Baryonic Vortex and Magnetic Field Generation

Zebin Qiu (Keio University) JHEP 06 (2024) 139 (co-authored with Muneto Nitta)

Regime: Low Energy Dense QCD

Assume spontaneous Chiral Symmetry Breaking $U(1)_V \times SU(N_f)_L \times SU(N_f)_R \rightarrow U(1)_V \times SU(N_f)_V$ 2-flavor Chiral Perturbation Theory (ChPT) of Pions

 $\Sigma = \sigma + i\tau^a \pi^a \in SU\left(N_f = 2\right)$

$$\mathcal{L}_{\text{chiral}} = \frac{f_{\pi}^2}{2} \text{Tr} \left(D_{\mu} \Sigma^{\dagger} D^{\mu} \Sigma \right), \quad D_{\mu} \Sigma = \partial_{\mu} \Sigma - i \left(A_{\mu} + A_{\mu}^I \right) \left[\frac{\tau^3}{2}, \Sigma \right]$$

Isospin chemical potential $A_{\mu}^{I} = (\mu_{I}, \mathbf{0}) + \text{``dynamical''}$ axial magnetic field $A_{\mu} = A_{\phi}(\rho)\hat{\phi}$ needs $O(p^{4})$ terms:

$$\mathcal{L}_{\rm EM} = \frac{1}{4} F_{\mu\nu} F^{\mu\nu}, \quad \mathcal{L}_{\rm Skyrme} = \frac{1}{32s^2} \text{Tr} \left(\left[\Sigma^{\dagger} D_{\mu} \Sigma, \Sigma^{\dagger} D_{\nu} \Sigma \right] \right)^2$$

μ_I : Charged Pion Vortex

Charged
$$\pi^{\pm} \stackrel{\mu_I}{\rightarrow}$$
 uniform condensate $\stackrel{B}{\rightarrow}$ Superconductor (SC)
 $V_{\text{eff}} = -\frac{f_{\pi}^2}{2} \mu_I^2 (\pi_1^2 + \pi_2^2)$ $B = -B\hat{z}$
Type II SC
under external
magnetic field $|\pi^{\pm}| e^{i\phi}$ L

μ_B : Neutral Pion Domain Wall

Neutral
$$\pi^0 \xrightarrow{B}$$
 Domain Wall / Chiral Soliton Lattice (CSL)
 $\mathcal{L}_{anom} = \frac{1}{8\pi^2} \epsilon^{\mu\nu\alpha\beta} \sum_i C_i \partial_\mu \psi_i A_\nu^B F_{\alpha\beta}$
Anomalous coefficients $U(1)_B$
 $A_\nu^B = (\mu_B, 0) U(1)_{EM}$: B
Triangle Anomaly: two U(1) + one NG boson $\psi_i (\pi^0, \eta...)$

$$\mathcal{H}_{\rm WZW} = -\frac{\mu_B B}{4\pi^2} \partial_z \pi^0$$

T. Brauner and N. Yamamoto, JHEP 04, 132 (2017).

$\mu_{I,B}$: Baryon as Vortex Skyrmion

Our scenario: Baryon at finite $\mu_{I,B}$ + Self-generated *B*

Ad hoc assumptions: cylindrical symmetry, chiral limit, separation of variables.

Vortex-Skyrmion Ansatz:

 $\Sigma\left(\rho,\phi,z\right) =$

 $\begin{pmatrix}
e^{i\varphi(z)}\cos\alpha\left(\rho\right) & -e^{-i\phi}\sin\alpha\left(\rho\right) \\
e^{i\phi}\sin\alpha\left(\rho\right) & -e^{-i\varphi(z)}\cos\alpha\left(\rho\right)
\end{pmatrix}$

Outer: π^{\pm} SC ring. Inner: π^{0} winding $\varphi(z)$. Together: Baryon (Skrymion)

B $\pi_3(SU(2)) = \mathbb{Z} \pi^0$

Baryon Number: Topological Charge

Gauged WZW term: coupling of U(1) with baryon current

$$\mathcal{L}_{\rm WZW} = \left(qA_{\mu} + A_{\mu}^{B}\right)j_{B}^{\mu}$$

Baryon current (Goldstone-Wilczek current):

 $l = \Sigma^{\dagger} d\Sigma, \quad r = \Sigma d\Sigma^{\dagger}, \quad Q = \mathbb{I}/6 + \tau^3/2$

$$\mathcal{L}_{\text{WZW}} = (qA_{\mu} + A_{\mu}^{B}) j_{B}^{\mu}$$
Baryon current
(Goldstone-Wilczek
current):
$$j_{B} = \star \frac{1}{24\pi^{2}} \text{Tr} \{l \wedge l \wedge l + 3iQd [A \wedge (l - r)]\}$$

$$\frac{\pi^{\pm}}{Boundary Conditions}$$

$$\alpha(\infty) = \pi/2, \quad \alpha(0) = 0$$

$$A_{\phi}(\infty) = -1/\rho, \quad A_{\phi}(0) = 0$$

$$\varphi(L/2) - \varphi(-L/2) = 2\pi$$

Solution Profile at Finite μ_I

Result: $\varphi = kz$; $\alpha(\rho)$ and $B(\rho)$ solved numerically:

Figure 1. Vortex Skyrmion (left) and magnetic field (right) at $\mu_I = 0.5 f_{\pi}s$ and $k = 2.0 f_{\pi}s$.

Baryon vortex carries a quantized magnetic flux $\int \rho d\rho B(\rho) = 1$ as type-II SC.

String Tension T(k) at Varied μ_B

 $k_{v} = \operatorname{argmin} T(k)$ proves a stable solution. k_{v} exists for any μ_{B} and $\mu_{I} > m_{\pi}$.

T(k_v) < T(0) "improves" π[±] (non-baryonic) vortex.
When μ_B ↑, T(k_v) ↓, until μ_B > μ^c_B, T(k_v) < 0, ground state changes to the baryonic vortex.

Critical μ_B^c Between Phases

Phase transition at $\mu_B^c(\mu_I)$ and $k_c = k_v(\mu_B^c, \mu_I)$.

density window for baryonic vortex to be ground state.
 μ_B > μ_B^c, (seed) magnetic field can be spontaneously enhanced and preserved.

Conclusion & Outlook

Conclusion:

A baryonic vortex can have lower energy than a homogeneous pion condensate. It carries a spontaneously generated quantized magnetic flux.

• Outlook:

. . .

Pion Mass: finite condensate of both π^0 and π^{\pm} on boundary, coupled ρ , *z* dependence of fields. Vortex Crystal: evaluation of magnetic field strength, inter-vortex interaction, realistic density scales