position

[FR, Pisarski, Rischke (2023)]



SPECTRAL FUNCTION IN A MOAT REGIME
HBT correlation determined by spectral function

Lattice: [Bazavov et al. '18]
Lattice: [Borsanyi et al. '20]

FRG: crossover
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moat peak

[Fu, Pawlowski, Pisarski, FR, Wen, Yin (in preparation)]
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normal phase:  

[Pratt, PRL 53 (1984), PRD 33 (1986)]

TWO-PARTICLE SPECTRUM
Compute in an illustrative model  

• moat quasi-particle with 

• hypersurface at fixed proper time

k0 = 100 MeV

minimal energy leads to 
peak in spectral function

correlation peaks at 
|P | = 0



beam direction

fixed  directionP

ΔPout

ΔPside

ΔPlong

moat regime:

[Pratt, PRL 53 (1984), PRD 33 (1986)]

TWO-PARTICLE SPECTRUM
Compute in an illustrative model  

• moat quasi-particle with 

• hypersurface at fixed proper time

k0 = 100 MeV

correlation peaks at 
|P | = k0

minimal energy leads to 
peak in spectral function
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NORMALIZED TWO-PARTICLE CORRELATION
Usually measured in experiments: C(P, ΔP) =

n2(P, ΔP)

n1(P + 1
2 ΔP) n1(P − 1

2 ΔP)
We propose to look at ratios:  ,   and Cout /Clong Cout /Cside Cside /Clong
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• normal phase:

• moat regime:

P
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C(pT, qT)

p
T [MeV] q T
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]

MORE SIGNALS FROM THE MOAT REGIME
Here: 2-particle correlation from identical particle interference in a moat regime

But qualitative result appears to be generic

[Pisarski, FR (2021)]

thermodynamic fluctuations 
in a moat regime

interference from primordial 
inhomogeneity (with AMPT transport)

[Fukushima et al. (2023)]

C(ΔPinv)

ΔPinv [GeV]

peak position related to wavenumber of modulation

• work in progress: dilepton production [Nussinov, Ogilvie, Pannullo, Pisarski, FR, Schindler, Winstel]



SUMMARY
Mixing, moats and modulations likely in dense QCD matter

• directly related to pattern formation

• generic features of systems with -breaking and competing attraction and repulsionC

... expected to occur in HIC range

• characteristic enhancement of correlations at finite momentum

• need to understand (and find more) possible experimental signatures

...  relevant for neutron stars

8

(a) Gnocchi (b) Spaghetti (c) Waffles (d) Lasagna

(e) Defects (f) Antispaghetti (g) Antignocchi

FIG. 3 Nuclear pasta configurations produced in our MD simulations with 51,200 nucleons (Horowitz et al., 2015; Schneider
et al., 2014, 2013).

for describing their interaction:

Vnp(r) = ae�r2/⇤ + [b � c]e�r2/2⇤ , (6a)

Vnn(r) = ae�r2/⇤ + [b + c]e�r2/2⇤ , (6b)

Vpp(r) = ae�r2/⇤ + [b + c]e�r2/2⇤ +
↵

r
e�r/� , (6c)

where the subscripts n and p denote the interactions be-
tween neutrons and protons and r is the inter-particle
separation. The nucleons interact by a short range po-
tential meant to model the nuclear interaction whose
strength and range are determined by the parameters a,
b, c and ⇤, which are given in Table I. These parameters
were chosen to approximately reproduce the saturation
density and binding energy per nucleon of nuclear mat-
ter, the energy of neutron matter at saturation density
and the binding energies of a few select nuclei (Horowitz
et al., 2004a). They have been found to reproduce nu-
clear statistical equilibrium for simulations at low den-
sities (Caplan et al., 2015). The nuclear potentials have
an intermediate range attraction, a short range repulsion,
and the protons interact with an additional long ranged
Coulomb repulsion.

The use of a semi-classical approximation deserves
comment. Individual nucleons are light and have im-
portant quantum zero point motions. However, we are
most interested in the large scale behavior that typically
involves large clusters involving thousands of nucleons.
These clusters are heavy and therefore behave classically.
The most important quantum e↵ects, at small scales, can
be mocked up by choosing values for the parameters a, b,
c, and ⇤ as described above. Electrons are not treated ex-

plicitly, and are instead included by adding a screening
factor to the proton-proton Coulomb interaction. This
screening factor is taken to be the Thomas-Fermi screen-
ing length �, see Eq. 2.

TABLE I Parameters of the nuclear interaction. The
strength of the short-range repulsion between nucleons is
given by a, while b and c set the strength of the intermediate-
range attraction. The characteristic length scale of the nu-
clear potential is given by ⇤ .

a (MeV) b (MeV) c (MeV) ⇤ (fm2)
110 �26 24 1.25

These potentials were first developed by (Horowitz
et al., 2004b) in order to study how pasta a↵ects neu-
trino transport in supernovae. In that work, Horowitz
et al. calculated the static structure factor Sn(q), allow-
ing them to determine the mean free path of neutrinos,
see Sec. IV.B.2. MD simulations can be performed with
many nucleons, and simulations with up to 409,600 nu-
cleons have been reported in the literature to study finite
size e↵ects.

1. Topology

The pasta phases and their transitions can be rigor-
ously quantified by their geometry and topology. The
Minkowski functionals o↵er a powerful tool to describe
the morphology of pasta structures (Schuetrumpf et al.,
2013; Sonoda et al., 2008; Watanabe et al., 2002). There

nuclear pasta [Caplan, Horowith (2017)]

... but details not well understood
mostly mean-field results, but fluctuations decide which phases are actually realized


