XQCD 2024

Towards a "bottom-up" construction of kinetic theory with spin

Zong-Lin Mo *University of Science and Technology of China, Hefei*

• Heavy-ion collision (HIC) creates QCD matter in extreme condition

- o Spin observables in HIC
- Informative Λ hyperon polarization
- Vector mesons $(K^{\star}, \phi, J/\psi)$
- an important way to probe the properties of QGP

Spin observable probe QGP

Xin-Nian Wang, Zuo-Tang Liang, PRL05'; Becattini et al, Annals Phys 13'

e.g. STAR, 2204.02302; ALICE PRL 20', 2204.10171

Quantum Kinetic Theory

- Kinetic theory is an effective description of many-body system with spin
- "Top-down": start from a microscopic theory and derive the EoM

- Modern view of effective theory by Landau:
	- Low-energy (IR) dynamics can be written down without details in the UV.
- Eg. hydrodynamics
- Can we construct the kinetic theory in a similar way?

"Bottom-up" Methodology

• Main steps

- Eg. hydrodynamics ε , $u^{\mu} \to T^{\mu\nu}[\varepsilon, u] = \varepsilon u^{\mu} u^{\nu} + P(\varepsilon)(g^{\mu\nu} + u^{\mu} u^{\nu}) + O(\partial)$
-

• QKT : spin-average distribution $f(x, p)$, spin distribution $s(x, p)$ (axial vector) not enough attention has been paid to the constitutive relations in QKT

Constitutive Relation

• Spirit of effective theory: write down all possible terms (obey symmetries) for observable O that constructed by f , s , momentum p and the external $field \phi$ (eg. EM field A_μ , gravity $h_{\mu\nu}$). ̂

̂

- Assume $\tau_R^{-1} \ll \partial \ll \Lambda_{\rm eff}$ (typical energy scale of particles) $R^{-1} \ll \partial \ll \Lambda_{\text{eff}}$
- Formulate it up to $O(d)$ & $O(q)$

 $O = O[f, s, \phi, p]$

Constitutive Relation

• Eg. electric current under E :

$$
J = v f + D \nabla_j
$$

$J = v f + D \nabla f + (\Delta J)_{ext} + O(\partial^2)$)

$(\Delta J)_{\text{ext}} = \sigma E \sim O(\partial)$

 $\tan \theta$ turn off E , $\left(\Delta \boldsymbol{J}\right)_\mathrm{ext}=0$; $\nu f + D\nabla f$ still exists, which is a general relation.

• We can separate the constitutive relation into two parts

$$
\hat{O}[f, s, \phi, p] = \hat{O}_{\text{dyn}}[f, s, p] + \hat{O}_{\text{ext}}[\phi, p]
$$

dynamical & general

local/direct response to *ϕ*

Largely inspired by Jingyuan Chen, Dam T. Son, Annals Phys. 377 (2017)

Spin Current

spin current parallel to *v*

spin charge density

eg. spin Hall effect $v \times E$

 \mathscr{A}^{μ} can be derived from the Wigner function $W \sim \psi \bar{\psi}, \ \mathscr{A}^{\mu} \sim \text{Tr}\{\gamma^{\mu} \gamma^{5} W\}$

f & s (4 d.o.f.) \rightarrow observables

spin current in different directions with *v*

 $\mu = (v_{\perp}^{\mu} + c_1 n^{\mu})(v \cdot s) + c_2 s^{\mu} + c_3 \epsilon^{\mu \nu \rho \sigma} n_{\nu} v_{\rho} \partial_{\sigma} f + (\Delta \mathcal{A})^{\mu}_{e}$ ext

Covariant form: $s \rightarrow s^{\mu}$ momentum and offequilibrium generate spin

Gauge fixing: $n_{\mu} s^{\mu} = 0$, with a time-like vector field $n_{\mu} s^{\mu} = 0$ *nμ*

Change of gauge fixing \leftrightarrow redefinition of s^{μ} ; should not depend on gauge fixing. *μ*

has only 3 physical d.o.f. *sμ*

systematically consider all the possible effects which can induce spin

Massless EoM as a Heuristic

- left/right-handed distribution f_+, f_-
- the Boltzmann equation

$$
\left[\partial_t + v \cdot \partial_x + \left(F(x) - \partial_x \Phi_s\right)\right]
$$

 \cdot Φ_{s} : energy shift of different spin states generated by external field Φ_s : energy shift of different spin states generated by external field ϕ

 $\left[\partial_t + v \cdot \partial_x + (F(x) - \partial_x \Phi_s(\phi)) \cdot \partial_p \right] f_s(t, x; p) = 0$, $(s = \pm)$

• EoM of f and s^{μ}

 $v^{\nu}\partial_{\nu}s^{\mu} + \Pi^{\mu}_{\nu}(\phi)\partial^{\nu}_{p}f = 0$

 $F_{\mu}(\boldsymbol\phi)$ is the spin independent force generated by the external field;

Kinetic Equations

 $v^{\mu}\partial_{\mu}f + F_{\mu}(\phi)\partial^{\mu}_{p}f = 0$

is an analogy of $\partial_r \Phi_{\rm s}(\phi)$. (combination of parity odd tensors

 R^{-1} ≪ ∂ ≪ T_e

constructed by the gradient of the external fields) \prod_l^{μ} $v_{\nu}(\phi)$ is an analogy of $\partial_{x}\Phi_{s}(\phi)$

We had ignored the collision terms according to τ_R^{-1}

- Confirm the QKT by field theory calculation
-

$$
W_{\phi} = W_0 + G_R \phi + L_{\phi} \phi, \quad \phi = A_{\mu}, h_{\mu\nu}
$$

$$
W \sim \int_{\mathcal{P}} \mathcal{D}\psi \psi(x_{+}) \bar{\psi}(x_{-}) e^{iS[\psi,\phi]}
$$

$$
\mathcal{A}^{\mu} \sim \text{Tr}\{\gamma^{\mu}\gamma^{5}W\} \text{ Expand it up to } \mathcal{C}
$$

Equilibrium + Retarded Correlation + Gauge link

Non-locality

• The non-locality of linear response is absorbed by the distributions.

$$
G_R \sim \langle \cdots \rangle \theta(t - t_0) \rightarrow \frac{(\cdots)}{(p^0)^2 - E_p + i\epsilon p^0} \qquad f, s^{\mu} \sim \frac{(\cdots)}{\omega - k \cdot \nu + i\epsilon}
$$

$$
\frac{\omega - k \cdot \nu + i\epsilon}{\omega_{\mu} \text{ in Fourier space}}
$$

$$
\text{non-locality of } G_R \overset{\circ}{\blacksquare}
$$

The retarded correlation function is non-local (can depend on the perturbation earlier than *t*)

absorbed by

h non-locality of *f*, *s*

Match the response to EM field

Using QED action in SK formalism

 $c_1 = 1, c_2 =$

 $\mu = (v_{\perp}^{\mu} + c_1 n^{\mu})(v \cdot s) + c_2 s^{\mu} + c_3 \epsilon^{\mu \nu \rho \sigma} n_{\nu} v_{\rho} \partial_{\sigma} f + (\Delta \mathcal{A})^{\mu}_{e}$ ext *m*2 $(n \cdot p)^2$, $c_3 =$ 1 *n* ⋅ *p*

there are several terms in $(\Delta\mathscr{A})^\mu_{\rm ext}$, eg. $\frac{1}{\sqrt{2}}\frac{\partial^2V}{\partial x^2}\frac{\partial^2V}{\partial y^2}\sim \nu\times E$ (spin Hall effect) $f_0(p)$ $(n \cdot p)^2$ *F* $\tilde{H}^{\mu\nu}\nu_{\nu}^{\perp} \sim \nu \times E^{\mu\nu}$

μ ext

where $f_0(p)$ is the original distribution.

Spin generation in off-equilibrium

• Differential polarization is present even without hydro. flow.

CMS at SQM 24'

• Momentum and off-equilibrium distribution generate spin polarization (spin-motion correlation)

$$
\mathscr{A} \propto \nu \times \partial f \quad \epsilon^{\mu\nu\rho\sigma} n_{\nu} \nu_{\rho} \partial_{\sigma} f
$$

Summary

- Effective "bottom-up" construction of QKT with spin
- \bullet D.o.f.: f & s , 4 in total, less than traditional QKT;
- Observables: constitutive relations, systematically consider all the possible effects which can induce spin.
- The EoMs are simple to solve.
- Can be used in off-equilibrium system
-

THANK YOU!

Match the response to EM field

$$
(\Delta \mathscr{A})^{\mu}_{ext} = (d_1 v_{\nu}^{\perp} + d_2 n_{\nu}) \tilde{F}^{\mu\nu} + d_2 n_{\nu}^{\mu\nu}
$$

F $\tilde{F}^{\mu\nu} = \epsilon^{\mu\nu\rho\sigma} F_{\rho\sigma}$

Linear response: $d_1 =$ $f_0(p)$

$$
\frac{f_0(p)}{(n \cdot p)^2}, d_2 = 0, d_3 = \frac{f_0(p)}{(n \cdot p)^2}, d_4 = 0
$$

$$
f = \frac{iF_{\mu\nu}v^{\mu}\partial_{p}^{\nu}f_{0}}{v \cdot q + i\epsilon}, \quad s^{\mu} = \frac{i\Pi^{\mu}_{\nu}\partial_{p}^{\nu}f_{0}}{v \cdot q + i\epsilon}
$$

 \prod_{ν}^{μ} *ν* 1 2*n* ·

 $\tilde{H}^{\mu\nu} + d_3(v_\perp^2 \Delta^{\mu\nu} - v_\perp^{\mu} v_\perp^{\nu})\tilde{F}^{\mu\nu}$ $\tilde{F}_{\nu\rho}n^{\rho} + d_{4}n^{\mu}\tilde{F}_{\nu\rho}v^{\nu}_{\perp}n^{\rho}$

$$
- \tilde{F}^{\mu\rho} n_{\rho} q_{\nu} \partial_{p}^{\nu} f_{0}(p)
$$