
Extending Clad, an automatic differentiation system for C++ - Vaibhav Thakkar

Extending Clad, an automatic differentiation system for C++

Vaibhav Thakkar
Supervisor: Dr Vassil Vassilev (CERN / Princeton University)

Extending Clad, an automatic differentiation system for C++ - Vaibhav Thakkar

Brief Intro of Automatic Differentiation

Extending Clad, an automatic differentiation system for C++ - Vaibhav Thakkar

Example

Reference: V. Vassilev – Accelerating Large Scientific Workflows Using Source Transformation Automatic Differentiation

// f(x)=e^(e^(e^(e^(e^x))))
#include <cmath>
double f (double x, int N=5) {
 double result = x;
 for (unsigned i = 0; i < N; i++)
 result = std::exp(result);
 return result;
}

AD

double f_dx(double x, int N=5) {
 double result = x;
 double d_result = 1;
 for (unsigned i = 0; i < N; i++) {
 result = std::exp(result);
 d_result *= result;
 }
 return d_result;
}

Figure out the analytical fn

Symbolic via Wolfram Alpha

Handcode

Extending Clad, an automatic differentiation system for C++ - Vaibhav Thakkar

Crux of AD - Computational graph + Chain rule

x0

zy

x1

w0

w1

y = f(x0, x1)
z = g(y)
w0, w1 = l(z) zy

w0

w1

x0

x1

Extending Clad, an automatic differentiation system for C++ - Vaibhav Thakkar

Forward mode AD

Extending Clad, an automatic differentiation system for C++ - Vaibhav Thakkar

Reverse mode AD

Extending Clad, an automatic differentiation system for C++ - Vaibhav Thakkar

About Clad
● Source transformation based AD tool for C++

○ Runs at compile time - clad generates the code for derivatives using the Abstract Syntax Tree

(AST) of the original / primal function as the computational graph.

○ Implemented as a Clang plugin - uses the APIs and robust infrastructure of LLVM/Clang for

traversing over the parsed graph and generating the derivative code.

● Supports both forward and reverse mode, also provide functionality for higher order
derivatives, Jacobians and Hessians.

Extending Clad, an automatic differentiation system for C++ - Vaibhav Thakkar

About Clad - usage example
#include "clad/Differentiator/Differentiator.h"
#include <iostream>

double f (double x, double y) {
 return x*y;
}

double main() {
 // Call clad to generate the derivative of f wrt x.
 auto f_dx = clad::differentiate(f, "x");

 // Execute the generated derivative function.
 std::cout << f_dx.execute(/*x=*/3, /*y=*/4) << std::endl;
 std::cout << f_dx.execute(/*x=*/9, /*y=*/6) << std::endl;

 // Dump the generated derivative code to stdout.
 f_dx.dump();
}

Extending Clad, an automatic differentiation system for C++ - Vaibhav Thakkar

My major contributions (past, present and future)
Complete list of my contributions can found here: https://github.com/vgvassilev/clad/commits?author=vaithak

https://github.com/vgvassilev/clad/commits?author=vaithak

Extending Clad, an automatic differentiation system for C++ - Vaibhav Thakkar

Vector Forward mode AD for higher order derivatives
● Vector forward mode AD allows computing the entire gradient in a single vectorized forward

pass.
○ This was implemented in Clad in my Google Summer of Code project

● Can we use this for efficient computation of the Hessian / Jacobian ?
○ How about computing just the diagonal matrix of the Hessian?

Extending Clad, an automatic differentiation system for C++ - Vaibhav Thakkar

Pointer support in reverse mode AD
● Pointers are a separate beast - specifically for reverse pass

○ Memory allocations and deallocations - when exactly can we deallocate a memory in reverse pass?

○ Keeping track of not just the value in the pointer (the address), but also the value(s) inside that address.

● Still in progress and improving incrementally.

Extending Clad, an automatic differentiation system for C++ - Vaibhav Thakkar

Differentiating lambda functions
● Main benefit of Clad is to allow users to enjoy the richness of C++ and give them the power of differentiability.

○ This means we have to add support for modern C++ features, includes lambda expressions, standard library functions and
containers, …

● Clad already contains some support for lambdas, mainly when the primal function is a lambda itself. Need to
improve it to conditions where lambdas are used as a call expression inside another function.

double primal_func(double i, double j) {

 auto myLambda = [](double t) {

 return t*t + 1.0;

 };

 return i + myLambda(j);

}

Extending Clad, an automatic differentiation system for C++ - Vaibhav Thakkar

Questions ?Thank you

 Questions or Comments ?

