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Brief Intro of Automatic Differentiation

Automatic

(human/computer)
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Example
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Symbolic via Wolfram Alpha
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Figure out the analytical fn
// f(x)=e” (e”(e”(e”(e"x))))
#include <cmaths>
double f (double x, int N=5) { AD
double result = x; .
for (unsigned i = 0; 1 < N; i++)
result = std::exp(result);

return result;
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l Handcode

double f dx(double x, int N=5) ({
double result = x;
double d result = 1;
for (unsigned 1 = 0; 1 < N; i++)
result = std::exp(result) ;

d result *= result;

}

return d result;

}

{

Reference: V. Vassilev - Accelerating Large Scientific Workflows Using Source Transformation Automatic Differentiation
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Crux of AD - Computational graph + Chain rule

y = £(x0, x1)
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379

G ’ G owl 0dwladz dy

0x0 0z dydx0

Extending Clad, an automatic differentiation system for C++ - Vaibhav Thakkar



Forward mode AD
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Reverse mode AD
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About Clad

e Source transformation based AD tool for C++

o Runs at compile time - clad generates the code for derivatives using the Abstract Syntax Tree
(AST) of the original / primal function as the computational graph.

o Implemented as a Clang plugin - uses the APls and robust infrastructure of LLVM/Clang for
traversing over the parsed graph and generating the derivative code.

e Supports both forward and reverse mode, also provide functionality for higher order
derivatives, Jacobians and Hessians.
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About Clad - usage example

#include "clad/Differentiator/Differentiator.h"
#include <iostream>

double f (double x, double y) {
return x*y;
}

double main() {
// Call clad to generate the derivative of f wrt x.
auto f dx = clad::differentiate(f, "x");

// Execute the generated derivative function.
std::cout << f dx.execute(/*x=*/3, /*y=*/4) << std:
std::cout << f dx.execute(/*x=*/9, /*y=*/6) << std:

// Dump the generated derivative code to stdout.
f dx.dump () ;

}

:endl;
:endl;
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My major contributions (past, present and future)

Complete list of my contributions can found here: https://github.com/vgvassilev/clad/commits?author=vaithak
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Vector Forward mode AD for higher order derivatives

e Vector forward mode AD allows computing the entire gradient in a single vectorized forward

pass.
o  This was implemented in Clad in my Google Summer of Code project

Forward Vector Forward

e Canwe use this for efficient computation of the Hessian / Jacobian ?
o  How about computing just the diagonal matrix of the Hessian?
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Pointer support in reverse mode AD

e Pointers are a separate beast - specifically for reverse pass
o  Memory allocations and deallocations - when exactly can we deallocate a memory in reverse pass?
o  Keeping track of not just the value in the pointer (the address), but also the value(s) inside that address.

e Stillin progress and improving incrementally.
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Differentiating lambda functions

e Main benefit of Clad is to allow users to enjoy the richness of C++ and give them the power of differentiability.
o This means we have to add support for modern C++ features, includes lambda expressions, standard library functions and
containers, ...

e Clad already contains some support for lambdas, mainly when the primal function is a lambda itself. Need to
improve it to conditions where lambdas are used as a call expression inside another function.

double primal func(double i, double j) {
auto myLambda = [] (double t) {
return t*t + 1.0
bi
return i + myLambda (j) ;

}
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Thank you

Questions or Comments ?
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