Carving out
the landscape of relativistic transport
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Introduction



Hydro and ab initio simulations

behaviour In
of theoretical models
(here: holographic Bjorken flow)

heavy-ion collisions
at RHIC and LHC
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Hydro works = its constitutive relations hold

General T has |0 functions of 4 variables freedom subject to 'V, T** = 0

Relativistic hydro: T#* is systematically approx. in terms of 4 functions only

" = E(T)ulu” +P(T) (¢g"" + uHu”) + 7t

o = —(T) VV¥u"! — ((T)(g" +utu")Vau® + O(V?)

shear term bulk term
0712.2451 by Baier et al.

1507.02461 by Grozdanov & Kaplis
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Two manifestations of constitutive relations

T = E(T)u"u” + P(T) (g"" + uru”) + wH”

o = —n(T) V¥u"! — ((T)(g" +utu")Vau® + O(V?)

shear term bulk term
0712.2451 by Baier et al.
1507.02461 by Grozdanov & Kaplis
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Bjorken: =—+ + ...
P(T) tT  (zT)?
0 9) 09
— 2n+1 . 2n
sound waves o(p) = Z Ayt 1P + zz,ﬁznp
Linear response theory: n=0 n=1
0
shear mode @(p) = iz,ﬁznpzn
(also charge diffusion) n=1
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Meta questions

What does it mean for relativistic hydro to work?

Are there fundamental bounds on transport coefficients in relativistic hydro?
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What does it mean for relativistic hydro to work!?



What does it mean for relativistic hydro to work!?

behaviour In
of theoretical models
(here: holographic boost-invariant flow)

heavy-ion collisions
at RHIC and LHC
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Hydro constitutive relations at higher orders
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Hydro constitutive relations generally diverge factorially on-shell
1302.0697 with Janik, Witaszczyk; 1503.075 14 with Spalinski;
2110.07621 with Serantes, Spalinski, Svensson, Withers

There Is no unique resummation, just optimal truncations

1503.07514 with Spalinski; 2112.12794 with Serantes, Spalinski, Svensson and Withers
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What is far from equilibrium relativistic hydro!?
1503.07514 with Spalinski

Possibility |:

Resum gradients + extra stuff (= transseries) or use optimal truncation

Possibility II:

Relativistic hydrodynamics far from equilibrium = a dynamical attractor
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Why we need to go beyond &/(w)?

2003.07368 with Jefferson, Svensson, Spalinsk
We should not rely on the behavior at w = 0 to identify the attractor
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In kinetic theory and T’
holography &f at l TN
a given w does not fully 1

specify the state

what are &f and w in a less symmetric dynamics?
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Reinterpreting the hydro attractor

2003.07368 with Jefferson, Svensson, Spalinski
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The hydro attractor in (an effective) phase space
2003.07368 with Jefferson, Svensson, Spalinski
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Principal component analysis for attractors

2003.07368 with Jefferson, Svensson, Spalinski
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Are there fundamental bounds on
transport coefficients in relativistic hydro!?



Predominant transport philosophy

Mostly compute first and second order transport for various microscopics
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Predominant transport philosophy
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Two manifestations of constitutive relations

T = E(T)u"u” + P(T) (g"" + uru”) + wH”

o = —n(T) V¥u"! — ((T)(g" +utu")Vau® + O(V?)

shear term bulk term
0712.2451 by Baier et al.
1507.02461 by Grozdanov & Kaplis
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sound waves o(p) = Z Ayt 1P + zz,ﬁznp
Linear response theory: n=0 n=1
0
shear mode @(p) = iz,ﬁznpzn
(also charge diffusion) n=1
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New philosophy: bootstrapping transport

Hydrodynamic dispersion relations w(p) appear as single poles of retarded
correlators of conserved currents (T, charge / particle number current)

Microscopic causality (Green's function support in the future lightcone) demands

—Imw(p) +|Imp| >0 (in conventions GR(w,ﬁ)Nro dt [ @x 7 Gy )

Introducing complex p leads to infinitely many independent inequalities

Bootstrap: using these inequalities to constrain transport coefficients
2212.07434 and 2305.07703 with Serantes, Spalinski and Withers
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The hydrohedron: causally allowed transport
2305.07703 with Serantes, Spalinski and Withers
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Comments on the hydrohedron
2305.07703 with Serantes, Spalinski and Withers

Hydrohedron has a universal shape regardless of a theory (Huetaattions)

Axes normalized in terms of finite (~Imw(p) +|Imp| > 0) convergence radius R
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Outlook



Outlook

In the past |0 years a lot of progress on understanding hydro constitutive
relations near and far from local thermal equilibrium

This talk:

Data driven detection of hydro attractors as dimensionality reduction offers
prospects to study them outside their native highly symmetric setting
2003.07368 with Jefferson, Spalinski and Svensson

Causality constraints hydrodynamics much more than thought to date and leads
to a first generation of robust bounds on transport

2212.07434 and 2305.07703 with Serantes, Spalinski and Withers
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Extra material

(added after the talk in response to one of questions)



Derivation of the causality inequality

Causality in a relativistic system: Gg(t,X) =0 for t<|x| aswellas <0

This strongly constrains GR(a),ﬁ)NJ dzjd%eiwf—iﬁfc,e(z,x’):[ dt[ dx ' =PX G (1, X)
-0 0 | X| <t

as the singularrties of Gp(w, p) cannot lie where the Fourier integral converges

Let's look at the integrand for complex @ and p; e tmestmprcost iRen=iRepreosd G 1 ¥

Assuming Gg(t, x) does not explode exp in time, we get for the convergence

et (—Ima)+ Imp Lc;s9><0

» —Imw + |Imp| <O

So all singularrties (modes) w(p) must obey —Imw(p) + |[Imp| >0



