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Introduction
Initial considerations on the effect
n Combination of 

¨ Vertical offset ∆𝑦!" between beam 
and quadrupole

¨ Horizontal betatron oscillations

n Lead to
¨ Longitudinal magnetic field components

in entrance and exit fringe field regions
=> Spin rotation around longitudinal axis

¨ Horizontal deflection inside quadrupole
magnet
=> Spin rotation around vertical axis

n Result: classical geometric phase effet

n Note: 
¨ Changing horizontal position of particle (e.g., from positive 𝑥 to negative 𝑥 corresponding to 180o change of betatron 

phase) inverts all rotations => Effect adds up
¨ There may be other not yet understood spin rotations in addition (possibly explaining discrepancy between analytical 

estimates and simulation results)
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Simulation Results
Hybrid Ring - the case of interest
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§ The symmetric-hybrid ring lattice design has been used 
(https://journals.aps.org/prd/abstract/10.1103/PhysR
evD.105.032001)

§ A vertical offset of one QF quadrupole (focusing quad) 
in the middle of the machine has been added (magnetic 
correctors have been also added) – no orbit distortions 
outside:
qCase 1: one quad offset of 0.1 mm
qCase 2: one quad offset of 0.2 mm

§ Spin tracking results are shown for a longitudinally 
polarized beam

§ The results have been computed for particles executing 
different betatron oscillations

§ The simulation results have been compared with 
analytical estimates

cw beam

correctors

QF

https://journals.aps.org/prd/abstract/10.1103/PhysRevD.105.032001
https://journals.aps.org/prd/abstract/10.1103/PhysRevD.105.032001


Analytical Estimates – Magnetic Quadrupoles

n Inside quadrupole and considering vertical component of angular frequencies for
spin rotation 𝜔#,% = − &

'
𝐺 + (

)
𝐵%

rotation of particle direction 𝜔*,% = − &
')
𝐵%

n Integrated longitudinal magnetic field region of 
focusing magnet with strength 𝑘 with x and ∆𝑦!"
the transverse coordinates

¨ Generates rotation around 
longitudinal axis 

n Gives vertical spin component

n Averaging 𝑥 𝑥′ over 
betatron oscillations
with 𝛽+ and 𝛼+ the Twiss 
parameters and 𝐽+ the action variable

n Average spin buil-up rate
with indices i and o for
quadrupole entrance and exit
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2𝐵# 	𝑑𝑠 = ±
𝑚𝛾𝛽𝑐
𝑞

𝑘	𝑥	∆𝑦!"

=> Radial spin component: 𝑆+ ≈ 𝜔#,%/𝜔*,% 𝑥, = 𝛾𝐺 + 1 𝑥,

      and 𝑆+ − 𝑥, ≈ 	𝛾𝐺	𝑥′ (somewhat smaller for hybrid ring 
      with part of  focusing from electric bendings?)

∆𝛼# = −
𝑞
𝑚
𝐺 + 1
𝛾

2𝐵#
𝑑𝑠
𝛽𝑐

= ∓ 𝐺 + 1 𝑘	𝑥	∆𝑦!"

∆𝑆% = ∆𝛼# 𝑆+ − 𝑥′ = ∓ 𝐺 + 1 𝑘∆𝑦!"	x 𝑆+ − 𝑥,

 ≈ ∓𝛾	𝐺 𝐺 + 1 𝑘	∆𝑦!"	𝑥	𝑥′ 

𝑥𝑥′ =
1
2𝜋

2𝑑𝜇 2𝐽+𝛽+ 	cos 𝜇 ⁄2𝐽+ 𝛽+ sin 𝜇 − 𝛼+ cos 𝜇 = −𝐽+𝛼+

�̇�% =
𝛾	𝐺(𝐺 + 1)𝑘
𝐶/(𝛽𝑐)

∆𝑦!",-𝛼+,- − ∆𝑦!","𝛼+," 	𝐽+
 

(rather upper limit for hybrid ring - should 
be exact for structure without bendings)

Upper (lower) sign for quad entrance (exit)



Simulation Results
for a focusing quadrupole
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§ Case of  an offset of  0.1 mm  
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Simulation Results
for a focusing quadrupole
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§ Case of  an offset of  0.2 mm  
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Comparison between Analytical estimates and 
Simulation Results 
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q From analytical estimates – case of 0.1 mm: 
§ 𝐽# = 𝜀$%& = 0.214 𝜇m à �̇�' = 5.9 0 10-6 rad/s

q Structure with bendings (from simulations) – case offset 0.1 mm: 
§ 𝐽# =𝜀$%&/2 à �̇�' = -1.28 0 10-6 rad/s

§ 𝐽# = 𝜀$%& à �̇�' = -2.54 0 10-6 rad/s

q Structure with bendings (from simulations) – case offset 0.2 mm: 
§ 𝐽# =𝜀$%&/2 à �̇�' = -2.54 0 10-6 rad/s

§ 𝐽# = 𝜀$%& à �̇�' = -5.06 0 10-6 rad/s

q Structure without bendings (from simulations) - analytical estimates 
should be exact - case of 0.1 mm:
§ 𝐽#=𝜀$%&/2à �̇�' = -1.51 0 10-6 rad/s

§ 𝐽# = 𝜀$%& à �̇�' = -3.02 0 10-6 rad/s



Simulation Results
for a focusing quadrupole
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§ Positions of  the offset quadrupole at the entrance and the exit (case of  𝐽! = 𝜀"#$) 
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Simulation Results
for a focusing quadrupole
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§ Positions of  the offset quadrupole at the entrance and the exit (case of  𝐽! = 𝜀"#$) 
Quad entrance

Quad exit
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Simulation Results
for a focusing quadrupole
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§ Positions of  the offset quadrupole at the entrance and the exit (case of  𝐽! = 𝜀"#$) 
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• From analytical estimates: 
< 𝑆# − 𝑥( ∗ 𝑥 >≈ 𝛾𝐺 < 𝑥𝑥( >= −𝛾𝐺𝐽#𝛼# =
± 5.39 0 10-7  rad m

• From simulations: 
o Betatron 1:

< 𝑆# − 𝑥( ∗ 𝑥 > = 5.40970 10-7 (entrance)
< 𝑆# − 𝑥( ∗ 𝑥 > = -5.42220 10-7 (exit)

o Betatron 2: 
< 𝑆# − 𝑥( ∗ 𝑥 > = 5.28210 10-7 (entrance)
< 𝑆# − 𝑥( ∗ 𝑥 > = -5.2840 10-7 (exit)

o Betatron 3: 
< 𝑆# − 𝑥( ∗ 𝑥 > = 5.41580 10-7 (entrance)
< 𝑆# − 𝑥( ∗ 𝑥 > = -5.46780 10-7 (exit)

showing good agreement with simulations…



Simulation Results
Hybrid Ring - case of the offset in the defocusing quad
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§ The symmetric-hybrid ring lattice design has been used 
(https://journals.aps.org/prd/abstract/10.1103/PhysR
evD.105.032001)

§ A vertical offset of one QD quadrupole (defocusing 
quad) in the middle of the machine has been added 
(magnetic correctors have been also added) – no orbit 
distortions outside:
qCase 1: one quad offset of 0.1 mm

§ Spin tracking results are shown for a longitudinally 
polarized beam

§ The results have been computed for particles executing 
different betatron oscillations

cw beam

correctors

QD

https://journals.aps.org/prd/abstract/10.1103/PhysRevD.105.032001
https://journals.aps.org/prd/abstract/10.1103/PhysRevD.105.032001


Simulation Results
for a defocusing quadrupole
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§ Case of  an offset of  0.1 mm - case of  𝐽! = 𝜀"#$ = 0.214 𝜇m 



Motivation and Simulation Set-up for 
the case of electric focusing
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§ Study triggered by a comment of Yannis during the 
meeting of 06/06/2023
§ What is the effect with electric focusing?
§ Similar effect with the same order of magnitude?

§ The symmetric-hybrid ring lattice design has been 
used with electric quadrupoles 

§ A vertical offset of one QF quadrupole (focusing 
quad) in the middle of the machine has been added 
(electric correctors have been also added) – no orbit 
distortions outside:
qCase 1: one quad offset of 0.1 mm
qCase 2: one quad offset of 0.2 mm

§ The results have been computed for particles 
executing different betatron oscillations

§ Comparison of results between the lattice with 
magnetic and electric quadrupoles

§ The simulation results have been compared with 
analytical estimates

cw beam
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ecto
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Simulation Results
The case of electric focusing
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§ Case of  an offset of  0.1 mm - case of  𝐽! = 𝜀"#$ = 0.214 𝜇m
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Simulation Results
The case of electric focusing
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§ Case of  an offset of  0.2 mm - case of  𝐽! = 𝜀"#$ = 0.214 𝜇m
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Analytical Estimates – Electric Quadrupoles

n Electric field 𝐸 = 𝑘 )*
.%!.

+
−𝑥, 𝑦

n Electric potential 𝑈 = 𝑘 )*
.%!.

+
#.,'.

-

n Change of Lorentz factor
Δ𝛾 = − &/

'!!
= 𝑘 𝛾𝛽0 %!1+!

0

n Offset of beam w.r.t quad Δ𝑦 results in (replace 𝑦 by Δ𝑦)

Δ𝜔+ = − &
'

𝐺 − (
)!1(

2 3"
!
= − 2!

)
𝑘0 Δ𝑦0 − 𝑥0 Δ𝑦 ≈ 2!

)
𝑘0𝑥0Δ𝑦

n Factors 𝐿&456/𝐶 for averaging over circumference 
and replacing 𝑥0 by average 𝑥0 = 𝛽+ 𝐽+ gives 
for initial polarization parallel to movement

n For hybrid ring lattice after replacing magnetic quads by electric ones with Δ𝑦 = −0.1 mm,
𝐿&456 = 0.4 m, 𝐶 = 800 m, 𝑘 = 0.0877 m10, 𝛽+ = 64 m and 𝐽+ = 𝜀7'# = 0.214 𝜇m

n From simulations: 
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�̇�% = −UΔ𝜔+ = −
𝐿&456
𝐶

𝛽𝑐
𝛾
𝑘0𝛽+𝐽+ 	Δ𝑦

Δ
−1

𝛾0 − 1
=

2𝛾	Δ𝛾
𝛾0 − 1 0

Skipping higher orders ∝ Δ𝑦8  

�̇�% = 0.757	𝜇rad/s

𝑥

𝑦

Δ𝑦
𝐸

Δ𝜔

Direct spin rotation inside electric quad
From longitudinal into vertical direction 

Trajectory of  particle with
spin (almost) aligned 

with momentum 

Neglected effect proportional to

Δ𝑦 ! (quad and correctors) significant? 

�̇�% = 0.788	𝜇rad/s showing good agreement with simulations…



Summary and Conclusions
n Vertical spin build-up due to vertical offset in magnetic quadrupole and betatron oscillations 

¨ Classical geometric phase effect in fringes (plus possibly additional effects)
n Spin rotations w.r.t. particle direction not supressed with magnetic fields

¨ Order of magnitude agreement between analytical estimate and simulations
n After changing settings of the simulation set-up

¨ Initially about two orders of magnitude less vertical spin build-up with simulations
n Different signs between estimates and simulations to be understood
n Effect proportional to quad offset and horizontal action variable in simulations as expected

¨ Operation with counter rotating beams and runs with different quadruploes polarities forseen to 
mitigate by hybrid ring EDM team

n Residual effect from different beam emittances and imperfect magnetic field inversion (e.g., 
residual stray fields)

n Vertical spin build-up due to vertical offset in electric quadrupole and betatron oscillations 
¨ Study triggered by Yannis comment
¨ Contrary to expectation vertical spin build up seen in simulation and understood in between

n Decreased by a factor close to 3 
n Difference in sign with respect to magnetic quadrupoles
n Good agreement with analytical estimates
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Summary and Conclusions
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n Observation on horizontal spin drifts due to betatron oscillations with magnetic and electric 
focusing
¨ Different sign for electric and magnetic focusing
¨ Hypothesis qualitative explanation

n Electric focusing 
¨ Betratron oscillations inside bendings increase the path lengths, and for electric bends the deflection 
¨ Trajectory displaced in average towards the inside and the energy is increasing
¨ Spin rotates faster than momentum generating negative radial spin components

n Magnetic focusing 
¨ In addition, quadrupoles bend the beam towards the outside 
¨ Spin rotates faster than momentum generating larger positive radial spin components

¨ Difference in Spin decoherence between the electric and the magnetic lattice

n Thorought studies still needed to understand and asses possible systematic effects
¨ Simulation starting with reasonable assumptions on imperfections (alignment errors, unwanted field 

components, stray fields …) of initial machine
¨ Implementation of beam based corrections (orbit differences, additional gradients and magnetic 

fields …)
¨ Comparison with analytical estimates to ensure all effects are modelled correctly


