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“A relatively permanent 
change in behaviour due to 

past experiences.”

D. Coon, Introduction to psychology: exploration and application (1983)

What is learning ?



Start from the beginning …

Supervised Learning
Learn by example

Training sample

Features
+

Labels

Target sample

Features

Learn

Apply

7



8

Examples from natural learning ...

Question:

List 2 animals that you believe are 
capable of learning.
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Examples from natural learning ...

Rat bait shyness - I

Rzóska, J. (1953). Bait shyness, a study in rat behavior. British Journal of Animal Behaviour, 1, 128–135
9



Examples from natural learning ...

Rat bait shyness - II

Rzóska, J. (1953). Bait shyness, a study in rat behavior. British Journal of Animal Behaviour, 1, 128–135
10



Examples from natural learning ...

Question:

● Do you believe the rat will learn the 
correlation between bad food ⇒ shock and/or 
sound ⇒ nausea?

11
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Examples from natural learning ...

Question:

● What aspect of the rat learning model 
prevents it from understanding the input ⇒ 
output correlation?
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Examples from natural learning ...

Pigeon superstition

Skinner, B. F. "'Superstition' in the Pigeon", Journal of Experimental Psychology#38, 1947
13
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Examples from natural learning ...

Take home message

Priors knowledge is crucial for 
effective learning



A controlled example:

Papaya tasting
Binary classification

This is all the data 
we will input to the 
model  about the 

papayas in the real 
world!

15YouTube class on the papaya testing example: 
https://www.youtube.com/watch?v=b5NlRg8SjZg&list=PLPW2keNyw-usgvmR7FTQ3ZRjfLs5jT4BO&index=2&t=0s

https://www.youtube.com/watch?v=b5NlRg8SjZg&list=PLPW2keNyw-usgvmR7FTQ3ZRjfLs5jT4BO&index=2&t=0s


Papaya tasting

X:   set of all features, 
       x = [softness, color]
Y:  set of possible labels, 
      y = [tasty, not tasty]
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A controlled example:

Papaya tasting
X:   set of all features, 
       x = [softness, color]
Y:  set of possible labels, 
      y = [tasty, not tasty]
D: data generation model,
      D ⟹ P(X)
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A controlled example:

Papaya tasting
X:   set of all features, 
       x = [softness, color]
Y:  set of possible labels, 
      y = [tasty, not tasty]
D: data generation model,
      D ⟹ P(X)
True Labelling function: y = f(x)
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A controlled example:

Papaya tasting
X:   set of all features, 
       x = [softness, color]
Y:  set of possible labels, 
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True Labelling function: y = f(x)

S:  training sample: [x
i
, y

i
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m: number of objects for training 
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A controlled example:

Papaya tasting
X:   set of all features, 
       x = [softness, color]
Y:  set of possible labels, 
      y = [tasty, not tasty]
D: data generation model,
      D ⟹ P(X)
True Labelling function: y = f(x)

S:  training sample: [x
i
, y

i
],  i ∈ training

m: number of objects for training 
h

S
     learner:    y

est;i
 = h

S
(x

i
)

L      metric: L (y
true;i 

- y
est;i

),  i ∈ 

training

Empirical Risk 
Minimization

(ERM)

L → fraction of incorrect predictions 
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A controlled example:
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A controlled example:

Papaya tasting

X:   set of all features, 
       x = [softness, color]
Y:  set of possible labels, 
      y = [tasty, not tasty]
D: data generation model,
      D ⟹ P(X)
True Labelling function: y = f(x)

S:  training sample: [x
i
, y

i
],  i ∈ training

m: number of objects for training 
h

S
     learner:    y

est;i
 = h

S
(x

i
)

L      metric: L (y
true;i 

- y
est;i

),  i ∈ 

training

Proposed learner:

Toy model ...
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A controlled example:

Question:

Proposed learner:

What is the 
expected loss 

when this model is 
applied to an 
arbitrary test 

sample?

26

[tasty, not tasty] = [1, 0]

loss = fraction of incorrect predictions 
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A controlled example:

Papaya tasting
X:   set of all features, 
       x = [softness, color]
Y:  set of possible labels, 
      y = [tasty, not tasty] = [1, 0]
D: data generation model,
      D ⟹ P(X)
True Labelling function: y = f(x)

S:  training sample: [x
i
, y

i
],  i ∈ training

m: number of objects for training 
h

S
     learner:    y

est;i
 = h

S
x

i

L      metric: L (y
true,i 

- y
est;i

),  i ∈ 

training

Proposed learner:

Answer:
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A controlled example:

Papaya tasting
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Answer:

Overfitting! 28



Question:

● How can we avoid overfitting?

29



Question:

● How can we avoid overfitting?

by adding prior knowledge ...

30



Adding prior knowledge ..

Choosing the learner
X:   set of all features, 
       x = [softness, color]
Y:  set of possible labels, 
      y = [tasty, not tasty]
D: data generation model,
      D ⟹ P(X)
True Labelling function: y = f(x)

S:  training sample: [x
i
, y

i
],  i ∈ training

m: number of objects for training 
h

S
     learner:    y

est;i
 = h

S
(x

i
)

L:  loss: L (y
true;i 

- y
est;i

),  i ∈ training
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Adding prior knowledge ..

Choosing the learner
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 = number of hypothesis

● The true labelling function is part of H:

f ∈ H
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Adding prior knowledge ..

Choosing the learner
χ:   set of all features, 
       x = [softness, color]
Y:  set of possible labels, 
      y = [tasty, not tasty]
D: data generation model,
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● The true labelling function is part of H:

f ∈ H

● S is identically independently distributed  
(i.i.d.) from D
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Machine Learning:

 
(a personal favorite) 

Supervised definition

36



Breiman, L., Statistical Modeling: The Two Cultures, Stat. Sci, Volume 16 (2001)

Hypothesis: Naturex y

37



Breiman, L., Statistical Modeling: The Two Cultures, Stat. Sci, Volume 16 (2001)

Hypothesis: Naturex y

Physical 
modeling:

Linear regression
Logistic regression

…
Statistical model

x y
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Breiman, L., Statistical Modeling: The Two Cultures, Stat. Sci, Volume 16 (2001)

Hypothesis: Naturex y

Physical 
modeling:

Linear regression
Logistic regression

…
Statistical model

x y

Algorithmic 
modeling:

Naturex y

Nearest Neighbor
Decision trees

…
Machine Learning model

39



Breiman, L., Statistical Modeling: The Two Cultures, Stat. Sci, Volume 16 (2001)

Hypothesis: Naturex y

Physical 
modeling:

Linear regression
Logistic regression

…
Statistical model

x y

Algorithmic 
modeling:

Naturex y

Nearest Neighbor
Decision trees

…
Machine Learning model

Why 

should  

this 

work?

40



Definition

Representativeness
Probability distribution, P

Sample, S1
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Definition

Representativeness
Probability distribution, P

Sample, S1
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Definition

Representativeness
Probability distribution, P

Sample, S1

S
1
 is 

representative 
of P
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Definition

Representativeness

Sample, S
1

Probability distribution, P

Sample, S
2
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Definition

Representativeness

Sample, S
1

Probability distribution, P

Sample, S
2
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Definition

Representativeness

Training

Probability distribution, P

Test

46

This is 

why it 

works!



Definition

Representativeness

● A sample S1 is said to be representative of a probability  
distribution P if one can draw accurate conclusions about P 
from S1

● If two samples S1 and S2 are representative of P, S1 and S2 are 
representative in relation to each other

47



Definition

Representativeness

● A sample S1 is said to be representative of a probability  
distribution P if one can draw accurate conclusions about P 
from S1

● If two samples S1 and S2 are representative of P, S1 and S2 are 
representative in relation to each other

Question:

If a sample S
1
 identically independently distributed 

(i.i.d.) from a distribution P,  is this enough to 
guarantee that S

1
 is representative of P?

48Join at menti.com with code: 7907 6385
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● H   is  finite, N
H
 = number of hypothesis

● The true labelling function is part of H:

f ∈ H

● S is identically independently distributed  
(i.i.d.) from D

Model assumptions

χ:   set of all features, 
       x = [softness, color]
Y:  set of possible labels, 
      y = [tasty, not tasty]
D: data generation model,
      D ⟹ P(χ)
True Labelling function: y = f(x)

S:  training sample: [x
i
, y

i
],  i ∈ training

h
S

     learner:    y
est;i

 = h
S
(x

i
)

L:  loss: L (y
true;i 

- y
est;i

),  i ∈ training

Hypothesis class (      ):

Not enough! 49



Things can still go wrong ...

Bad samples and hypothesis
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Things can still go wrong ...

Bad samples and hypothesis
δ   ⟶  probability of non-representative (bad) samples
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Things can still go wrong …

Bad hypothesis and samples
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Things can still go wrong …

Bad hypothesis and samples

53

δ   ⟶  probability of non-representative (bad) samples

1 - δ   ⟶  confidence parameter

ε   ⟶  contamination. A failure will occur when 

Bad 
hypothesis:

Good 
hypothesis:



Things can still go wrong …

Bad hypothesis and samples

54

δ   ⟶  probability of non-representative (bad) samples

1 - δ   ⟶  confidence parameter

ε   ⟶  contamination. A failure will occur when 

Bad 
hypothesis:

Good 
hypothesis:

Realizability assumption,  f ∈ H  



Things can still go wrong …

Constructing misleading samples
The world For 1 element in the training sample
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Things can still go wrong …

Constructing misleading samples
The world For 1 element in the training sample



Things can still go wrong …

Constructing misleading samples
The world For 1 element in the training sample

For m elements in the training sample

Since all elements in training are i.i.d.,



Things can still go wrong …

Considering bad hypothesis

59

For 1 hypothesis



Things can still go wrong …

Considering bad hypothesis
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For 1 hypothesis

The sum rule



Things can still go wrong …

Considering bad hypothesis
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For 1 hypothesis

For all bad hypothesis

The sum rule



Things can still go wrong …

Considering bad hypothesis
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For 1 hypothesis

using...

For all bad hypothesis

The sum rule



Things can still go wrong …

Considering bad hypothesis

63

For 1 hypothesis

using...

For all bad hypothesis

The sum rule



In summary …
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If, every h from ERM, 

65



L. Valiant. A theory of the learnable. Communications of the ACM, 27, 1984.

If, every h from ERM, 
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In summary …

PAC learning model



In summary …

PAC learning model

Probably    ⟶  with confidence 1 - δ over m samples
Approximately    ⟶  within a contamination level ≤  ε
Correct

L. Valiant. A theory of the learnable. Communications of the ACM, 27, 1984.

If, every h from ERM, 

67



χ:   set of all features, 
       x = [softness, color]
Y:  set of possible labels, 
      y = [tasty, not tasty]
D: data generation model,
      D ⟹ P(χ)
True Labelling function: y = f(x)

S:  training sample: [x
i
, y

i
],  i ∈ training

m: number of objects for training 
h

S
     learner:    y

est;i
 = h

S
(x

i
)

L:  loss: L (y
true;i 

- y
est;i

),  i ∈ training

Hypothesis class (      ):

● H   is  finite, N
H
 = number of hypothesis

● The true labelling function is part of H:

f ∈ H

● S is identically independently distributed  
(i.i.d.) from D

● Representativeness

Remember what is behind this!!

PAC Assumptions

68



Return to a controlled example ...

Papaya tasting
χ:   set of  x ∈  [softness, color]
Y:  set   y = [tasty, not tasty]
D: data generation model:  D ⟹ P(χ)
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Return to a controlled example ...

Papaya tasting
χ:   set of  x ∈  [softness, color]
Y:  set   y = [tasty, not tasty]
D: data generation model:  D ⟹ P(χ)
True Labelling function: 
y = tasty if softness ∈ [-0.5, 0.5] and
                     color ∈ [-0.5, 0.5] 
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Return to a controlled example ...

Papaya tasting
χ:   set of  x ∈  [softness, color]
Y:  set   y = [tasty, not tasty]
D: data generation model:  D ⟹ P(χ)
True Labelling function: 
y = tasty if softness ∈ [-0.5, 0.5] and
                     color ∈ [-0.5, 0.5] 

S:  training sample: [x
i
, y

i
],  i ∈ training

m: number of objects for training 
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Return to a controlled example ...

Papaya tasting
χ:   set of  x ∈  [softness, color]
Y:  set   y = [tasty, not tasty]
D: data generation model:  D ⟹ P(χ)
True Labelling function: 
y = tasty if softness ∈ [-0.5, 0.5] and
                     color ∈ [-0.5, 0.5] 

S:  training sample: [x
i
, y

i
],  i ∈ training

m: number of objects for training 
H : hypothesis class:  
     axis aligned squares in steps of 0.05

N
H

 = 20
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Return to a controlled example ...

Papaya tasting
χ:   set of  x ∈  [softness, color]
Y:  set   y = [tasty, not tasty]
D: data generation model:  D ⟹ P(χ)
True Labelling function: 
y = tasty if softness ∈ [-0.5, 0.5] and
                     color ∈ [-0.5, 0.5] 

S:  training sample: [x
i
, y

i
],  i ∈ training

m: number of objects for training 
H : hypothesis class:  
     axis aligned squares in steps of 0.05

N
H

 = 20
L:  loss: L (y

true;i 
- y

est;i
),  i ∈ training

73



Return to a controlled example ...

Question:

Data model: uniform distribution 
[-1,1] in both axis

1 - δ = 0.95 ← confidence

ε      = 0.05 ← contamination

NH  = 20 ← number of possible
squares

   

m = ??

What would you guess is the  number of examples necessary for training? 74
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Return to a controlled example ...

Question:

Data model: uniform distribution 
[-1,1] in both axis

1 - δ = 0.95 ← confidence

ε      = 0.05 ← contamination

NH  = 20 ← number of possible
squares

   

m ~ 120
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Return to a controlled example ...

Question:
Data model: uniform distribution 
[-1,1] in both axis

1 - δ = 0.95 ← confidence
ε      = 0.05 ← contamination
NH  = 20 ← number of possible

squares

   

76



Generalization ...

Agnostic PAC learning
Hypothesis class:

● m ⟶ number of objects in training

● H   is  finite, N
H

 = number of hypothesis

● The true labelling function may not be 
part of H:

f ∉ H

χ:   set of all features, 
       x = [softness, color]
Y:  set of possible labels, 
      y = [tasty, not tasty]
D: data generation model,
      D ⟹ P(χ,Y)
True Labelling function: y = f([x,y])

S:  training sample: [x
i
, y

i
],  i ∈ training

m: number of objects for training 
h

S
     learner:    y

est;i
 = h

S
(x

i 
, y

i
)

L:  loss

77



Important remark!

Representativeness
in machine learning

Shalev-Shwartz, S. and Ben-David, S., Understanding Machine Learning - from theory to algorithms, 2014, Cambridge University Press 78
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Important remark!

Representativeness
in machine learning

or
Uniform Convergence

It can be shown that, if  H  has uniform convergence, ERM
H
 

is a successful agnostic PAC learner of H.

Shalev-Shwartz, S. and Ben-David, S., Understanding Machine Learning - from theory to algorithms, 2014, Cambridge University Press 80



Important question ...

Can machine learning solve my 
problem?
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Important question ...

Can machine learning solve my 
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● If you have enough training sample to fulfill your 
expectations;

● If the set of your hypothesis class + loss function + training 
data has uniform convergence (representativeness)
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Important question ...

Can machine learning solve my 
problem?

● If your data satisfy all the necessary conditions;

● If you have enough training sample to fulfill your 
expectations;

● If the set of your hypothesis class + loss function + training 
data has uniform convergence (representativeness)

Then..  probably (1-δ), approximately (ε) : 
yes  

85



Many of these requirements are difficult to fulfill, e.g.

What about practical situations?

If you are using a classical learner whose class under your 
training sample and loss function are representative (has 

uniform convergence), you are probably getting reasonable 
results… but not all the time!
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Many of these requirements are difficult to fulfill, e.g.

What about practical situations?

If you are using a classical learner whose class under your 
training sample and loss function are representative (has 

uniform convergence), you are probably getting reasonable 
results… but not all the time!

So why does it seem to work in everything around us?

Best guess:  we do not know how to model real data...

https://www.youtube.com/watch?v=M2BJC0OyI-w
87
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In summary ...

There is plenty room for 
improvement!

Progress will only be possible through 
interdisciplinary collaboration!

88



In summary ...

There is plenty room for 
improvement!

Progress will only be possible through 
interdisciplinary collaboration!

Machine learning is a wonderful 
field of research, 

which has already shown its 
potential in many fields! We 

should definitely take advantage 
of its results .. however ...
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References:

This talk is a rough summary of 
chapters 1-4:

Free download - with agreement from the editor:

https://www.cse.huji.ac.il/~shais/UnderstandingMachineLearning/index.html

23 lectures of 1.5 hours each on youtube:

https://www.youtube.com/playlist?list=PLPW2keNyw-usgvmR7FTQ3ZRjfLs5jT4BO

Enjoy!
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