workshop "XQCD2024," Lanzhou, July. 17-19, 2024

A quarkyonic matter model Toru Kojo

1/17

(**Tohoku Univ. GPPU** à **KEK**)

Refs) Baym-Hatsuda-TK-Powell-Song-Takatsuka, "QHC", review on neutron stars (2018) TK, "Stiffening of matter in quark-hadron continuity" PRD (2021) Fujimoto-TK-McLerran, "IdylliQ matter model" PRL (2024)

McLerran-Pisarski's "two-scale picture" [McLerran-Pisarski '07]

Quarkyonic matter

quark matter with confining gluons

def

impacts on

- e.g.) ・entropy & transport properties
	- ・gap weakly depending on μ
	- ・phase structures

possible consequences (NOT definitions) :

- ・chiral symmetric but confining phase [Glozman+ '08]
- ・chiral spirals (inhomo. chiral) [TK+ '09, '10, '11]

& many other speculations

An application of concepts; gap-eq. & EOS

If IR gluons dominate

[TK-Powell-Song-Baym, '14]

M or
$$
\Delta \sim \Lambda_{QCD}(!)
$$

(weak μ -dep.)

EOS

$$
P(\mu) = c_0 \mu^4 + c_2 \Delta^2 \mu^2 + c_4 \Delta^4 + \cdots
$$

\n
$$
\sim c_0 \mu^4 + c_2' \Delta_{\rm QCD}^2 \mu^2 + c_4' \Delta_{\rm QCD}^4 + \cdots
$$

\n"power corrections
\n[Shifman-Vanshtein-Zakharov, '78]

An application of concepts; c_s^2 at high density

$$
\text{sound speed:} \quad c_s^2 = \frac{\partial P}{\partial \varepsilon} = \frac{2c_0\mu^2 + c_2\Delta^2}{6c_0\mu^2 + c_2\Delta^2} \ \geq \ \frac{1}{3} \qquad \text{(for } c_2 > 0\text{)}
$$

e.g. diquark pairing (CFL) terms

For $\Delta \sim 0.2$ GeV $\sim \Lambda_{\text{QCD}}$ $(\Delta/\mu_{\rm d})^2$ ~ **4 %** at μ ~ 1GeV

5/17

but qualitative trend changes

more important toward lower density

[Masuda+ '12; TK+ '14] **Neutron Star matter** $(n_0 = 0.16 \text{ fm}^{-3})$ [Masuda+ '12; TK+ '14]

[Masuda+ '12; TK+ '14] **Neutron Star matter** $(n_0 = 0.16 \text{ fm}^3)$

Implications from NS

 $R_{14} - R_{2.1}$ (!) NICER for 1.4 & 2.1 M_{sun} + **GW** + **nuclear** (< ~1.5n₀)

IdylliQ model = **Ideal dual** Quarkyonic model

Describe **single** physics in **two** languages (baryon/quark) Powerful in transient regimes $(2-5n_0)$

Sum rules for occupation probabilities cf) [TK '21] 9/17

An ideal model [Fujimoto-TK-McLerran, PRL'24]

1) neglect interactions *except* confining forces

e.g.) 2-flavor hamiltonian:

$$
\varepsilon_{\rm B}[f_{\rm B}] = 4 \int_k E_{\rm B}(k) f_{\rm B}(k)
$$

2) keep using the same $\varphi_{\mathbb{Q}}$ (quarkyonic)

3) use a special quark distribution \rightarrow sum rules analytically *invertible*

$$
\varphi_{3d}(\boldsymbol{q}) = \frac{2\pi^2}{\Lambda^3} \frac{e^{-q/\Lambda}}{q/\Lambda} \qquad \hat{L} = -\boldsymbol{\nabla}^2 + \frac{1}{\Lambda^2} \qquad \hat{L}[\varphi(\boldsymbol{p}-\boldsymbol{q})] = \frac{(2\pi)^3}{\Lambda^2} \,\delta(\boldsymbol{p}-\boldsymbol{q})
$$

nontrivial output nontrivial output

$$
f_{\mathbf{Q}}(\mathbf{q}) = \int_{\mathbf{P}_{B}} f_{\mathbf{B}}(\mathbf{P}_{B}) \varphi_{Q}^{B}(\mathbf{q} - \mathbf{P}_{B}/N_{c}) \qquad \qquad f_{\mathbf{B}}(N_{c}\mathbf{q}) = \frac{\Lambda^{2}}{N_{c}^{3}} \hat{L} \left[f_{\mathbf{Q}}(\mathbf{q})\right]
$$

natural at low density natural at high density

Minimize energy with sum rule constraints

Multi-flavor extension [Fujimoto-TK-McLerran, '24, in preparation]

Summary & Outlook

17/17

- ・*Quarkyonic matter* = quark matter with confining gluons
- *quark saturation* \rightarrow inevitable stiffening, c_s² peak
- the saturation occurs at \sim 2-3n₀ (!) (< \sim 5n₀ for baryon overlap)
- ・baryons are NOT independent; quark substructure constraint

 p, n, Δ, \ldots cannot be freely put into the system at the same time

the hyperon puzzle to be solved [Fujimoto-TK-McLerran, in preparation]

Nucleonic models & many-body forces

alternative: quark EOS

relativistic pressure → stiff EOS ? depends on **where** to start...

Hints for **new scale** & **saturation**

・BCS occ. probability:

$$
f_{u,\bar{d}}(p;n_I) = \frac{1}{2}\left(1 - \frac{E_l - \mu_I}{\sqrt{(E_l - \mu_I)^2 + \Delta^2}}\right)
$$

[quark-meson model study, Chiba+ '23; TK+ '24; ...]

ideal pion gas pic. definitely violated

pions with $r \sim 0.66$ fm overlap

Sound speed: quark-meson model, ChPT, and **Lattice**

see also two-color QCD, Iida-Itou-Murakami-... ('22, '23, '24)

[model study; TK-Suenaga-Chiba '24]

Peak in the BEC-BCS type crossover

Stiff quark matter

The appearance of c_s^2 peak is characteristic in the QHC scenarios:

good baseline, but NOT necessarily sufficient for ~ 2.1 -2.3M® NS.

(just after the crossover, quarks are not fully relativistic.)

Can the chiral restoration stiffens EOS by making quarks relativistic?

Unlikely: "*the bag constant*" from the Dirac sea

ε à *ε* + B *P* → *P* − B **significant** softening!

At this stage, we begin to discuss interactions...

Three possible scenarios

Quarks in a baryon N_c(=3): number of colors

$$
\text{probability density:}\qquad \varphi(\boldsymbol{q};\boldsymbol{P}_\mathrm{B}) = \mathcal{N}\mathrm{e}^{-\frac{1}{\Lambda^2}\left(\boldsymbol{q}-\frac{\boldsymbol{P}_\mathrm{B}}{N_\mathrm{c}}\right)^2}\qquad \qquad \frac{q_3}{q_2}\rightarrow \frac{q_1}{q_3}\qquad \qquad \boldsymbol{P}_\mathrm{B}
$$

variance:
$$
\left\langle \left(p - \frac{P_B}{N_c} \right)^2 \right\rangle \sim \Lambda^2
$$
 energetic!

$$
\rightarrow
$$
 large "mechanical" pressure

$$
\langle E_q(\mathbf{p}) \rangle_{\mathbf{P}_B} = \mathcal{N} \int_{\mathbf{p}} E_q(\mathbf{p}) e^{-\frac{1}{\Lambda^2} \left(\mathbf{p} - \frac{\mathbf{p}_B}{N_c} \right)^2} \simeq \langle E_q(\mathbf{p}) \rangle_{\mathbf{P}_B = 0} + \frac{1}{6} \left\langle \frac{\partial^2 E_q}{\partial p_i \partial p_i} \right\rangle_{\mathbf{P}_B = 0} \left(\frac{\mathbf{P}_B}{N_c} \right)^2 + \cdots
$$
\n
$$
\times \mathbf{N}_c \qquad \qquad \times \mathbf{N}_c
$$
\n
$$
\sim \mathbf{N}_c \left(\mathbf{M}_q + \mathbf{E}_{\text{kin}} \right) \qquad \gg \qquad \sim \mathbf{P}_B^2 \; / (\mathbf{N}_c \mathbf{E}_q)
$$
\n
$$
\text{baryon mass} \qquad \text{baryon kin. energy}
$$

Quantum numbers ?

quark quantum numbers; N_c , N_f , 2-spins (for a given spatial w.f.)

how many baryon species are needed to saturate quark states?

 \rightarrow need only $2N_f = 6$ species for $N_f = 3$

(full members of singlet, octet, decuplet are NOT necessary)

convenient **color-flavor-spin** bases

[neglect N-⊿ splitting etc. for simplicity] $\Delta_{s_1}^{++} = \left[u_R \uparrow u_G \uparrow u_B \uparrow \right], \quad \left[u_R \downarrow u_G \downarrow u_B \downarrow \right],$ $\Delta_{s_2=\pm 3/2}^- = [d_R \uparrow d_G \uparrow d_B \uparrow], \ \ [d_R \downarrow d_G \downarrow d_B \downarrow],$ $\Omega_{s_z=\pm 3/2}^- = [s_R \uparrow s_G \uparrow s_B \uparrow], \ \ [s_R \downarrow s_G \downarrow s_B \downarrow],$

Color-magnetic interaction play **many** roles

1) **Coupling** ∝ **velocity** ~ **p/E**

become important in relativistic regime & high density

2) **Pairing** : strongly channel dependent

hadron mass ordering: N-Δ, etc. [DeRujula+ (1975), Isgur-Karl (1978), ...] color-super-conductivity [Alford, Wilczek, Rajagopal, Schafer,... 1998-]

3) **Baryon-Baryon int.** : **short-range** correlation

(**Pauli + color-mag**.) [Oka-Yazaki (1980),...]

channel dep. \rightarrow non-universal hard core (some are attractive!)

mass dep. \rightarrow stronger hard core in relativistic quarks

→ **consistent with the lattice QCD** [HAL-collaboration]

Important relations

sum rule single baryon contain single R- or G- or B- quark

$$
n_q^{R,G,B}=\int_{\mathbf{p}}f_q(p)=\underline{\int_{\mathbf{p}}\left(\int_{\mathbf{P_B}}\mathcal{B}(P_B)\underline{Q_{\text{in}}(\mathbf{p};\mathbf{P_B})}\right)}=\int_{\mathbf{P_B}}\mathcal{B}(P_B)=n_B
$$

energy density
$$
E_B(P_B) \equiv N_c \int_{\mathbf{p}} E_q(\mathbf{p}) Q_{\text{in}}(\mathbf{p}; \mathbf{P_B})
$$

$$
\varepsilon = \int_{\mathbf{P_B}} \underline{E_B(P_B)} \mathcal{B}(P_B) = N_c \int_{\mathbf{P_B}} \bigg(\int_{\mathbf{p}} E_q(\mathbf{p}) \underline{Q_{\text{in}}(\mathbf{p}; \mathbf{P_B})} \bigg) \mathcal{B}(P_B) = N_c \int_{\mathbf{p}} E_q(\mathbf{p}) f_q(p)
$$

Dual expression: one can freely switch descriptions **No double counting**

Finite-T model Hadron Resonance Gas model for quark distribution

see [TK-Suenaga, '22]

$$
f_{\mathbf{q}}^{T}(\boldsymbol{p}) = \sum_{h} \int_{\boldsymbol{P}_{h}} n_{h}^{T}(\boldsymbol{P}_{h}) Q_{\text{in}}^{h\mathbf{q}}(\boldsymbol{p}; \boldsymbol{P}_{h})
$$

$$
n_{h}^{T}(\boldsymbol{P}_{h}) = [e^{E_{h}(\boldsymbol{P}_{h})/T} - 1]^{-1}
$$

• calculate quark w.f. for mesons up to $L = 3$, $n_r = 4$; $E < \sim 2.5$ GeV

