PRINCETON
— UNIVERSITY
Extending Clad, an automatic differentiation system for C++

Vaibhav Thakkar

Supervisor: Dr Vassil Vassilev (CERN / Princeton University)

COMPILER

C|R

RESEARCH

\31 Claod

Extending Clad, an automatic differentiation system for C++ - Vaibhav Thakkar

Brief Intro of Automatic Differentiation

Automatic

(human/computer)

Extending Clad, an automatic differentiation system for C++ - Vaibhav Thakkar

e oo
£ {13 differentiation L at {...1;
human ,
programmer !

N - - - - - - - - - - - - - - v = f!

v (X) symbolic differentiation Y (X)

Example

X

Symbolic via Wolfram Alpha

flx) = e

4>
Figure out the analytical fn
// f(x)=e” (e”(e”(e”(e"x))))
#include <cmaths>
double f (double x, int N=5) { AD
double result = x; .
for (unsigned i = 0; 1 < N; i++)
result = std::exp(result);

return result;

eX eX x
e e e X
_(eee) — pxte® +e +e® +e’

dx
l Handcode

double f dx(double x, int N=5) ({
double result = x;
double d result = 1;
for (unsigned 1 = 0; 1 < N; i++)
result = std::exp(result) ;

d result *= result;

}

return d result;

}

{

Reference: V. Vassilev - Accelerating Large Scientific Workflows Using Source Transformation Automatic Differentiation

Extending Clad, an automatic differentiation system for C++ - Vaibhav Thakkar

Crux of AD - Computational graph + Chain rule

y = £(x0, x1)
z = gl(y)
379

G ’ G owl 0dwladz dy

0x0 0z dydx0

Extending Clad, an automatic differentiation system for C++ - Vaibhav Thakkar

Forward mode AD

AN
c
.©]
® 3
?‘P m®
>
o) ow;
o 2 W3 = Wiwsp + wiWs Wi = ow;
o 4(_—6 J€{predecessors of i} 7
O
T 5
]
O % seeds, Wi, w, € {0,1}

X1 X2

Extending Clad, an automatic differentiation system for C++ - Vaibhav Thakkar

Reverse mode AD

=
x2
':_—’U w0
[}
o0 =
ST
(@)
p - y.
a ¢ _ _ Ow;
= w; = Wj——
T B ! Bw:
= 0 j={successors of i} '
o > J
= ‘L
e 8
[©)8a o)
oo D
(00 S
L 4

Extending Clad, an automatic differentiation system for C++ - Vaibhav Thakkar

About Clad

e Source transformation based AD tool for C++

o Runs at compile time - clad generates the code for derivatives using the Abstract Syntax Tree
(AST) of the original / primal function as the computational graph.

o Implemented as a Clang plugin - uses the APls and robust infrastructure of LLVM/Clang for
traversing over the parsed graph and generating the derivative code.

e Supports both forward and reverse mode, also provide functionality for higher order
derivatives, Jacobians and Hessians.

Extending Clad, an automatic differentiation system for C++ - Vaibhav Thakkar

About Clad - usage example

#include "clad/Differentiator/Differentiator.h"
#include <iostream>

double f (double x, double y) {
return x*y;
}

double main() {
// Call clad to generate the derivative of f wrt x.
auto f dx = clad::differentiate(f, "x");

// Execute the generated derivative function.
std::cout << f dx.execute(/*x=*/3, /*y=*/4) << std:
std::cout << f dx.execute(/*x=*/9, /*y=*/6) << std:

// Dump the generated derivative code to stdout.
f dx.dump () ;

}

:endl;
:endl;

Extending Clad, an automatic differentiation system for C++ - Vaibhav Thakkar

My major contributions (past, present and future)

Complete list of my contributions can found here: https://github.com/vgvassilev/clad/commits?author=vaithak

Extending Clad, an automatic differentiation system for C++ - Vaibhav Thakkar

https://github.com/vgvassilev/clad/commits?author=vaithak

Vector Forward mode AD for higher order derivatives

e Vector forward mode AD allows computing the entire gradient in a single vectorized forward

pass.
o This was implemented in Clad in my Google Summer of Code project

Forward Vector Forward

e Canwe use this for efficient computation of the Hessian / Jacobian ?
o How about computing just the diagonal matrix of the Hessian?

Extending Clad, an automatic differentiation system for C++ - Vaibhav Thakkar

Pointer support in reverse mode AD

e Pointers are a separate beast - specifically for reverse pass
o Memory allocations and deallocations - when exactly can we deallocate a memory in reverse pass?
o Keeping track of not just the value in the pointer (the address), but also the value(s) inside that address.

e Stillin progress and improving incrementally.

Extending Clad, an automatic differentiation system for C++ - Vaibhav Thakkar

Differentiating lambda functions

e Main benefit of Clad is to allow users to enjoy the richness of C++ and give them the power of differentiability.
o This means we have to add support for modern C++ features, includes lambda expressions, standard library functions and
containers, ...

e Clad already contains some support for lambdas, mainly when the primal function is a lambda itself. Need to
improve it to conditions where lambdas are used as a call expression inside another function.

double primal func(double i, double j) {
auto myLambda = [] (double t) {
return t*t + 1.0
bi
return i + myLambda (j) ;

}

Extending Clad, an automatic differentiation system for C++ - Vaibhav Thakkar

Thank you

Questions or Comments ?

Extending Clad, an automatic differentiation system for C++ - Vaibhav Thakkar

