MIXING, MOATS AND MODULATIONS IN DENSE QCD MATTER UDULAI IUND
Alessandro Pilloni

Fabian Rennecke ³University of Giessen, ⁴Helmholtz Research Academy Hesse for FAIR (HFHF)

XQCD 2024 LANZHOU - 17/07/2024

PATTERNS

Regularly repeated arrangements; spatial modulations. Ubiquitous in nature

[Robert Fotograf]

[Maksymilian Rose]

materials **animals** animals **vegetation**

[Somali Water and Land Information Management]

THE CHEMICAL BASIS OF MORPHOGENESIS

By A. M. TURING, F.R.S. *University of Manchester*

*(. Recivd*9 *November* 1951*— Revised* 15 *March* 1952)

It is suggested that a system of chemical substances, called morphogens, reacting together and diffusing through a tissue, is adequate to account for the main phenomena of morphogenesis. Such a system, although it may originally be quite homogeneous, may later develop a pattern or structure due to an instability of the homogeneous equilibrium, which is triggered off by random disturbances. Such reaction-diffusion systems are considered in some detail in the case of an isolated ring of cells, a mathematically convenient, though biologically unusual system.

$$
\partial_t \begin{pmatrix} \phi \\ \chi \end{pmatrix} = \begin{pmatrix} Z_{\phi} \overrightarrow{\nabla}^2 + M_{\phi}^2 & G_1 \\ G_2 & Z_{\chi} \overrightarrow{\nabla}^2 + M_{\chi}^2 \end{pmatrix} \cdot \begin{pmatrix} \phi \\ \chi \end{pmatrix}
$$

Characterize possible solutions through "Hessian" **H**. Example: Brusselator model

$$
\partial_t \begin{pmatrix} \phi \\ \chi \end{pmatrix} = \mathbf{H}(\phi, \chi) \cdot \begin{pmatrix} \phi \\ \chi \end{pmatrix}
$$

Characterize possible solutions through "Hessian" **H**. Example: Brusselator model

$$
\partial_t \begin{pmatrix} \phi \\ \chi \end{pmatrix} = \mathbf{H}(\phi, \chi) \cdot \begin{pmatrix} \phi \\ \chi \end{pmatrix}
$$

 $\partial_t \bigg($

ϕ

Characterize possible solutions through "Hessian" **H**. Example: Brusselator model

homogeneous phase

 $\left(\frac{\gamma}{\chi}\right) = \mathbf{H}(\phi, \chi) \cdot \left(\frac{\chi}{\chi}\right)$

ϕ

χ)

Characterize possible solutions through "Hessian" **H**. Example: Brusselator model

$$
\partial_t \begin{pmatrix} \phi \\ \chi \end{pmatrix} = \mathbf{H}(\phi, \chi) \cdot \begin{pmatrix} \phi \\ \chi \end{pmatrix}
$$

it regime: "homogeneous pattern"

det $H(\phi_0, \chi_0)$ momentum 0.0 0.5 1.0 1.5 $|80|$

moat regime: "homogeneous pattern" [Pisarski, FR (2021)]

 $\mathbb O$

 $t = t_1$ $t = t_0$ $t = t_2$ $\phi(x)$ $20\,$

 $\overline{0}$

Characterize possible solutions through "Hessian" **H**. Example: Brusselator model

$$
\partial_t \begin{pmatrix} \phi \\ \chi \end{pmatrix} = \mathbf{H}(\phi, \chi) \cdot \begin{pmatrix} \phi \\ \chi \end{pmatrix}
$$

inhomogeneous phase : Turing pattern

instability of homogeneous ground state, det $H(\phi_0, \chi_0) \leq 0$

in momentum space

PATTERNS IN EXTREME CONDITIONS

We are familiar with patterns under (relatively) normal conditions: flora, fauna, crystals, ... Can they also form under the most extreme conditions in the universe?

QCD PHASE DIAGRAM

in theory:

QCD PHASE DIAGRAM

in theory:

QCD PHASE DIAGRAM

in theory:

THE PHASES OF QCD QCD PHASE DIAGRAM

in nature/experiment:

Experiments:

heavy-ion collisions

e.g. gravitational waves

THE PHASES OF QCD QCD PHASE DIAGRAM

in nature/experiment:

PATTERN FORMATION IN QCD

Intuition tells us there are two important ingredients for pattern formation:

DENSE QCD MATTER AND CK SYMMETRY

QCD at finite density:

$$
\mathcal{L}_{\text{QCD}} = \bar{q} \left(i \gamma^{\mu} D_{\mu} - m_{q} \right) q - \frac{1}{4} F^{\mu \nu}_{a} F^a_{\mu \nu} + i \mu \bar{q} \gamma^0 q
$$

- charge conjugation symmetry (C) is broken at finite μ
- retains symmetry under *CK* (*K*: complex conjugation)

$$
D_{\mu} = \partial_{\mu} - igA_{\mu}^{a}T^{a}
$$

$$
F_{\mu\nu}^{a}T^{a} = -\frac{i}{g}[D_{\mu}, D_{\nu}]
$$

$$
C: \overline{q}\gamma^{\mu}q \longrightarrow \overline{q}q
$$

$$
C: \overline{q}\gamma^{\mu}q \longrightarrow -\overline{q}\gamma^{\mu}q
$$

$$
A^{\mu} \longrightarrow -A^{\mu}
$$

DENSE QCD MATTER AND CK SYMMETRY

QCD at finite density:

$$
\mathcal{L}_{\text{QCD}} = \bar{q} \left(i \gamma^{\mu} D_{\mu} - m_{q} \right) q - \frac{1}{4} F^{\mu \nu}_{a} F^a_{\mu \nu} + i \mu \bar{q} \gamma^0 q
$$

- charge conjugation symmetry (C) is broken at finite μ
- retains symmetry under *CK* (*K*: complex conjugation)

Intuition from *CK*-extended ϕ^4 -theory:

$$
\mathcal{L} = \frac{1}{2} (\partial_{\mu} \phi)^2 - \frac{1}{2} m^2 \phi^2 - \lambda \phi^4
$$

$$
- \frac{1}{2} (\partial_i \omega^0)^2 - \frac{1}{2} m_{\omega} (\omega^0)^2 + ig \phi \omega^0
$$

$$
D_{\mu} = \partial_{\mu} - igA_{\mu}^{a}T^{a}
$$

$$
F_{\mu\nu}^{a}T^{a} = -\frac{i}{g}[D_{\mu}, D_{\nu}]
$$

$$
\overline{q}q \longrightarrow \overline{q}q
$$

$$
C: \overline{q}\gamma^{\mu}q \longrightarrow -\overline{q}\gamma^{\mu}q
$$

$$
A^{\mu} \longrightarrow -A^{\mu}
$$

- scalar field ϕ , vector field ω^{μ}
- linear coupling between ϕ and ω^0 : **mixing**
- \bullet imaginary coupling ig: repulsion
- possesses *CK* symmetry

Non-relativistic EoM is like the reaction-diffusion equation from earlier!

The system has two peculiar features:

non-Hermitian Hessian $(p_{0} = 0)$ $H = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$ $\vec{p}^2 + m^2$ −*ig* $-ig$ $\vec{p}^2 + m_\omega^2$

modified dispersion of *ϕ* $E^2(\vec{p}^2) = \vec{p}^2 + m^2 + \frac{g^2}{2}$ $\vec{p}^2 + m_{\omega}^2$ from integrating-out ω^0

[Schindler, Schindler, Medina, Ogilvie (2019)]

MODIFIED DISPERSION

in the small-momentum regime:

$$
E^{2}(\vec{p}^{2}) = \left(1 - \frac{g^{2}}{m_{\omega}^{4}}\right)\vec{p}^{2} + \frac{g^{2}}{m_{\omega}^{6}}\vec{p}^{4} + m^{2} + \frac{g^{2}}{m_{\omega}^{2}} + \mathcal{O}(\vec{p}^{6})
$$

z < 0 for strong repulsive mixing: **moat regime** $E^2 = \det H$

[Pisarski, FR (2021)]

MODIFIED HESSIAN

Diagonalize to get physical degrees of freedom

$$
H = \begin{pmatrix} \vec{p}^2 + m^2 & -ig \\ -ig & \vec{p}^2 + m_\omega^2 \end{pmatrix} \longrightarrow \begin{pmatrix} \vec{p}^2 + M_+^2 & 0 \\ 0 & \vec{p}^2 + M_-^2 \end{pmatrix}, \quad M_\pm = \frac{m^2 + m_\omega^2}{2} \pm \frac{1}{2} \sqrt{(m^2 - m_\omega^2)^2 - 4g^2}
$$

strong repulsive mixing: eigenvalues/masses come in complex conjugate pairs (follows from *CK* symmetry)

These masses determine screening properties of the physical fields

$$
\lim_{r \to \infty} \left\langle \chi(r) \chi(0) \right\rangle \sim e^{-Mr}
$$

• real M: ordinary exponential decay of disordered fields

● complex M: spatial modulations $\sim e^{-Re[M]r} \sin(\text{Im}[M]r)$

MIXING, MOATS AND MODULATIONS IN QCD

The intuition from this simple model is directly applicable to QCD!

MIXING, MOATS AND MODULATIONS IN QCD

Extensive repulsive mixing in QCD at finite density from fundamental interactions between quarks

[Haensch, FR, von Smekal (2023)]

- chiral condensate σ (chiral symmetry breaking)
- Polyakov loops L, \bar{L} (confinement)
- density mode ω^0 (*C*-symmetry breaking)

Eigenvalues of the Hessian at $T = T_{\text{CEP}}$ in a low-energy model (PQM model with vector repulsion)

MIXING, MOATS AND MODULATIONS IN QCD

The QCD phase diagram

indication for extended region with $z < 0$ in QCD: moat regime

FROM HOMOGENEOUS TO TOURING PATTERNS

The energy gap might close at lower T and larger μ_B :

µ FIG. 10. The minimum of the bosonic two-point func-[Koenigstein et al. (2021)]

TYPES OF PATTERNS

Will an inhomogeneous instability automatically lead to Touring patterns?

No: formation of inhomogeneous phases depends on dynamics of soft (massless) modes.

fluctuation-induced instabilities of inhomogeneous phases

other types of phases possible (possibly without long-range order, but always patterned)

WHERE DO WE EXPECT PATTERNS?

patterns are expected in the "unknown" region of the phase diagram

this will be covered by future fixed target experiments

search for patterns in heavy-ion collisions!

SEARCH FOR PATTERNS IN HICS

intuitive idea: [Pisarski, FR (2021)]

Characteristic feature of patterns: modes with minimal energy at nonzero momentum ⇒ **enhanced particle production at nonzero momentum**

look for signatures in the **momentum dependence** of particle correlations

SPECTRA & INTERFERENCE

experiments count particles **- particle number correlations**

• compute **particle spectra**, e.g.,

$$
n_1(\mathbf{p}) = \omega_\mathbf{p} \langle \hat{N}_1 \rangle = \omega_\mathbf{p} \langle a_\mathbf{p}^\dagger a_\mathbf{p} \rangle
$$

$$
n_2(\mathbf{p}, \mathbf{q}) = \omega_\mathbf{p} \omega_\mathbf{q} \langle \hat{N}_1 \hat{N}_2 \rangle = \omega_\mathbf{p} \omega_\mathbf{q} \langle a_\mathbf{p}^\dagger a_\mathbf{p} a_\mathbf{q}^\dagger a_\mathbf{q} \rangle
$$

- **most elementary correlation: interference** (follows from identical particles; no other fluctuations necessary)
- interference from two-particle scattering: encoded in n_2
- Gaussian approximation captures relevant effects:

$$
n_2(\mathbf{p}, \mathbf{q}) \sim \langle a_{\mathbf{p}}^{\dagger} a_{\mathbf{p}} \rangle \langle a_{\mathbf{q}}^{\dagger} a_{\mathbf{q}} \rangle + \Big| \langle a_{\mathbf{p}}^{\dagger} a_{\mathbf{q}} \rangle \Big|^2 + \Big| \langle a_{\mathbf{p}} a_{\mathbf{q}} \rangle \Big|^2
$$

= $n_1(\mathbf{p}) n_1(\mathbf{q}) + \Big| n_1(\mathbf{p}, \mathbf{q}) \Big|^2 + \Big| \bar{n}_1(\mathbf{p}, \mathbf{q}) \Big|^2$
particle-particle interference particle-antiparticle interference
(Hanbury-Brown Twiss correlation) (negligible here)

study interference in a moat regime

INTERFERENCE ON A HYPERSURFACE

Interference in local thermal equilibrium (fluctuation-dissipation relation + sufficiently isotropic system)

average and relative pair momentum
\n
$$
n_1(\mathbf{P}, \Delta \mathbf{P}) = \frac{1}{2} \int d\Sigma_X e^{-i\overline{\Delta P} \cdot X} \int \frac{dP_{\parallel}}{2\pi} \left[(P_{\parallel} + \overline{P}_{\parallel})^2 - \frac{1}{4} \overline{\Delta P}_{\parallel}^2 \right] f(X; P_{\parallel}, \mathbf{P}_{\perp}) \rho(X; P_{\parallel}, \mathbf{P}_{\perp})
$$
\naverage position

in-medium effects enter through P -dependence *of the spectral function* $\rho(x, y) = \langle [\phi(x), \phi(y)] \rangle$

SPECTRAL FUNCTION IN A MOAT REGIME

HBT correlation determined by spectral function

TWO-PARTICLE SPECTRUM

Compute in an illustrative model

- moat quasi-particle with $k_0 = 100 \,\mathrm{MeV}$
- hypersurface at fixed proper time

TWO-PARTICLE SPECTRUM

Compute in an illustrative model

- moat quasi-particle with $k_0 = 100 \,\mathrm{MeV}$
- hypersurface at fixed proper time

correlation peaks at

minimal energy leads to

peak in spectral function

 $|P| = k_0$

NORMALIZED TV²
 CORPLATION 1.0

Usually measured in experiments:

We propose to look at ratios: C_{out} , C_{long} , C_{out} , C_{side} and C_{side} , C_{long}

*ⁿ*1(**^P** ⁺ ¹

100

 $\frac{1}{2}$

 $\left(\frac{1}{2} \Delta P \right)$

COR

100

200

λ
50
P

 $\frac{7}{50}$

MORE SIGNALS FROM THE MOAT REGIME

Here: 2-particle correlation from identical particle interference in a moat regime **But qualitative result appears to be generic**

• work in progress: dilepton production [Nussinov, Ogilvie, Pannullo, Pisarski, FR, Schindler, Winstel]

peak position related to wavenumber of modulation

SUMMARY

Mixing, moats and modulations likely in dense QCD matter

- directly related to pattern formation
- generic features of systems with *C*-breaking and competing attraction and repulsion

... expected to occur in HIC range

- characteristic enhancement of correlations at finite momentum
- need to understand (and find more) possible experimental signatures

... relevant for neutron stars

nuclear pasta [Caplan, Horowith (2017)]

FIG. 3 Nuclear pasta configurations produced in our MD simulations with 51,200 nucleons (Horowitz *et al.*, 2015; Schneider *et al.*, 2014, 2013). **... but details not well understood**

 \mathbf{r} mostly mean-field results, but fluctuations decide which phases are actually realized