

Can Machine Learning solve my problem?

9th BCD ISHEP Cargèse School - part I 28 March 2024 - Cargèse, France

Emille E. O. Ishida

Laboratoire de Physique de Clermont - Université Clermont-Auvergne Clermont Ferrand, France

What impressive things machine learning can and/or will be able to do?

Join at [menti.com](https://www.menti.com/) with code: 7907 6385

Can Machine Learning solve my problem? **I do not know**

9th BCD ISHEP Cargèse School - part I 28 March 2024 - Cargèse, France

Emille E. O. Ishida

Laboratoire de Physique de Clermont - Université Clermont-Auvergne Clermont Ferrand, France

<https://www.general-staff.com/wp-content/uploads/2019/03/MathWarning-300x193.jpg>

<https://www.meme-arsenal.com/en/create/meme/1868835>

What is learning ?

"A relatively permanent change in behaviour due to past experiences."

D. Coon, *Introduction to psychology: exploration and application* (1983)

Start from the beginning …

Supervised Learning *Learn by example*

Question:

List 2 animals that you believe are capable of learning.

Join at [menti.com](https://www.menti.com/) with code: 7907 6385

Rat bait shyness - I

Rat bait shyness - II

Rzóska, J. (1953). Bait shyness, a study in rat behavior. British Journal of Animal Behaviour, 1, 128–135

Question:

• Do you believe the rat will learn the correlation between bad food ⇒ shock and/or sound ⇒ nausea?

Join at [menti.com](https://www.menti.com/) with code: 7907 6385

Question:

• What aspect of the rat learning model prevents it from understanding the input ⇒ output correlation?

Pigeon superstition

Take home message

Priors knowledge is crucial for effective learning

Papaya tasting

Binary classification

X: set of all features, *x = [softness, color]* Y: set of possible labels, *y = [tasty, not tasty]*

- Training sample
	- Tasty
	- Not tasty

A controlled example:

X: set of all features, *x = [softness, color]* Y: set of possible labels, *y = [tasty, not tasty] D: data generation model,* $D \implies P(X)$

- Training sample
	- Tasty
	- Not tasty

A controlled example:

X: set of all features, *x = [softness, color]* Y: set of possible labels, *y = [tasty, not tasty] D: data generation model,* $D \Longrightarrow P(X)$ *True Labelling function: y = f(x)*

- Training sample
	- Tasty
	- Not tasty

A controlled example:

X: set of all features, *x = [softness, color]* Y: set of possible labels, *y = [tasty, not tasty] D: data generation model,* $D \Longrightarrow P(X)$ *True Labelling function: y = f(x)*

S: training sample: $[x_i, y_j]$, $i \in \text{training}$ *m: number of objects for training*

- Training sample
	- Tasty
	- Not tasty

A controlled example:

Training sample

- Tasty
- Not tasty

X: set of all features, *x = [softness, color]* Y: set of possible labels, *y = [tasty, not tasty] D: data generation model,* $D \Longrightarrow P(X)$ *True Labelling function: y = f(x)*

S: training sample: $[x_i, y_j]$, $i \in \text{training}$ *m: number of objects for training* h_S : learner: $y_{est;i} = h_S(x_i)$

A controlled example:

Training sample

- Tasty
- Not tasty

X: set of all features, *x = [softness, color]* Y: set of possible labels, *y = [tasty, not tasty] D: data generation model,* $D \Longrightarrow P(X)$ *True Labelling function: y = f(x)*

S: training sample: $[x_i, y_j]$, $i \in \text{training}$ *m: number of objects for training* h_S learner: $y_{est;i} = h_s(x_i)$ *L* metric: $L (y_{true:i} - y_{est:i}), i \in$

training

A controlled example:

X: set of all features, *x = [softness, color]* Y: set of possible labels, *y = [tasty, not tasty] D: data generation model,* $D \Longrightarrow P(X)$ *True Labelling function: y = f(x)* S: training sample: $[x_i, y_j]$, $i \in \text{training}$

m: number of objects for training h_S learner: $y_{est;i} = h_s(x_i)$ *L* metric: $L (y_{true:i} - y_{est:i}), i \in$ *training*

L → *fraction of incorrect predictions*

A controlled example:

X: set of all features, *x = [softness, color]* Y: set of possible labels, *y = [tasty, not tasty] D: data generation model,* $D \Longrightarrow P(X)$ *True Labelling function: y = f(x)*

S: training sample: $[x_i, y_j]$, $i \in \text{training}$ *m: number of objects for training*

 h_S learner: $y_{est;i} = h_s(x_i)$ *L* metric: $L (y_{true:i} - y_{est:i}), i \in$ *training*

$$
L_{\mathcal{D}}(h_S) = \frac{|\{x \in \mathcal{D} : h_S(x) \neq f(x)\}|}{m}
$$

A controlled example:

Proposed learner:

$$
h_S(x) = \begin{cases} y_i & \text{if } x = x_i \mid \{x_i \in S\} \\ 0 & \text{otherwise} \end{cases}
$$

- *X:* set of all features, *x = [softness, color]* Y: set of possible labels, *y = [tasty, not tasty] D: data generation model,* $D \Longrightarrow P(X)$ *True Labelling function: y = f(x)* S: training sample: $[x_i, y_j]$, $i \in \text{training}$ *m: number of objects for training* h_s learner: $y_{est;i} = h_s(x_i)$
	- *L* metric: $L (y_{true,i} y_{est,i}), i \in$ *training*

$$
L_{\mathcal{D}}(h_S) = \frac{|\{x \in \mathcal{D} : h_S(x) \neq f(x)\}|}{m}
$$

A controlled example:

Proposed learner:

$$
h_S(x) = \begin{cases} y_i & \text{if } x = x_i \mid \{x_i \in S\} \\ 0 & \text{otherwise} \end{cases}
$$

Toy model ...

X: set of all features, *x = [softness, color]* Y: set of possible labels, *y = [tasty, not tasty] D: data generation model,* $D \Longrightarrow P(X)$ *True Labelling function: y = f(x)* S: training sample: $[x_i, y_j]$, $i \in \text{training}$ *m: number of objects for training* h_s learner: $y_{est;i} = h_s(x_i)$ *L* metric: $L (y_{true,i} - y_{est,i}), i \in$ *training*

$$
L_{\mathcal{D}}(h_S) = \frac{|\{x \in \mathcal{D} : h_S(x) \neq f(x)\}|}{m}
$$

Question:

Proposed learner:

[tasty, not tasty] = [1, 0]

Papaya tasting

Proposed learner:

$$
h_S(x) = \begin{cases} y_i & \text{if } x = x_i \mid \{x_i \in S\} \\ 0 & \text{otherwise} \end{cases}
$$

Answer:

- Training sample Tasty Not tasty **Answer:** $L_S(h_S) =$ $0.0\,$ $L_D(h_S) = 0.25$
- *X:* set of all features, *x = [softness, color]* Y: set of possible labels, *y = [tasty, not tasty] = [1, 0] D: data generation model,* $D \implies P(X)$ *True Labelling function: y = f(x)* S: training sample: $[x_i, y_j]$, $i \in \text{training}$ *m: number of objects for training*
- h_S learner: $y_{est;i} = h_s x_i$ *L* metric: $L (y_{true,i} - y_{est;i}), i \in$ *training*

$$
L_{\mathcal{D}}(h_S) = \frac{|\{x \in \mathcal{D} : h_S(x) \neq f(x)\}|}{m}
$$

Papaya tasting

Proposed learner:

$$
h_S(x) = \begin{cases} y_i & \text{if } x = x_i \mid \{x_i \in S\} \\ 0 & \text{otherwise} \end{cases}
$$

Answer:

X: set of all features, *x = [softness, color]* Y: set of possible labels, *y = [tasty, not tasty] D: data generation model,* $D \implies P(X)$ *True Labelling function: y = f(x)*

S: training sample: $[x_i, y_j]$, $i \in \text{training}$ *m: number of objects for training*

 h_S learner: $y_{est;i} = h_s x_i$ *L* metric: $L (y_{true,i} - y_{est;i}), i \in$ *training*

$$
L_{\mathcal{D}}(h_S) = \frac{|\{x \in \mathcal{D} : h_S(x) \neq f(x)\}|}{m}
$$

Question:

• How can we avoid overfitting?

Question:

• How can we avoid overfitting?

by adding prior knowledge ...

Choosing the learner

X: set of all features, *x = [softness, color]* Y: set of possible labels, *y = [tasty, not tasty] D: data generation model,* $D \Longrightarrow P(X)$ *True Labelling function: y = f(x)*

S: training sample: $[x_i, y_j]$, $i \in \text{training}$ *m: number of objects for training*

learner: $y_{est;i} = h_s(x_i)$ h_S $h_S(x) = \begin{cases} y_i & \text{if } x = x_i \mid \{x_i \in S\} \\ 0 & \text{otherwise} \end{cases}$ *L:* loss: *L* $(y_{true:i} - y_{est:i})$, *i* ∈ *training* $L_{\mathcal{D}}(h_S) = \frac{|\{x \in \mathcal{D} : h_S(x) \neq f(x)\}|}{\sqrt{|\sum_{i=1}^{s} h_i(x_i)|}$

Choosing the learner

X: set of all features, *x = [softness, color]* Y: set of possible labels, *y = [tasty, not tasty] D: data generation model,* $D \Longrightarrow P(X)$ *True Labelling function: y = f(x)*

S: training sample: $[x_i, y_j]$, $i \in \text{training}$ *m: number of objects for training*

 h_S learner: $y_{est;i} = h_s(x_i)$

$$
h_S(x) = \begin{cases} y_i & \text{if } x = x_i \mid \{x_i \in S\} \\ 0 & \text{otherwise} \end{cases}
$$

L: loss:
$$
L(y_{true;i} - y_{est;i})
$$
, $i \in training$

$$
L_{\mathcal{D}}(h_S) = \frac{|\{x \in \mathcal{D} : h_S(x) \neq f(x)\}|}{m}
$$

Hypothesis class (\mathcal{H}) **:**

 $h: \mathcal{X} \longrightarrow \mathcal{Y}; \qquad h \in \mathcal{H}$

 $\text{ERM}_{\mathcal{H}}(S) \in \text{argmin } L_S(h),$ $h \in H$

Choosing the learner

X: set of all features, *x = [softness, color]* Y: set of possible labels, *y = [tasty, not tasty] D: data generation model,* $D \Longrightarrow P(X)$ *True Labelling function: y = f(x)*

S: training sample:
$$
[x_i, y_j]
$$
, $i \in training$
 h_S learner: $y_{est,i} = h_S(x_i)$

$$
h_S(x) = \begin{cases} y_i & \text{if } x = x_i \mid \{x_i \in S\} \\ 0 & \text{otherwise} \end{cases}
$$

L: loss:
$$
L(y_{true;i} - y_{est;i})
$$
, $i \in training$

$$
L_{\mathcal{D}}(h_S) = \frac{|\{x \in \mathcal{D} : h_S(x) \neq f(x)\}|}{m}
$$

Hypothesis class (H):

$$
h: \mathcal{X} \longrightarrow \mathcal{Y}; \qquad h \in \mathcal{H}
$$

$$
ERM_{\mathcal{H}}(S) \in \operatorname*{argmin}_{h \in \mathcal{H}} L_{S}(h),
$$

- H is finite, $N_{\mathcal{H}}$ = number of hypothesis
- The true labelling function is part of H :

 $f \in \mathcal{H}$

Choosing the learner

- *χ:* set of all features, *x = [softness, color]* Y: set of possible labels, *y = [tasty, not tasty]*
- *D: data generation model,*

 $D \implies P(\chi)$

True Labelling function: y = f(x)

S: training sample:
$$
[x_j y_j]
$$
, $i \in training$
 h_S learner: $y_{est,i} = h_S(x_j)$

$$
h_S(x) = \begin{cases} y_i & \text{if } x = x_i \mid \{x_i \in S\} \\ 0 & \text{otherwise} \end{cases}
$$

L: loss:
$$
L(y_{true;i} - y_{est;i})
$$
, $i \in training$

$$
L_{\mathcal{D}}(h_S) = \frac{|\{x \in \mathcal{D} : h_S(x) \neq f(x)\}|}{m}
$$

Hypothesis class (\mathcal{H} **):**

$$
h: \mathcal{X} \longrightarrow \mathcal{Y}; \qquad h \in \mathcal{H}
$$

$$
ERM_{\mathcal{H}}(S) \in \operatorname*{argmin}_{h \in \mathcal{H}} L_{S}(h),
$$

- H is finite, $N_{\mathcal{H}}$ = number of hypothesis
- The true labelling function is part of H :

 $f \in \mathcal{H}$

S is identically independently distributed (*i.i.d.*) from *D*

Choosing the learner

- *χ:* set of all features, *x = [softness, color]* Y: set of possible labels, *y = [tasty, not tasty]*
- *D: data generation model,*

 $D \implies P(\chi)$

True Labelling function: y = f(x)

S: training sample:
$$
[x_j, y_j]
$$
, $i \in training$
 h_S learner: $y_{est,i} = h_S(x_j)$

$$
h_S(x) = \begin{cases} y_i & \text{if } x = x_i \mid \{x_i \in S\} \\ 0 & \text{otherwise} \end{cases}
$$

L: loss:
$$
L(y_{true;i} - y_{est;i})
$$
, $i \in training$

$$
L_{\mathcal{D}}(h_S) = \frac{|\{x \in \mathcal{D} : h_S(x) \neq f(x)\}|}{m}
$$

Hypothesis class (\mathcal{H} **):**

$$
h: \mathcal{X} \longrightarrow \mathcal{Y}; \qquad h \in \mathcal{H}
$$

$$
ERM_{\mathcal{H}}(S) \in \operatorname*{argmin}_{h \in \mathcal{H}} L_{S}(h),
$$

- H is finite, $N_{\mathcal{H}}$ = number of hypothesis
- The true labelling function is part of H :

 $f \in \mathcal{H}$

● *S* is identically independently distributed (*i.i.d.*) from *D*

Machine Learning:

(a personal favorite) Supervised definition
Hypothesis: $X \longrightarrow \text{Nature}$

Breiman, L., Statistical Modeling: The Two Cultures, Stat. Sci, Volume 16 (2001)

Algorithmic modeling:

Breiman, L., Statistical Modeling: The Two Cultures, Stat. Sci, Volume 16 (2001)

Breiman, L., Statistical Modeling: The Two Cultures, Stat. Sci, Volume 16 (2001)

Representativeness

Probability distribution, *P*

 (μ_P, σ_P)

Sample, S1

 $(\mu_{S_1}, \sigma_{S_1})$

Representativeness

Representativeness

Representativeness

Representativeness

Representativeness

Representativeness

- A sample S1 is said to be representative of a probability distribution P if one can draw accurate conclusions about P from S1
- If two samples S1 and S2 are representative of P, S1 and S2 are representative in relation to each other

Representativeness

- A sample S1 is said to be representative of a probability distribution P if one can draw accurate conclusions about P from S1
- If two samples S1 and S2 are representative of P, S1 and S2 are representative in relation to each other

Question:

If a sample S₁ identically independently distributed (i.i.d.) from a distribution P, is this enough to guarantee that S1 is representative of P?

Model assumptions

χ: set of all features, *x = [softness, color]* Y: set of possible labels, *y = [tasty, not tasty] D: data generation model,* $D \implies P(\chi)$ *True Labelling function: y = f(x)* S: training sample: $[x_i, y_j]$, $i \in \text{training}$ learner: $y_{est;i} = h_s(x_i)$ h_S $h_S(x) = \begin{cases} y_i & \text{if } \exists i \in [m] \text{ s.t. } x_i = x \\ 0 & \text{otherwise.} \end{cases}$ *L:* loss: *L* $(y_{true:i} - y_{est:i})$, *i* ∈ *training*

$$
L_{\mathcal{D}}(h_S) = \frac{|\{x \in \mathcal{D} : h_S(x) \neq f(x)\}|}{m}
$$

Hypothesis class (\mathcal{H}):

$$
h: \mathcal{X} \longrightarrow \mathcal{Y}; \qquad h \in \mathcal{H}
$$

$$
ERM_{\mathcal{H}}(S) \in \operatorname*{argmin}_{h \in \mathcal{H}} L_{S}(h),
$$

- H is finite, $N_{\mathcal{H}}$ = number of hypothesis
- The true labelling function is part of H :

 $f \in \mathcal{H}$

S is identically independently distributed (*i.i.d.*) from *D*

Not enough! ⁴⁹

Bad samples and hypothesis

Bad samples and hypothesis

 $\delta \rightarrow$ probability of non-representative (bad) samples

Bad hypothesis and samples

- $\delta \rightarrow$ probability of non-representative (bad) samples
- $1 \delta \rightarrow$ confidence parameter

Bad hypothesis and samples

- $\delta \rightarrow$ probability of non-representative (bad) samples
- $1 \delta \rightarrow$ confidence parameter
- $\epsilon \to$ contamination. A failure will occur when $L_D(h_S) \geq \epsilon$

$$
\begin{array}{lclcl} \text{Good} & \mathcal{H}_G & := & [h \in \mathcal{H}: L_S(h_S) = 0 & \& & L_D(h_S) < \epsilon] \\ \text{hypothesis} & & & & \end{array}
$$

Bad hypothesis:

Bad hypothesis and samples

- $\delta \rightarrow$ probability of non-representative (bad) samples
- $1 \delta \rightarrow$ confidence parameter
- $\varepsilon \to$ contamination. A failure will occur when $L_D(h_S) \geq \varepsilon$

Good hypothesis:	\n $\mathcal{H}_G := \begin{bmatrix}\n h \in \mathcal{H} : L_S(h_S) = 0 \\ h \in \mathcal{H} : L_S(h_S) = 0\n \end{bmatrix}\n \&\n \quad\n L_D(h_S) < \epsilon\n \end{bmatrix}$ \n
Bad hypothesis:	\n $\mathcal{H}_B := \begin{bmatrix}\n h \in \mathcal{H} : L_S(h_S) = 0 \\ h \in \mathcal{H} : L_S(h_S) = 0\n \end{bmatrix}\n \&\n \quad\n L_D(h_S) \geq \epsilon$ \n

Realizability assumption, $f \in \mathcal{H}$

Constructing misleading samples

The world
 For 1 element in the training sample

$$
x_i \quad | \quad h(x_i) \quad = \quad y_i
$$

Constructing misleading samples

The world
 For 1 element in the training sample x_i $h(x_i)$ = y_i $P(x_i \in \mathcal{D} : h(x_i) = y_i) = 1 - L_{\mathcal{D},f}(h)$

Constructing misleading samples

The world
 For 1 element in the training sample
 For 1 element in the training sample x_i $h(x_i)$ = y_i $P(x_i \in \mathcal{D} : h(x_i) = y_i) = 1 - L_{\mathcal{D},f}(h)$ $P(x_i \in \mathcal{D} : h(x_i) = y_i) \leq 1 - \epsilon$

Constructing misleading samples

The world
 For 1 element in the training sample
 For 1 element in the training sample x_i $h(x_i)$ = y_i $P(x_i \in \mathcal{D} : h(x_i) = y_i) = 1 - L_{\mathcal{D},f}(h)$ $P(x_i \in \mathcal{D} : h(x_i) = y_i) \leq 1 - \epsilon$

For **m** elements in the training sample

Since all elements in training are i.i.d.,

$$
P(S_m : L_S(h) = 0) \leq \prod_{i=1}^{m} (1 - \epsilon) = (1 - \epsilon)^m
$$

Considering bad hypothesis

For **1** hypothesis

$$
P(S_m : L_S(h) = 0) \le (1 - \epsilon)^m
$$

Considering bad hypothesis

For **1** hypothesis

$$
P(S_m : L_S(h) = 0) \le (1 - \epsilon)^m
$$

The sum rule

$$
P(A \cup B) \leq P(A) + P(B)
$$

Considering bad hypothesis

For **1** hypothesis

$$
P(S_m : L_S(h) = 0) \le (1 - \epsilon)^m
$$

The sum rule $P(A \cup B) \leq P(A) + P(B)$

For all bad hypothesis $\delta = P(L_S(h) = 0, \forall h \in \mathcal{H}_B) \leq \sum_{h=1}^{\infty} (1 - \epsilon)^m$ $h \in {\cal H}_B$

.

Considering bad hypothesis

For **1** hypothesis

$$
\begin{array}{c}\n\hline\n\hline\n\end{array}
$$

$$
P(S_m : L_S(h) = 0) \le (1 - \epsilon)^m
$$

The sum rule $P(A \cup B) \leq P(A) + P(B)$

For all bad hypothesis
\n
$$
\delta = P(L_S(h) = 0, \forall h \in \mathcal{H}_B) \le \sum_{h \in \mathcal{H}_B} (1 - \epsilon)^m
$$

using...

$$
(1-x)^y \leq \exp(-xy)
$$

Considering bad hypothesis

For **1** hypothesis

$$
P(S_m : L_S(h) = 0) \le (1 - \epsilon)^m
$$

The sum rule $P(A \cup B) \leq P(A) + P(B)$

For all bad hypothesis $\delta = P(L_S(h) = 0, \forall h \in \mathcal{H}_B) \leq \sum (1 - \epsilon)^m$ $h \in {\cal H}_B$

using...

$$
(1-x)^y \leq \exp(-xy)
$$

$$
\delta \leq N_{\mathcal{H}} \exp(-\epsilon m)
$$

63

$\delta \leq N_{\mathcal{H}} \exp(-\epsilon m)$

$$
\delta \leq N_{\mathcal{H}} \exp(-\epsilon m)
$$

L. Valiant. A theory of the learnable. Communications of the ACM, 27, 1984.

PAC learning model

$$
\delta \leq N_{\mathcal{H}} \exp(-\epsilon m)
$$

L. Valiant. A theory of the learnable. Communications of the ACM, 27, 1984.

PAC learning model

$$
\delta \leq N_{\mathcal{H}} \exp(-\epsilon m)
$$

Probably \longrightarrow with confidence 1 - δ over *m* samples **Approximately** \rightarrow within a contamination level $\leq \varepsilon$ **C**orrect

If, every *h* from ERM, $m_{\mathcal{H}}(\epsilon,\delta) \geq \frac{\ln(N_{\mathcal{H}}/\delta)}{2}$ \Rightarrow $L_{(\mathcal{D},f)}(h_S) \leq \epsilon.$

L. Valiant. A theory of the learnable. Communications of the ACM, 27, 1984.

Remember what is behind this!!

PAC Assumptions

χ: set of all features, *x = [softness, color]* Y: set of possible labels, *y = [tasty, not tasty] D: data generation model,* $D \implies P(\chi)$ *True Labelling function: y = f(x)*

S: training sample: $[x_i, y_j]$, $i \in \text{training}$ *m: number of objects for training*

 h_S learner: $y_{est,i} = h_S(x_i)$ $h_S(x) = \begin{cases} y_i & \text{if } \exists i \in [m] \text{ s.t. } x_i = x \\ 0 & \text{otherwise.} \end{cases}$ *L:* loss: *L* $(y_{true:i} - y_{est:i})$, *i* ∈ *training* $L_{\mathcal{D}}(h_S) = \frac{|\{x \in \mathcal{D} : h_S(x) \neq f(x)\}|}{\sum_{i=1}^{n} |f(x_i)|}$ **Hypothesis class (** \mathcal{H} **):**

$$
h: \mathcal{X} \longrightarrow \mathcal{Y}; \qquad h \in \mathcal{H}
$$

$$
ERM_{\mathcal{H}}(S) \in \operatorname*{argmin}_{h \in \mathcal{H}} L_{S}(h),
$$

- H is finite, $N_{\mathcal{H}}$ = number of hypothesis
- The true labelling function is part of H :

 $f \in \mathcal{H}$

- *S* is identically independently distributed (*i.i.d.*) from D
- **Representativeness**

Papaya tasting

χ: set of *x* ∈ *[softness, color]* Y: set *y = [tasty, not tasty] D: data generation model:* $D \implies P(\chi)$

Papaya tasting

χ: set of *x* ∈ *[softness, color]* Y: set *y = [tasty, not tasty] D: data generation model:* $D \implies P(\chi)$ *True Labelling function: y = tasty if softness* ∈ *[-0.5, 0.5] and* $color \in [-0.5, 0.5]$

Papaya tasting

χ: set of *x* ∈ *[softness, color]* Y: set *y = [tasty, not tasty] D: data generation model:* $D \implies P(\chi)$ *True Labelling function: y = tasty if softness* ∈ *[-0.5, 0.5] and* $color \in [-0.5, 0.5]$

S: training sample: $[x_i, y_j]$, $i \in \text{training}$ *m: number of objects for training*

Papaya tasting

χ: set of *x* ∈ *[softness, color]* Y: set *y = [tasty, not tasty] D: data generation model:* $D \implies P(\chi)$ *True Labelling function: y = tasty if softness* ∈ *[-0.5, 0.5] and* $color \in [-0.5, 0.5]$

S: training sample: $[x_i, y_j]$, $i \in \text{training}$ *m: number of objects for training H* : *hypothesis class:*

axis aligned squares in steps of 0.05

$$
N_{_H}=20
$$

Papaya tasting

χ: set of *x* ∈ *[softness, color]* Y: set *y = [tasty, not tasty] D: data generation model:* $D \implies P(\chi)$ *True Labelling function: y = tasty if softness* ∈ *[-0.5, 0.5] and* $color \in [-0.5, 0.5]$

S: training sample: $[x_i, y_j]$, $i \in \text{training}$ *m: number of objects for training H* : *hypothesis class:*

axis aligned squares in steps of 0.05

$$
N_H = 20
$$

L: loss: L $(y_{true;i} - y_{est;i})$, $i \in training$

$$
L_{\mathcal{D}}(h_S) = \frac{|\{x \in \mathcal{D} : h_S(x) \neq f(x)\}|}{m}
$$

Question:

- $1 \delta = 0.95 \leftarrow$ confidence
- ϵ = 0.05 \leftarrow contamination
- N_H = 20 ← number of possible squares

m = ??

Join at [menti.com](https://www.menti.com/) with code: 7907 6385

What would you guess is the number of examples necessary for training? 74

Question:

Data model: uniform distribution [-1,1] in both axis

- $1 \delta = 0.95 \leftarrow$ confidence
- ϵ = 0.05 \leftarrow contamination
- N_H = 20 ← number of possible squares

m ~ 120

Question:

-1

True labelling function

76

Data model: uniform distribution [-1,1] in both axis

Generalization ...

Agnostic PAC learning

- *χ:* set of all features, *x = [softness, color]* Y: set of possible labels, *y = [tasty, not tasty] D: data generation model,* $D \implies P(\chi, Y)$ *True Labelling function: y = f([x,y])* S: training sample: $[x_i, y_j]$, $i \in \text{training}$ *m: number of objects for training* h_s learner: $y_{est,i} = h_s(x_i, y_i)$
- *L: loss*

$$
L_{\mathcal{D}}(h) \stackrel{\text{def}}{=} \mathbb{E}_{(x,y)\sim\mathcal{D}}(h(x)-y)^2
$$

Hypothesis class:

 $h: \mathcal{X} \longrightarrow \mathcal{Y}$; $h\in\mathcal{H}$

$$
ERM_{\mathcal{H}}(S) \in \operatorname*{argmin}_{h \in \mathcal{H}} L_{S}(h),
$$

- $m \rightarrow$ number of objects in training
- \bullet *H* is finite, N_H = number of hypothesis
- The true labelling function may not be part of H :

 $f \notin H$

 $L_{\mathcal{D}}(h) \leq \min_{h' \in \mathcal{H}} L_{\mathcal{D}}(h') + \epsilon,$

Important remark!

Representativeness

in machine learning

Important remark!

Representativeness

in machine learning

or Uniform Convergence

$$
\forall h \in \mathcal{H}, \ \ |L_S(h) - L_{\mathcal{D}}(h)| \leq \epsilon
$$

Important remark!

Representativeness

in machine learning

or Uniform Convergence

$$
\forall h \in \mathcal{H}, \ \ |L_S(h) - L_{\mathcal{D}}(h)| \leq \epsilon
$$

It can be shown that, if $\mathcal H$ has uniform convergence, ERM_{$_{\mathcal H}$} is a successful agnostic PAC learner of H .

Can machine learning solve my problem?

Can machine learning solve my problem?

If your data satisfy all the necessary conditions;

Can machine learning solve my problem?

- If your data satisfy all the necessary conditions;
- If you have enough training sample to fulfill your expectations;

Can machine learning solve my problem?

- If your data satisfy all the necessary conditions;
- If you have enough training sample to fulfill your expectations;
- If the set of your hypothesis class $+$ loss function $+$ training data has uniform convergence (representativeness)

Can machine learning solve my problem?

- If your data satisfy all the necessary conditions;
- If you have enough training sample to fulfill your expectations;
- If the set of your hypothesis class $+$ loss function $+$ training data has uniform convergence (representativeness)

Then.. probably (1-δ), approximately (ε) : yes

Many of these requirements are difficult to fulfill, e.g.

What about practical situations?

If you are using a classical learner whose class under your training sample and loss function are representative (has uniform convergence), you are probably getting reasonable results… but not all the time!

Many of these requirements are difficult to fulfill, e.g.

What about practical situations?

If you are using a classical learner whose class under your training sample and loss function are representative (has uniform convergence), you are probably getting reasonable results… but not all the time!

So why does it seem to work in everything around us?

Best guess: *we do not know how to model real data...*

There is plenty room for improvement!

Progress will only be possible through interdisciplinary collaboration!

There is plenty room for improvement!

Progress will only be possible through interdisciplinary collaboration!

Machine learning is a wonderful field of research, which has already shown its potential in many fields! We should definitely take advantage of its results .. however ...

There is plenty room for improvement!

Progress will only be possible through interdisciplinary collaboration!

Machine learning is a wonderful field of research, which has already shown its potential in many fields! We should definitely take advantage of its results .. however ...

References:

This talk is a rough summary of chapters 1-4:

5hai Stuley-Shwartz and Shai Ben-Bayid

UNDERSTANDING MACHINE LEARNING

TO A GOREFIMS

Free download - with agreement from the editor:

<https://www.cse.huji.ac.il/~shais/UnderstandingMachineLearning/index.html>

23 lectures of 1.5 hours each on youtube:

<https://www.youtube.com/playlist?list=PLPW2keNyw-usgvmR7FTQ3ZRjfLs5jT4BO>

