

Vertical Spin build-up due to Vertical Offset in Quadrupoles and Horizontal Betatron Oscillations

V. Cilento and C. Carli

1st February 2024

- Introduction Initial considerations on the effect
- Hybrid ring the case of interest
 - Analytical Estimates magnetic quadrupoles
 - Simulation Results for a focusing quadrupole
 - Comparison between analytical estimates and simulation results
 - Simulation results for a defocusing quadrupole
- Lattice with electric focusing
 - Simulation Results for electric focusing
 - Analytical Estimates electric quadrupoles
- Summary and Conclusions

Introduction

Initial considerations on the effect

- Combination of
 - □ Vertical offset Δy_{co} between beam and quadrupole
 - □ Horizontal betatron oscillations
- Lead to
 - Longitudinal magnetic field components in entrance and exit fringe field regions
 => Spin rotation around longitudinal axis
 - Horizontal deflection inside quadrupole magnet
 - => Spin rotation around vertical axis
- Result: classical geometric phase effet

Note:

- \Box Changing horizontal position of particle (e.g., from positive *x* to negative *x* corresponding to 180° change of betatron phase) inverts all rotations => Effect adds up
- □ There may be other not yet understood spin rotations in addition (possibly explaining discrepancy between analytical estimates and simulation results)

Introduction

Initial considerations on the effect

Vertical Offset in Quadrupoles and horizontal Betatron Oscillations

Simulation Results Hybrid Ring - the case of interest

- The symmetric-hybrid ring lattice design has been used (https://journals.aps.org/prd/abstract/10.1103/PhysR evD.105.032001)
- A vertical offset of one QF quadrupole (focusing quad) in the middle of the machine has been added (magnetic correctors have been also added) – no orbit distortions outside:
 - Case 1: one quad offset of 0.1 mm
 - Case 2: one quad offset of 0.2 mm
- Spin tracking results are shown for a longitudinally polarized beam
- enetic correctors tions OF cw beam
- The results have been computed for particles executing different betatron oscillations
- The simulation results have been compared with analytical estimates

Analytical Estimates – Magnetic Quadrupoles

Inside quadrupole and considering vertical component of angular frequencies for

spin rotation $\omega_{s,y} = -\frac{q}{m} \left(G + \frac{1}{\gamma}\right) B_y$ rotation of particle direction $\omega_{p,y} = -\frac{q}{m\gamma} B_y$

- Integrated longitudinal magnetic field region of focusing magnet with strength k with x and Δy_{co} the transverse coordinates
 - □ Generates rotation around longitudinal axis
- Gives vertical spin component
- Averaging x x' over
 betatron oscillations (x
 with β_x and α_x the Twiss
 parameters and J_x the action variable
- Average spin buil-up rate with indices i and o for quadrupole entrance and exit

=> Radial spin component: $S_x \approx (\omega_{s,y}/\omega_{p,y})x' = (\gamma G + 1)x'$ and $S_x - x' \approx \gamma G x'$ (somewhat smaller for hybrid ring with part of focusing from electric bendings?)

Upper (lower) sign for quad entrance (exit)

$$\int B_s \, ds = \pm \frac{m\gamma\beta c}{q} k \, x \, \Delta y_{co}$$

$$\Delta \alpha_s = -\frac{q}{m} \frac{G+1}{\gamma} \int B_s \frac{ds}{\beta c} = \mp (G+1)k \ x \ \Delta y_{co}$$

$$\Delta S_y = \Delta \alpha_s (S_x - x') = \mp (G + 1) k \Delta y_{co} x (S_x - x')$$

$$\approx \mp \gamma G (G + 1) k \Delta y_{co} x x'$$

$$\langle xx' \rangle = \frac{1}{2\pi} \int d\mu \sqrt{2J_x \beta_x} \cos \mu \sqrt{2J_x / \beta_x} (\sin \mu - \alpha_x \cos \mu) = -J_x \alpha_x$$

$$\dot{S}_{y} = \frac{\gamma G(G+1)k}{C/(\beta c)} \left(\Delta y_{co,i} \alpha_{x,i} - \Delta y_{co,o} \alpha_{x,o} \right) J_{x}$$

(rather upper limit for hybrid ring - should be exact for structure without bendings)

Vertical Offset in Quadrupoles and horizontal Betatron Oscillations

Simulation Results for a focusing quadrupole

CERN

for a focusing quadrupole

Comparison between Analytical estimates and Simulation Results

- □ From analytical estimates case of 0.1 mm:
 - $J_x = \varepsilon_{rms} = 0.214 \,\mu\text{m} \rightarrow \dot{S}_y = 5.9 \cdot 10^{-6} \,\text{rad/s}$
- □ Structure with bendings (from simulations) case offset 0.1 mm:
 - $J_x = \varepsilon_{rms}/2 \rightarrow \dot{S}_y = -1.28 \cdot 10^{-6} \, \mathrm{rad/s}$
 - $J_x = \varepsilon_{rms} \rightarrow \dot{S}_y = -2.54 \cdot 10^{-6} \, rad/s$
- □ Structure with bendings (from simulations) case offset 0.2 mm:

$$J_x = \varepsilon_{rms}/2 \rightarrow \dot{S}_y = -2.54 \cdot 10^{-6} \, \mathrm{rad/s}$$

$$J_x = \varepsilon_{rms} \rightarrow \dot{S}_y = -5.06 \cdot 10^{-6} \, rad/s$$

- Structure without bendings (from simulations) analytical estimates should be exact - case of 0.1 mm:
 - $J_x = \varepsilon_{rms}/2 \rightarrow \dot{S}_y = -1.51 \cdot 10^{-6} \, rad/s$

•
$$J_x = \varepsilon_{rms} \rightarrow \dot{S}_y = -3.02 \cdot 10^{-6} \, rad/s$$

for a focusing quadrupole

Vertical Offset in Quadrupoles and horizontal Betatron Oscillations

Simulation Results for a focusing quadrupole

• Positions of the offset quadrupole at the entrance and the exit (case of $J_x = \varepsilon_{rms}$)

CERN

VC and CC, February 2024

Simulation Results for a focusing quadrupole

- From analytical estimates: $< (S_x - x') * x > \approx \gamma G < xx' > = -\gamma G J_x \alpha_x = \pm 5.39 \cdot 10^{-7}$ rad m
- From simulations:

0

Ο

Betatron 1: $< (S_x - x') * x > = 5.4097 \cdot 10^{-7}$ (entrance) $< (S_x - x') * x > = -5.4222 \cdot 10^{-7}$ (exit) Betatron 2:

$$< (S_x - x') * x > = 5.2821 \cdot 10^{-7} \text{ (entrance)}$$
 $< (S_x - x') * x > = -5.284 \cdot 10^{-7} \text{ (exit)}$

Betatron 3: $< (S_x - x') * x > = 5.4158 \cdot 10^{-7}$ (entrance) $< (S_x - x') * x > = -5.4678 \cdot 10^{-7}$ (exit)

showing good agreement with simulations...

Simulation Results Hybrid Ring - case of the offset in the defocusing quad

- The symmetric-hybrid ring lattice design has been used (<u>https://journals.aps.org/prd/abstract/10.1103/PhysR</u>evD.105.032001)
- A vertical offset of one QD quadrupole (defocusing quad) in the middle of the machine has been added (magnetic correctors have been also added) = no orbit distortions outside:
 Case 1: one quad offset of 0.1 mm
 Spin tracking results are shown for a longitudinally polarized beam
 The results have been computed for particles executing

different betatron oscillations

Simulation Results for a defocusing quadrupole

• Case of an offset of 0.1 mm - case of $J_x = \varepsilon_{rms} = 0.214 \,\mu\text{m}$

Vertical Offset in Quadrupoles and horizontal Betatron Oscillations

Motivation and Simulation Set-up for the case of electric focusing

correctors

OF

- Study triggered by a comment of Yannis during the meeting of 06/06/2023
 - What is the effect with electric focusing?
 - Similar effect with the same order of magnitude?
- The symmetric-hybrid ring lattice design has been used with electric quadrupoles
- A vertical offset of one QF quadrupole (focusing quad) in the middle of the machine has been added (electric correctors have been also added) – no orbit distortions outside:
 - Case 1: one quad offset of 0.1 mm Case 2: one quad offset of 0.2 mm
- The results have been computed for particles executing different betatron oscillations
- Comparison of results between the lattice with magnetic and electric quadrupoles
- The simulation results have been compared with analytical estimates

The case of electric focusing

• Case of an offset of 0.1 mm - case of $J_x = \varepsilon_{rms} = 0.214 \ \mu m$

The case of electric focusing

• Case of an offset of 0.2 mm - case of $J_x = \varepsilon_{rms} = 0.214 \,\mu\text{m}$

Analytical Estimates – Electric Quadrupoles

with

- Electric potential $U = k \frac{\gamma \beta^2 mc^2}{q} \frac{x^2 y^2}{2}$
- Change of Lorentz factor aU , $a^2 v^2 - x^2$

$$\Delta \gamma = -\frac{1}{mc^2} = k \gamma \beta^2 \frac{1}{2}$$

• Offset of beam w.r.t quad Δy results in (replace y by Δy)

$$\Delta \omega_{\chi} = -\frac{q}{m} \left(G - \frac{1}{\gamma^2 - 1} \right) \frac{\beta E_y}{c} = -\frac{\beta c}{\gamma} k^2 (\Delta y^2 - x^2) \Delta y \approx \frac{\beta c}{\gamma} k^2 x^2 \Delta y$$
$$\Delta \left(\frac{-1}{\gamma^2 - 1} \right) = \frac{2\gamma \Delta \gamma}{(\gamma^2 - 1)^2} \qquad \text{Skipping higher orders } \propto$$

Trajectory of particle with
spin (almost) aligned
with momentum
$$\Delta \vec{\omega}$$

 \vec{E}
 Δy

Direct spin rotation inside electric quad From longitudinal into vertical direction

- Factors L_{quad}/C for averaging over circumference and replacing x^2 by average $\langle x^2 \rangle = \beta_x J_x$ gives for initial polarization parallel to movement
- For hybrid ring lattice after replacing magnetic quads by electric ones with $\Delta y = -0.1$ mm, $L_{quad} = 0.4 \text{ m}, C = 800 \text{ m}, k = 0.0877 \text{ m}^{-2}, \beta_x = 64 \text{ m} \text{ and } J_x = \varepsilon_{rms} = 0.214 \,\mu\text{m}$ $\dot{S}_v = 0.757 \,\mu\text{rad/s}$
- From simulations: $\dot{S}_{v} = 0.788 \,\mu \text{rad/s}$

showing good agreement with simulations...

Summary and Conclusions

- Vertical spin build-up due to vertical offset in magnetic quadrupole and betatron oscillations
 - □ Classical geometric phase effect in fringes (plus possibly additional effects)
 - Spin rotations w.r.t. particle direction not supressed with magnetic fields
 - $\hfill\square$ Order of magnitude agreement between analytical estimate and simulations
 - After changing settings of the simulation set-up
 - □ Initially about two orders of magnitude less vertical spin build-up with simulations
 - Different signs between estimates and simulations to be understood
 - Effect proportional to quad offset and horizontal action variable in simulations as expected
 - Operation with counter rotating beams and runs with different quadruploes polarities forseen to mitigate by hybrid ring EDM team
 - Residual effect from different beam emittances and imperfect magnetic field inversion (e.g., residual stray fields)
- Vertical spin build-up due to vertical offset in **electric quadrupole** and betatron oscillations
 - □ Study triggered by Yannis comment
 - □ Contrary to expectation vertical spin build up seen in simulation and understood in between
 - Decreased by a factor close to 3
 - Difference in sign with respect to magnetic quadrupoles
 - Good agreement with analytical estimates

Summary and Conclusions

- Observation on horizontal spin drifts due to betatron oscillations with magnetic and electric focusing
 - $\hfill\square$ Different sign for electric and magnetic focusing
 - $\hfill\square$ Hypothesis qualitative explanation
 - Electric focusing
 - □ Betratron oscillations inside bendings increase the path lengths, and for electric bends the deflection
 - □ Trajectory displaced in average towards the inside and the energy is increasing
 - □ Spin rotates faster than momentum generating negative radial spin components
 - Magnetic focusing
 - $\hfill\square$ In addition, quadrupoles bend the beam towards the outside
 - $\hfill\square$ Spin rotates faster than momentum generating larger positive radial spin components
 - \Box Difference in Spin decoherence between the electric and the magnetic lattice
- Thorought studies still needed to understand and asses possible systematic effects
 - □ Simulation starting with reasonable assumptions on imperfections (alignment errors, unwanted field components, stray fields ...) of initial machine
 - □ Implementation of beam based corrections (orbit differences, additional gradients and magnetic fields ...)
 - $\hfill\square$ Comparison with analytical estimates to ensure all effects are modelled correctly