

Extending Clad, an automatic differentiation system for C++

Vaibhav Thakkar Supervisor: Dr Vassil Vassilev (CERN / Princeton University)

Brief Intro of Automatic Differentiation

Reference: V. Vassilev – Accelerating Large Scientific Workflows Using Source Transformation Automatic Differentiation

Crux of AD - Computational graph + Chain rule

$\partial w1$	$\partial w1$	∂z	∂y
$\frac{\partial x0}{\partial x0}$ –	∂z	$\overline{\partial y}$	$\partial x0$

Forward mode AD

Forward propagation of derivative values

Reverse mode AD

Extending Clad, an automatic differentiation system for C++ - Vaibhav Thakkar

About Clad

• Source transformation based AD tool for C++

- Runs at compile time clad generates the code for derivatives using the Abstract Syntax Tree (AST) of the original / primal function as the computational graph.
- Implemented as a Clang plugin uses the APIs and robust infrastructure of LLVM/Clang for traversing over the parsed graph and generating the derivative code.
- Supports both forward and reverse mode, also provide functionality for higher order derivatives, Jacobians and Hessians.

About Clad - usage example

```
#include "clad/Differentiator/Differentiator.h"
#include <iostream>
double f (double x, double y) {
 return x*y;
double main() {
 // Call clad to generate the derivative of f wrt x.
 auto f dx = clad::differentiate(f, "x");
 // Execute the generated derivative function.
 std::cout << f dx.execute(/*x=*/3, /*y=*/4) << std::endl;</pre>
  std::cout << f dx.execute(/*x=*/9, /*y=*/6) << std::endl;</pre>
  // Dump the generated derivative code to stdout.
  f dx.dump();
```

My major contributions (past, present and future)

Complete list of my contributions can found here: <u>https://github.com/vgvassilev/clad/commits?author=vaithak</u>

Vector Forward mode AD for higher order derivatives

- Vector forward mode AD allows computing the entire gradient in a single vectorized forward pass.
 - This was implemented in Clad in my Google Summer of Code project

- Can we use this for efficient computation of the Hessian / Jacobian?
 - How about computing just the diagonal matrix of the Hessian?

Pointer support in reverse mode AD

- Pointers are a separate beast specifically for reverse pass
 - Memory allocations and deallocations when exactly can we deallocate a memory in reverse pass?
 - Keeping track of not just the value in the pointer (the address), but also the value(s) inside that address.
- Still in progress and improving incrementally.

Differentiating lambda functions

- Main benefit of Clad is to allow users to enjoy the richness of C++ and give them the power of differentiability.
 - This means we have to add support for modern C++ features, includes lambda expressions, standard library functions and containers, ...
- Clad already contains some support for lambdas, mainly when the primal function is a lambda itself. Need to improve it to conditions where lambdas are used as a call expression inside another function.

```
double primal_func(double i, double j) {
  auto myLambda = [](double t) {
    return t*t + 1.0;
  };
  return i + myLambda(j);
}
```

Thank you

Questions or Comments?