

Can Machine Learning solve my problem?

9th BCD ISHEP Cargèse School - part I 28 March 2024 - Cargèse, France

Emille E. O. Ishida

Laboratoire de Physique de Clermont - Université Clermont-Auvergne Clermont Ferrand, France

What impressive things machine learning can and/or will be able to do?

Join at menti.com with code: 7907 6385

Can Machine Learning solve my problem? I do not know

9th BCD ISHEP Cargèse School - part I 28 March 2024 - Cargèse, France

Emille E. O. Ishida

Laboratoire de Physique de Clermont - Université Clermont-Auvergne Clermont Ferrand, France

https://www.general-staff.com/wp-content/uploads/2019/03/MathWarning-300x193.jpg

https://www.meme-arsenal.com/en/create/meme/1868835

What is learning ?

"A relatively permanent change in behaviour due to past experiences."

D. Coon, Introduction to psychology: exploration and application (1983)

Start from the beginning ...

Supervised Learning Learn by example

Question:

List 2 animals that you believe are capable of learning.

Join at menti.com with code: 7907 6385

Rat bait shyness - I

Rat bait shyness - II

Rzóska, J. (1953). Bait shyness, a study in rat behavior. British Journal of Animal Behaviour, 1, 128–135

Question:

 Do you believe the rat will learn the correlation between bad food ⇒ shock and/or sound ⇒ nausea?

Join at menti.com with code: 7907 6385

Question:

 What aspect of the rat learning model prevents it from understanding the input ⇒ output correlation?

Pigeon superstition

Skinner, B. F. "Superstition' in the Pigeon", Journal of Experimental Psychology#38, 1947

Take home message

Priors knowledge is crucial for effective learning

Papaya tasting

Binary classification

Papaya tasting

X: set of all features, x = [softness, color]
Y: set of possible labels, y = [tasty, not tasty]

- Training sample
 - Tasty
 - Not tasty

A controlled example:

Papaya tasting

X: set of all features, x = [softness, color]Y: set of possible labels, y = [tasty, not tasty]D: data generation model, $D \Longrightarrow P(X)$

Training sample

- Tasty
- Not tasty

A controlled example:

Tasty

Not tasty

Papaya tasting

X: set of all features, x = [softness, color]Y: set of possible labels, y = [tasty, not tasty]D: data generation model, $D \Longrightarrow P(X)$ True Labelling function: y = f(x)

18

A controlled example:

Papaya tasting

X: set of all features, x = [softness, color]Y: set of possible labels, *y* = [tasty, not tasty] D: data generation model, $D \Longrightarrow P(X)$ *True Labelling function:* y = f(x)

S: training sample: $[x_i, y_i]$, $i \in training$ m: number of objects for training

Training sample

- Tasty
- Not tasty

Papaya tasting

- Training sample
 - Tasty
 - Not tasty

X: set of all features, x = [softness, color]Y: set of possible labels, y = [tasty, not tasty] *D*: data generation model, $D \Longrightarrow P(X)$ *True Labelling function:* y = f(x)

S: training sample: $[x_i, y_i]$, $i \in training$ m: number of objects for training h_s : learner: $y_{est;i} = h_s(x_i)$

Papaya tasting

Training sample

- Tasty
- Not tasty

X: set of all features, x = [softness, color]Y: set of possible labels, y = [tasty, not tasty]D: data generation model, $D \Longrightarrow P(X)$ True Labelling function: y = f(x)

S: training sample: $[x_i, y_i]$, $i \in training$ m: number of objects for training h_s learner: $y_{est;i} = h_s(x_i)$ L metric: $L(y_{true;i} - y_{est;i})$, $i \in training$

Papaya tasting

X: set of all features, x = [softness, color]Y: set of possible labels, y = [tasty, not tasty] *D*: data generation model, $D \Longrightarrow P(X)$ *True Labelling function:* y = f(x)S: training sample: $[x_i, y_i]$, $i \in training$ *m: number of objects for training*

 $\begin{array}{ll} h_{S} & \text{learner: } y_{est;i} = h_{S}(x_{i}) \\ L & \text{metric: } L \left(y_{true;i} - y_{est;i} \right), i \in \\ training \end{array}$

 $L \rightarrow fraction \ of \ incorrect \ predictions$

Papaya tasting

X: set of all features, x = [softness, color]Y: set of possible labels, y = [tasty, not tasty]D: data generation model, $D \Longrightarrow P(X)$ True Labelling function: y = f(x)

S: training sample: $[x_i, y_i]$, $i \in training$ m: number of objects for training

 $\begin{array}{ll} h_{S} & \text{learner: } y_{est;i} = h_{S}(x_{i}) \\ L & \text{metric: } L \left(y_{true;i} - y_{est;i} \right), i \in \\ training \end{array}$

$$L_{\mathcal{D}}(h_S) = \frac{|\{x \in \mathcal{D} : h_S(x) \neq f(x)\}|}{m}$$

A controlled example:

Papaya tasting

Proposed learner:

$$h_S(x) = \begin{cases} y_i & \text{if } x = x_i \mid \{x_i \in S\} \\ 0 & \text{otherwise} \end{cases}$$

- *X*: set of all features, x = [softness, color]Y: set of possible labels, y = [tasty, not tasty] *D*: data generation model, $D \Longrightarrow P(X)$ *True Labelling function:* y = f(x)S: training sample: $[x_i, y_i]$, $i \in training$ *m: number of objects for training* h_s learner: $y_{est:i} = h_s(x_i)$
- $\begin{array}{ll}h_{S} & \text{learner: } y_{est;i} = h_{S}(x_{i})\\L & \text{metric: } L\left(y_{true;i} y_{est;i}\right), i \in \\training\end{array}$

$$L_{\mathcal{D}}(h_S) = \frac{|\{x \in \mathcal{D} : h_S(x) \neq f(x)\}|}{m}$$

A controlled example:

Papaya tasting

Proposed learner:

$$h_S(x) = \begin{cases} y_i & \text{if } x = x_i \mid \{x_i \in S\} \\ 0 & \text{otherwise} \end{cases}$$

Toy model ...

X: set of all features, x = [softness, color]Y: set of possible labels, *y* = [tasty, not tasty] D: data generation model, $D \Longrightarrow P(X)$ *True Labelling function:* y = f(x)S: training sample: $[x_i, y_i]$, $i \in training$ *m*: number of objects for training learner: $y_{est:i} = h_s(x_i)$ h_{s} metric: $L(y_{true:i} - y_{est:i}), i \in$ L training

$$L_{\mathcal{D}}(h_S) = \frac{|\{x \in \mathcal{D} : h_S(x) \neq f(x)\}|}{m}$$

Question:

Training sample

Tasty

Not tasty

Proposed learner:

 $h_S(x) = \begin{cases} y_i & \text{if } x = x_i \mid \{x_i \in S\} \\ 0 & \text{otherwise} \end{cases}$ -1 0.5 Color 0 -0.5 1 -0.5 0.5 -1 Softness

[tasty, not tasty] = [1, 0]

What is the expected loss when this model is applied to an arbitrary test sample?

Join at menti.com with code: 7907 6385

loss = fraction of incorrect predictions

$$L_{\mathcal{D}}(h_S) = \frac{|\{x \in \mathcal{D} : h_S(x) \neq f(x)\}|}{m} \quad {}_{26}$$

Papaya tasting

Proposed learner:

$$h_S(x) = \begin{cases} y_i & \text{if } x = x_i \mid \{x_i \in S\} \\ 0 & \text{otherwise} \end{cases}$$

Answer:

- Training sample Not tasty **Answer:** $L_S(h_S) = 0.0$ $L_D(h_S) = 0.25$
- *X*: set of all features, x = [softness, color]Y: set of possible labels, *y* = [tasty, not tasty] = [1, 0] D: data generation model, $D \Longrightarrow P(X)$ *True Labelling function:* y = f(x)S: training sample: $[x_i, y_i]$, $i \in training$ *m*: number of objects for training learner: $y_{est:i} = h_S x_i$ $h_{\rm s}$ metric: $L(y_{true,i} - y_{est;i}), i \in$ L

training

$$L_{\mathcal{D}}(h_S) = \frac{|\{x \in \mathcal{D} : h_S(x) \neq f(x)\}|}{m}$$

Papaya tasting

Proposed learner:

$$h_S(x) = \begin{cases} y_i & \text{if } x = x_i \mid \{x_i \in S\} \\ 0 & \text{otherwise} \end{cases}$$

Answer:

X: set of all features, x = [softness, color]Y: set of possible labels, y = [tasty, not tasty]D: data generation model, $D \Longrightarrow P(X)$ True Labelling function: y = f(x)

S: training sample: $[x_i, y_i]$, $i \in training$ m: number of objects for training

 $\begin{array}{ll} h_{S} & \text{learner: } y_{est;i} = h_{S} x_{i} \\ L & \text{metric: } L \left(y_{true,i} - y_{est;i} \right), i \in \\ training \end{array}$

$$\mathcal{L}_{\mathcal{D}}(h_S) = \frac{|\{x \in \mathcal{D} : h_S(x) \neq f(x)\}|}{m}$$

28

Question:

• How can we avoid overfitting?

Question:

• How can we avoid overfitting?

by adding prior knowledge ...

Choosing the learner

X: set of all features, x = [softness, color]Y: set of possible labels, y = [tasty, not tasty]D: data generation model, $D \Longrightarrow P(X)$

True Labelling function: y = f(x)

S: training sample: $[x_i, y_i]$, $i \in training$ m: number of objects for training

 h_{S} learner: $y_{est;i} = h_{S}(x_{i})$

$$h_S(x) = \begin{cases} y_i & \text{if } x = x_i \mid \{x_i \in S\} \\ 0 & \text{otherwise} \end{cases}$$

L: loss:
$$L(y_{true;i} - y_{est;i})$$
, $i \in training$
$$L_{\mathcal{D}}(h_S) = \frac{|\{x \in \mathcal{D} : h_S(x) \neq f(x)\}|}{m}$$

Choosing the learner

X: set of all features, x = [softness, color]Y: set of possible labels, y = [tasty, not tasty]D: data generation model, $D \Longrightarrow P(X)$ True Labelling function: y = f(x)

S: training sample: $[x_i, y_i]$, $i \in training$ m: number of objects for training

 h_{S} learner: $y_{est;i} = h_{S}(x_{i})$

$$h_S(x) = \begin{cases} y_i & \text{if } x = x_i \mid \{x_i \in S\} \\ 0 & \text{otherwise} \end{cases}$$

L: loss:
$$L(y_{true;i} - y_{est;i})$$
, $i \in training$
$$L_{\mathcal{D}}(h_S) = \frac{|\{x \in \mathcal{D} : h_S(x) \neq f(x)\}|}{m}$$

Hypothesis class (\mathcal{H}):

 $h: \mathcal{X} \longrightarrow \mathcal{Y}; \qquad h \in \mathcal{H}$

 $\operatorname{ERM}_{\mathcal{H}}(S) \in \operatorname{argmin}_{h \in \mathcal{H}} L_S(h),$

Choosing the learner

X: set of all features, x = [softness, color]Y: set of possible labels, y = [tasty, not tasty] *D*: data generation model, $D \Longrightarrow P(X)$ *True Labelling function:* y = f(x)

S: training sample:
$$[x_{i'}, y_{i'}]$$
, $i \in training$
 h_s learner: $y_{est;i} = h_s(x_{i'})$

$$h_S(x) = \begin{cases} y_i & \text{if } x = x_i \mid \{x_i \in S\} \\ 0 & \text{otherwise} \end{cases}$$

L: loss:
$$L(y_{true;i} - y_{est;i})$$
, $i \in training$

$$L_{\mathcal{D}}(h_S) = \frac{|\{x \in \mathcal{D} : h_S(x) \neq f(x)\}|}{m}$$

Hypothesis class (${\cal H}$):

$$h: \mathcal{X} \longrightarrow \mathcal{Y}; \qquad h \in \mathcal{H}$$

$$\operatorname{ERM}_{\mathcal{H}}(S) \in \operatorname{argmin}_{h \in \mathcal{H}} L_S(h),$$

- \mathcal{H} is finite, $N_{\mathcal{H}}$ = number of hypothesis
- The true labelling function is part of \mathcal{H} :

 $f \in \mathcal{H}$

Choosing the learner

χ: set of all features,
x = [softness, color]
Y: set of possible labels,
y = [tasty, not tasty]
D: data generation model,

 $D \Longrightarrow P(\chi)$

True Labelling function: y = *f*(*x*)

S: training sample:
$$[x_{i'}, y_{i'}]$$
, $i \in training$
 h_s learner: $y_{est;i} = h_s(x_{i'})$

$$h_S(x) = \begin{cases} y_i & \text{if } x = x_i \mid \{x_i \in S\} \\ 0 & \text{otherwise} \end{cases}$$

L: loss:
$$L(y_{true;i} - y_{est;i})$$
, $i \in training$

$$L_{\mathcal{D}}(h_S) = \frac{|\{x \in \mathcal{D} : h_S(x) \neq f(x)\}|}{m}$$

Hypothesis class (${\cal H}$):

$$h: \mathcal{X} \longrightarrow \mathcal{Y}; \qquad h \in \mathcal{H}$$

$$\operatorname{ERM}_{\mathcal{H}}(S) \in \operatorname{argmin}_{h \in \mathcal{H}} L_S(h),$$

- \mathcal{H} is finite, $N_{\mathcal{H}}$ = number of hypothesis
- The true labelling function is part of \mathcal{H} : $f \in \mathcal{H}$
- *S* is identically independently distributed (*i.i.d.*) from *D*

Choosing the learner

- χ: set of all features,
 x = [softness, color]
 Y: set of possible labels,
 y = [tasty, not tasty]
 D: data generation model,
 - $D \Longrightarrow P(\chi)$
- *True Labelling function:* y = f(x)

S: training sample:
$$[x_i, y_i]$$
, $i \in training$
 h_s learner: $y_{est;i} = h_s(x_i)$

$$h_S(x) = \begin{cases} y_i & \text{if } x = x_i \mid \{x_i \in S\} \\ 0 & \text{otherwise} \end{cases}$$

L: loss:
$$L(y_{true;i} - y_{est;i})$$
, $i \in training$

$$L_{\mathcal{D}}(h_S) = \frac{|\{x \in \mathcal{D} : h_S(x) \neq f(x)\}|}{m}$$

Hypothesis class (${\cal H}$):

$$h: \mathcal{X} \longrightarrow \mathcal{Y}; \qquad h \in \mathcal{H}$$

$$\operatorname{ERM}_{\mathcal{H}}(S) \in \operatorname{argmin}_{h \in \mathcal{H}} L_S(h),$$

- \mathcal{H} is finite, $N_{\mathcal{H}}$ = number of hypothesis
- The true labelling function is part of \mathcal{H} :

 $f \in \mathcal{H}$

• *S* is identically independently distributed (*i.i.d.*) from *D*

Machine Learning:

(a personal favorite) Supervised definition
Hypothesis: x --- Nature

► У

Breiman, L., Statistical Modeling: The Two Cultures, Stat. Sci, Volume 16 (2001)

Algorithmic modeling:

Breiman, L., Statistical Modeling: The Two Cultures, Stat. Sci, Volume 16 (2001)

Breiman, L., Statistical Modeling: The Two Cultures, Stat. Sci, Volume 16 (2001)

Representativeness

Probability distribution, P

 (μ_P, σ_P)

Sample, S1

 $(\mu_{S_1}, \sigma_{S_1})$

Representativeness

Representativeness

Representativeness

Representativeness

Representativeness

Representativeness

- A sample S1 is said to be representative of a probability distribution P if one can draw accurate conclusions about P from S1
- If two samples S1 and S2 are representative of P, S1 and S2 are representative in relation to each other

Representativeness

- A sample S1 is said to be representative of a probability distribution P if one can draw accurate conclusions about P from S1
- If two samples S1 and S2 are representative of P, S1 and S2 are representative in relation to each other

Question:

If a sample S_1 identically independently distributed (i.i.d.) from a distribution P, is this enough to guarantee that S_1 is representative of P?

Model assumptions

 $\chi: \text{ set of all features,} \\ x = [softness, color] \\ Y: \text{ set of possible labels,} \\ y = [tasty, not tasty] \\ D: data generation model, \\ D \Rightarrow P(\chi) \\ True Labelling function: <math>y = f(x) \\ S: \text{ training sample: } [x_i, y_i], i \in training \\ h_S \quad \text{learner: } y_{est,i} = h_S(x_i) \\ \end{bmatrix}$

$$h_S(x) = \begin{cases} y_i & \text{if } \exists i \in [m] \text{ s.t. } x_i = x \\ 0 & \text{otherwise.} \end{cases}$$

L: loss:
$$L(y_{true;i} - y_{est;i})$$
, $i \in training$

$$L_{\mathcal{D}}(h_S) = \frac{|\{x \in \mathcal{D} : h_S(x) \neq f(x)\}|}{m}$$

Hypothesis class (${\cal H}$):

$$h: \mathcal{X} \longrightarrow \mathcal{Y}; \qquad h \in \mathcal{H}$$

$$\operatorname{ERM}_{\mathcal{H}}(S) \in \operatorname{argmin}_{h \in \mathcal{H}} L_S(h),$$

- \mathcal{H} is finite, $N_{\mathcal{H}}$ = number of hypothesis
- The true labelling function is part of \mathcal{H} : $f \in \mathcal{H}$
- *S* is identically independently distributed (*i.i.d.*) from *D*

Bad samples and hypothesis

Bad samples and hypothesis

 $\delta \rightarrow$ probability of non-representative (bad) samples

Bad hypothesis and samples

- $\delta \ \rightarrow \mbox{ probability of non-representative (bad) samples }$
- 1 $\delta \rightarrow$ confidence parameter

Bad hypothesis and samples

 $\delta \ \rightarrow \mbox{ probability of non-representative (bad) samples }$

- 1 $\delta \rightarrow$ confidence parameter
- $\epsilon \rightarrow$ contamination. A failure will occur when $L_D(h_S) \geq \epsilon$

Good
hypothesis:
$$\mathcal{H}_G \coloneqq [h \in \mathcal{H} : L_S(h_S) = 0 \& L_D(h_S) < \epsilon]$$

Bad hypothesis: $\mathcal{H}_B := [h \in \mathcal{H} : L_S(h_S) = 0 \& L_D(h_S) \ge \epsilon]$

Bad hypothesis and samples

 $\delta \ \rightarrow \mbox{ probability of non-representative (bad) samples }$

- 1 $\delta \rightarrow$ confidence parameter
- $\epsilon \rightarrow$ contamination. A failure will occur when $L_D(h_S) \geq \epsilon$

Good
hypothesis:
$$\mathcal{H}_G :=$$
 $[h \in \mathcal{H} : L_S(h_S) = 0$ & $L_D(h_S) < \epsilon]$ Bad
hypothesis: $\mathcal{H}_B :=$ $[h \in \mathcal{H} : L_S(h_S) = 0$ & $L_D(h_S) \ge \epsilon]$

Realizability assumption, $f \in \mathcal{H}$

Constructing misleading samples

The world

Bad samples

For 1 element in the training sample

$$x_i \mid h(x_i) = y_i$$

Constructing misleading samples

The world

Bad samples For 1 element in the training sample $x_i \mid h(x_i) = y_i$ $P(x_i \in \mathcal{D} : h(x_i) = y_i) = 1 - L_{\mathcal{D},f}(h)$

Constructing misleading samples

The world

Bad samples For 1 element in the training sample $x_i \mid h(x_i) = y_i$ $P(x_i \in \mathcal{D} : h(x_i) = y_i) = 1 - L_{\mathcal{D},f}(h)$ $P(x_i \in \mathcal{D} : h(x_i) = y_i) \le 1 - \epsilon$

Constructing misleading samples

The world

Bad samples For 1 element in the training sample $x_i \mid h(x_i) = y_i$ $P(x_i \in \mathcal{D} : h(x_i) = y_i) = 1 - L_{\mathcal{D},f}(h)$ $P(x_i \in \mathcal{D} : h(x_i) = y_i) \le 1 - \epsilon$

For *m* elements in the training sample

Since all elements in training are i.i.d.,

$$P(S_m : L_S(h) = 0) \le \prod_{i=1}^m (1-\epsilon) = (1-\epsilon)^m$$

Considering bad hypothesis

For 1 hypothesis

$$P(S_m : L_S(h) = 0) \leq (1 - \epsilon)^m$$

Considering bad hypothesis

For 1 hypothesis

$$P(S_m : L_S(h) = 0) \leq (1 - \epsilon)^m$$

The sum rule

$$P(A \cup B) \leq P(A) + P(B)$$

Considering bad hypothesis

$$P(S_m : L_S(h) = 0) \leq (1 - \epsilon)^m$$

For 1 hymothesis

The sum rule $P(A \cup B) \leq P(A) + P(B)$

For all bad hypothesis

$$\delta = P(L_S(h) = 0, \forall h \in \mathcal{H}_B) \leq \sum_{h \in \mathcal{H}_B} (1 - \epsilon)^m$$

Considering bad hypothesis

$$P(S_m : L_S(h) = 0) \leq (1 - \epsilon)^m$$

For 1 hymothesis

The sum rule $P(A \cup B) \leq P(A) + P(B)$

For all bad hypothesis

$$\delta = P(L_S(h) = 0, \forall h \in \mathcal{H}_B) \leq \sum_{h \in \mathcal{H}_B} (1 - \epsilon)^m$$

using...

$$(1-x)^y \le \exp\left(-xy\right)$$

Considering bad hypothesis

$$P(S_m : L_S(h) = 0) \leq (1 - \epsilon)^m$$

For 1 hypothesis

The sum rule $P(A\cup B) \leq P(A)+P(B)$

 $\delta \le N_{\mathcal{H}} \exp(-\epsilon m)$

For all bad hypothesis $\delta = P(L_S(h) = 0, \forall h \in \mathcal{H}_B) \leq \sum_{h \in \mathcal{H}_B} (1 - \epsilon)^m$

using...

$$(1-x)^y \le \exp\left(-xy\right)$$

63

$\delta \le N_{\mathcal{H}} \exp(-\epsilon m)$

$$\delta \le N_{\mathcal{H}} \exp(-\epsilon m)$$

L. Valiant. A theory of the learnable. Communications of the ACM, 27, 1984.

PAC learning model

$$\delta \le N_{\mathcal{H}} \exp(-\epsilon m)$$

L. Valiant. A theory of the learnable. Communications of the ACM, 27, 1984.

PAC learning model

$$\delta \le N_{\mathcal{H}} \exp(-\epsilon m)$$

 $\begin{array}{ll} \textbf{P}robably & \longrightarrow \text{ with confidence 1 - } \delta \text{ over } m \text{ samples} \\ \textbf{A}pproximately & \longrightarrow \text{ within a contamination level} \leq \epsilon \\ \textbf{C}orrect & \end{array}$

If, $m_{\mathcal{H}}(\epsilon, \delta) \geq \frac{\ln(N_{\mathcal{H}}/\delta)}{\epsilon} \longrightarrow L_{(\mathcal{D},f)}(h_S) \leq \epsilon.$

L. Valiant. A theory of the learnable. Communications of the ACM, 27, 1984.

Remember what is behind this!!

PAC Assumptions

 χ : set of all features, x = [softness, color]Y: set of possible labels, y = [tasty, not tasty]D: data generation model, $D \Longrightarrow P(\chi)$ True Labelling function: y = f(x)

S: training sample: $[x_i, y_i]$, $i \in training$ m: number of objects for training

 $h_{S} \quad \text{learner: } y_{est;i} = h_{S}(x_{i})$ $h_{S}(x) = \begin{cases} y_{i} & \text{if } \exists i \in [m] \text{ s.t. } x_{i} = x \\ 0 & \text{otherwise.} \end{cases}$ $L: \text{ loss: } L(y_{true;i} - y_{est;i}), i \in \text{training}$ $L_{\mathcal{D}}(h_{S}) = \frac{|\{x \in \mathcal{D} : h_{S}(x) \neq f(x)\}|}{m}$

Hypothesis class (${\cal H}$):

$$h: \mathcal{X} \longrightarrow \mathcal{Y}; \qquad h \in \mathcal{H}$$

$$\operatorname{ERM}_{\mathcal{H}}(S) \in \operatorname{argmin}_{h \in \mathcal{H}} L_S(h),$$

- \mathcal{H} is finite, $N_{\mathcal{H}}$ = number of hypothesis
- The true labelling function is part of \mathcal{H} :

 $f \in \mathcal{H}$

- *S* is identically independently distributed (*i.i.d.*) from D
- Representativeness

Papaya tasting

 χ : set of $x \in [softness, color]$ Y: set y = [tasty, not tasty]D: data generation model: $D \Rightarrow P(\chi)$

Papaya tasting

 χ : set of $x \in [softness, color]$ Y: set y = [tasty, not tasty]D: data generation model: $D \Rightarrow P(\chi)$ True Labelling function: $y = tasty \ if \ softness \in [-0.5, 0.5] \ and$ $color \in [-0.5, 0.5]$

Papaya tasting

 χ : set of $x \in [softness, color]$ Y: set y = [tasty, not tasty]D: data generation model: $D \Rightarrow P(\chi)$ True Labelling function: $y = tasty \ if \ softness \in [-0.5, 0.5] \ and$ $color \in [-0.5, 0.5]$

S: training sample: $[x_i, y_i]$, $i \in training$ m: number of objects for training

Papaya tasting

 χ : set of $x \in [softness, color]$ Y: set y = [tasty, not tasty]D: data generation model: $D \Rightarrow P(\chi)$ True Labelling function: $y = tasty if softness \in [-0.5, 0.5]$ and $color \in [-0.5, 0.5]$

S: training sample: $[x_i, y_i]$, $i \in training$ m: number of objects for training \mathcal{H} : hypothesis class:

axis aligned squares in steps of 0.05

$$N_{_{H}} = 20$$

Papaya tasting

 χ : set of $x \in [softness, color]$ Y: set y = [tasty, not tasty]D: data generation model: $D \Rightarrow P(\chi)$ True Labelling function: $y = tasty \text{ if softness} \in [-0.5, 0.5] \text{ and}$ $color \in [-0.5, 0.5]$

S: training sample: $[x_i, y_i]$, $i \in training$ m: number of objects for training \mathcal{H} : hypothesis class:

axis aligned squares in steps of 0.05

$$N_{H} = 20$$

L: loss: $L(y_{true;i} - y_{est;i}), i \in training$

$$L_{\mathcal{D}}(h_S) = \frac{|\{x \in \mathcal{D} : h_S(x) \neq f(x)\}|}{m}$$

Question:

Data model: uniform distribution [-1,1] in both axis

- $1 \delta = 0.95 \leftarrow \text{ confidence}$
- ϵ = 0.05 \leftarrow contamination
- $N_H = 20 \leftarrow \text{number of possible}$ squares

m = ??

Join at menti.com with code: 7907 6385

What would you guess is the number of examples necessary for training?

Question:

Data model: uniform distribution [-1,1] in both axis

- $1 \delta = 0.95 \leftarrow \text{ confidence}$
- ϵ = 0.05 \leftarrow contamination
- $N_H = 20 \leftarrow \text{number of possible}$ squares

m~120

Question:

-1

76

True labelling function

Data model: uniform distribution [-1,1] in both axis

Generalization ...

Agnostic PAC learning

- $\chi: \text{ set of all features,} \\ x = [softness, color] \\ Y: \text{ set of possible labels,} \\ y = [tasty, not tasty] \\ D: data generation model, \\ D \Longrightarrow P(\chi, Y) \\ True Labelling function: y = f([x,y]) \\ S: \text{ training sample: } [x_i, y_i], i \in training \\ m: number of objects for training \\ h_s \qquad \text{learner: } y_{est;i} = h_s(x_i, y_i) \\ \end{cases}$
 - L: loss

$$L_{\mathcal{D}}(h) \stackrel{\text{def}}{=} \mathbb{E}_{(x,y)\sim\mathcal{D}}(h(x)-y)^2$$

Hypothesis class:

 $h: \mathcal{X} \longrightarrow \mathcal{Y}; \qquad h \in \mathcal{H}$

$$\operatorname{ERM}_{\mathcal{H}}(S) \in \operatorname{argmin}_{h \in \mathcal{H}} L_S(h),$$

- $m \rightarrow$ number of objects in training
- \mathcal{H} is finite, N_{H} = number of hypothesis
- The true labelling function may not be part of *H*:

 $f^{{}{}\oplus{}} \mathcal{H}$

 $L_{\mathcal{D}}(h) \leq \min_{h' \in \mathcal{H}} L_{\mathcal{D}}(h') + \epsilon,$

Important remark!

Representativeness

in machine learning

Important remark!

Representativeness

in machine learning

or Uniform Convergence

$$\forall h \in \mathcal{H}, |L_S(h) - L_\mathcal{D}(h)| \le \epsilon$$

Important remark!

Representativeness

in machine learning

or Uniform Convergence

$$\forall h \in \mathcal{H}, |L_S(h) - L_\mathcal{D}(h)| \le \epsilon$$

It can be shown that, if \mathcal{H} has uniform convergence, $\text{ERM}_{\mathcal{H}}$ is a successful agnostic PAC learner of \mathcal{H} .

Can machine learning solve my problem?

Can machine learning solve my problem?

• If your data satisfy all the necessary conditions;

Can machine learning solve my problem?

- If your data satisfy all the necessary conditions;
- If you have enough training sample to fulfill your expectations;

Can machine learning solve my problem?

- If your data satisfy all the necessary conditions;
- If you have enough training sample to fulfill your expectations;
- If the set of your hypothesis class + loss function + training data has uniform convergence (representativeness)

Can machine learning solve my problem?

- If your data satisfy all the necessary conditions;
- If you have enough training sample to fulfill your expectations;
- If the set of your hypothesis class + loss function + training data has uniform convergence (representativeness)

Then.. probably (1-δ), approximately (ε) : yes

Many of these requirements are difficult to fulfill, e.g.

What about practical situations?

If you are using a classical learner whose class under your training sample and loss function are representative (has uniform convergence), you are probably getting reasonable results... **but not all the time**! Many of these requirements are difficult to fulfill, e.g.

What about practical situations?

If you are using a classical learner whose class under your training sample and loss function are representative (has uniform convergence), you are probably getting reasonable results... **but not all the time**!

So why does it seem to work in everything around us?

Best guess: we do not know how to model real data...

There is plenty room for improvement!

Progress will only be possible through interdisciplinary collaboration!

There is plenty room for improvement!

Progress will only be possible through interdisciplinary collaboration!

Machine learning is a wonderful field of research, which has already shown its potential in many fields! We should definitely take advantage of its results .. however ...

There is plenty room for improvement!

Progress will only be possible through interdisciplinary collaboration!

Machine learning is a wonderful field of research, which has already shown its potential in many fields! We should definitely take advantage of its results .. however ...

References:

This talk is a rough summary of chapters 1-4:

Shai Shaley-Shiwartz and Shai Ben-David

UNDERSTANDING MACHINE LEARNING

FROM THEORY TO ALGORITHMS

Free download - with agreement from the editor:

https://www.cse.huji.ac.il/~shais/UnderstandingMachineLearning/index.html

23 lectures of 1.5 hours each on youtube:

https://www.youtube.com/playlist?list=PLPW2keNyw-usgvmR7FTQ3ZRjfLs5jT4BO

