Noise [Classification:](#page-0-0) A Feasibility Study

Aryaman Jeendgar (BITS Pilani/Princeton University) Supervisor: Dr. Kilian Lieret (Princeton University)

Noise Classification: A Feasibility Study

Aryaman Jeendgar (BITS Pilani/Princeton University) Supervisor: Dr. Kilian Lieret (Princeton University)

February 23, 2024

Introduction

Noise [Classification:](#page-0-0) A Feasibility **Study**

Aryaman Jeendgar (BITS Pilani/Princeton University) Supervisor: Dr. Kilian Lieret (Princeton University)

A Learned Clustering based pipeline for charged particle tracking Won't go into the details of the various components of the pipeline itself — higher-level description below

Figure: The Tracking Problem

Figure: Object Condensation

KORK STRAIN A STRAIN A STRAIN

The entire pipeline

KORKA SERKER ORA

The Goal

Noise [Classification:](#page-0-0) A Feasibility **Study**

Aryaman Jeendgar (BITS Pilani/Princeton University) Supervisor: Dr. Kilian Lieret (Princeton University)

- Disclaimer The entire discussion only presents results for the data recorded in the pixel detector — a deeper study for architectures for the data of the full-detector is next on my agenda
- **There are noisy hits in the point cloud data i.e. detector signals** that aren't due to particles from the collision
- The goal of the study was to experimentally verify the *potential* gain in performance via the pre-emptive removal of noisy hits from the dataset (before too much time was spent in the design of such a classifier)

KORKA BRADE KORA

■ The results are quite promising!

The metrics

Noise [Classification:](#page-0-0) A Feasibility **Study**

Aryaman Jeendgar (BITS Pilani/Princeton University) Supervisor: Dr. Kilian Lieret (Princeton University)

We compare the following metrics across both of the runs:

- Perfect match efficiency ($\epsilon^{\text{perfect}}$): The number of reconstructed tracks that include all hits of the matched particle and no other hits, normalized to the number of particles.
- LHC-style match efficiency (ϵ^{LHC}): The fraction of reconstructed tracks in which 75% of the hits belong to the same particle, normalized to the number of reconstructed tracks.
- Double Majority match efficiency (ϵ^{DM}): The fraction of reconstructed tracks in which at least 50% of the hits belong to one particle and this particle has less than 50% of its hits outside of the reconstructed track, normalized to the number of particles.
- \blacksquare Variants of each of these quantities for particles of $p_{\mathcal{T}} > c$ GeV are denoted as: $\epsilon_{\rho_{\boldsymbol{\mathcal{T}}}>c}^{\{\textsf{DM}, \textsf{ perfect, LHC}\}}$
- Total Validation Loss

Results

Noise [Classification:](#page-0-0) A Feasibility Study

Aryaman Jeendgar (BITS Pilani/Princeton University) Supervisor: Dr. Kilian Lieret (Princeton University)

Figure: Validation loss curves

イロトメ団トメミトメミト

ミー 2990

Results

Noise [Classification:](#page-0-0) A Feasibility Study

Aryaman Jeendgar (BITS Pilani/Princeton University) Supervisor: Dr. Kilian Lieret (Princeton University)

- A preliminary noise classification round produces noticeably better results!
- \blacksquare It's a binary classification problem an appropriate choice of model still remains, but for now, it can be something simple like an XGBoost model or an FCNN
- The more important caveat is that we want our classifier to avoid false positives at all costs (i.e. non-noise hits being labelled as noise)
- What is the solution? Uncertainty Quantification provides a possible way out. . .

UQ: Conformal Scores

Noise [Classification:](#page-0-0) A Feasibility **Study**

Aryaman Jeendgar (BITS Pilani/Princeton University) Supervisor: Dr. Kilian Lieret (Princeton University)

- Conformal Prediction is a straightforward way to generate prediction sets for any model
- Begin with a fitted model, \hat{f} generate prediction sets for this model through a small amount of data (calibration data)
- **Conformal prediction seeks to construct a prediction set.** $\mathcal{C}(X_{\text{test}}) \subset \{1, \dots K\}$ using \hat{f} and the calibration data, $(X_1, Y_2), \ldots (X_n, Y_n)$

$$
1-\alpha \leq \mathbb{P}\left(Y_{\text{test}} \in \mathcal{C}(X_{\text{test}})\right) \leq 1-\alpha+\frac{1}{n+1}
$$

KORKAR KERKER EL VOLO

Here, (X_{test}, Y_{test}) is a fresh test point from the same distribution and $\alpha \in [0,1]$ is a user-chosen error rate

UQ: Conformal Scores

Noise [Classification:](#page-0-0) A Feasibility **Study**

Aryaman Jeendgar (BITS Pilani/Princeton University) Supervisor: Dr. Kilian Lieret (Princeton University)

■ Can be seen as a general procedure for converting a heuristic notion of uncertainty from any model and converting it to a rigorous one

Figure: Conformal Prediction

\blacksquare The process:

- I Identify a heuristic notion of uncertainty using the pre-trained model
- Define the score function $s(x, y) \in R$ (a larger score should encode a worse agreement between (x, y))
- Compute \hat{q} as the $\frac{\lceil (n+1)(1-\alpha) \rceil}{n}$ quantile of the calibration scores $(s_i = s(X_i, Y_i))$ (essentially the $(1 - \alpha)$ -th quantile but with a small correction)

 \blacksquare Use this quantile to form the prediction sets for new examples:

$$
\mathcal{C} = \{y: s\left(X_{\text{test}},y\right) \leq \hat{q}\} \iff \text{where } \text{ } s \text{ is } \text{ } \text{ } s \text{ is } \text{ } s
$$

UQ: Conformal Scores

Noise [Classification:](#page-0-0) A Feasibility **Study**

Aryaman Jeendgar (BITS Pilani/Princeton University) Supervisor: Dr. Kilian Lieret (Princeton University)

- For us, the above process means that we can now quantify our 'risk-appetite' via α (and ideally perform a sweep to check for what offers best performance)
- The choice of a 'good' conformal score is a matter of design a simple one: $s_i = 1 - \hat{f}(X_i)_{Y_i}$ (the score is large when the softmax output of the model is low, i.e. when it is very wrong).
- Also super straightforward to implement!

1: get conformal scores. n=calib_Y.shape[0] cal_smx=model(calib_X).softmax(dim=1).numpy() # 2: get adjusted quantile cal_scores=1-cal_smx[np.arange(n),cal_labels] q_level=np.ceil $((n+1)*(1-a1pha))/n$ qhat=np.quantile(cal_scores, q_level, method='higher') val_smx=model(val_X).softmax(dim=1).numpy() # 3: form prediction sets $\text{prediction_sets}=val_smx$ >= $(1-\text{qhat})$

Other possible leads

Noise [Classification:](#page-0-0) A Feasibility **Study**

Aryaman Jeendgar (BITS Pilani/Princeton University) Supervisor: Dr. Kilian Lieret (Princeton University)

- **Quantile Regression is also another really powerful technique in** the UQ toolkit — learn multiple quantiles over your model's output
- Combine the two? Conformalized Quantile Regression ~probably overkill for our simple application
- \blacksquare I have some prior work in the construction of loss functions that can perform quantile regression for binary classification problems.

Noise [Classification:](#page-0-0) A Feasibility **Study**

Aryaman Jeendgar (BITS Pilani/Princeton University) Supervisor: Dr. Kilian Lieret (Princeton University)

- **Performing a noise classification preprocessing step in the** pipeline produced a *marked* improvement in the evaluation metrics
- **Noise classification is a simple binary classifcation problem but** the context of charged particle tracking requires special focus on avoiding false positives
- **E** Uncertainty Quantification and Conformal Prediction in particluar is a very powerful tool (and is also easy to implement) in being able to make more robust and interpretable decisions over the predictions of the model.

References

Noise [Classification:](#page-0-0) A Feasibility **Study**

Aryaman Jeendgar (BITS Pilani/Princeton University) Supervisor: Dr. Kilian Lieret (Princeton University)

[1]: A N. Angelopoulos and S. Bates, A Gentle Introduction to Conformal Prediction and Distribution-Free Uncertainty Quantification, 2022 [2]: K. Lieret et.al. High Pileup Particle Tracking with Object

Condensation, 2023

[3]: K. Lieret and G. DeZoort An Object Condensation Pipeline for Charged Particle Tracking at the High Luminosity LHC, 2023

[4]: Y. Romano et.al., Conformalized Quantile Regression, 2019

[5]: A. Jeendgar et.al., LogGENE: A smooth alternative to check loss for Deep Healthcare Inference Tasks, 2022