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Before we begin

Parton showers are an active field of research, though we have the
experience of over four decades of development.

Many issues are currently actively debated and developed. In many cases,
there is no final answer yet.

I am an author of the SHERPA Monte-Carlo event generator. Although
I endevour to be agnostic, this will invariably influence my point of view
and choice of examples to some extent.

Many thanks to S. Höche for letting meal steal many
plots/sketches/illustrations from his lectures in the MCnet School ’21.
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What to expect
• A basic understanding of what a parton shower is, its features and

its limitations.
• The underlying concepts of matching and merging, used in most

theory predictions for collider experiments today.
• The background that allows you to follow the discussions in the

past, present, and (hopefully) future parton shower literature.

What not to expect
• All the latest and greatest plots, as well as a survey of all possible

algorithms. This could fill the entire time of the school.
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Overview of lectures

1) Introduction to parton showers
- approximate higher-order corrections
- building a parton shower

2) Improving parton showers
- assessing the properties of a parton shower
- NLL accuracy and beyond

3) Matching and merging
- matching
- merging

Marek Schönherr Introduction to parton showers, matching and merging 5/31



Approximate higher-order corrections The parton branching process Monte-Carlo methods Effects Summary

Introduction to parton showers

1 Approximate higher-order corrections

2 The parton branching process

3 Monte-Carlo methods

4 Effects

5 Summary
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Approximate higher-order corrections
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Leading order cross section
• hadron collider cross section for production of system Y

(think Y = ℓ+ℓ−, tt̄, W+W−, dijets, ...)

dσpp→Y+X =
∑

a,b∈{q,g}

dxadxb fa(xa, µ2
F )fb(xb, µ2

F ) dΦn
dσ̂ab→Y+X (Φ, µ2

F )
dΦn

• PDFs fi (xi , µ2
F ), n-particle phase space element dΦn

• partonic cross section at LO

dσ̂ab→Y+X ∝ |Mtree
ab→Y |2

Note: every cross-section is inclusive in some additional particles.
The leading order cross section does not contain them explicitly.
Higher-order corrections must allow additional radiation.
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Approximate NLO corrections
• partonic cross section at NLO

dσ̂ab→n+X ∝ |Mtree
ab→n|2︸ ︷︷ ︸
Born

+ 2Re
{

Mloop
ab→nMtree *

ab→n

}
︸ ︷︷ ︸

virtual corr.

+ |Mtree
ab→n+1|2︸ ︷︷ ︸

real corr.

real and virtual correction separately diverging
(infrared singularities caused by soft or collinear parton emission)
sum is finite due to Kinoshita-Lee-Nauenberg (KLN) theorem

• infrared limit is universal, depends only on external states, construct

dσ̂approx
n+1 = dσ̂n ⊗

∑
i,k

dVik

some splitting function Vik , ik → ijk
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Approximate NLO corrections

Collinear approximation
• collinear splitting function Fab(z , ϕ), a → bj ,

emission phase space parametrised thorugh (t, z , ϕ)

dVak → dt
t

dz dϕ

2π

αs

2π
Fab(z , ϕ) ϕ av.−→ dt

t
dz αs

2π
Pab(z)

• azimuthal average: Fab(z , ϕ) → Pab(z)
azimuthal average: Altarelli-Parisi splitting functions

• azimuthally averaged collinear limit of n + 1 matrix element
• dropped spin-correlations in splitting,

→ dVak is purely multiplicative factor
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Approximate NLO corrections

Soft approximation
• limit of soft gluon emission

dVik → ωdω
dΩ
2π

αs

2π
Cik

pi ·pk
pi ·q pk ·q

• kinematics decsribed by Eikonal
• colour factor in general matrix valued, but

Cik = −TiTk
large-Nc−→

{
T2

i + O(1/N2
c ) for i = q

1
2 T2

i + O(1/N2
c ) for i = g

}
≡ Ci

• large-Nc colour factor not matrix-valued any longer,
and only depends on parton i
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Approximate NLO corrections
• partial-fractioning the Eikonal

pi ·pk
pi ·q pk ·q

→ 1
pi ·q

pi ·pk
(pi + pk)q + 1

pk ·q
pi ·pk

(pi + pk)q

The first term contains the soft singularity associated with the
region collinear to pi , while the second that collinear to pk .

• with this, we get

dVik → dVi = ωdω
dΩ
2π

αs

2π
Ci W

i
ijk

a real-number-valued multiplicative factor of the soft gluon-emission
correction in the large-Nc limit

• combine with coll. limit to soft-collinear (dipole) splitting functions
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Higher-order corrections and parton branchings

The heuristic view
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Radiative corrections as a branching process
• parton branchings are IR divergent, introduce a resolution parameter

to regulate the branching process tres

+ - resolvable, t > tc , finite

• include
+ - unresolvable, t < tc , finite

• Assumption: corrections from resolvable and unresolvable
branchings add up to zero,
true for divergent leading logarithms (KLN theorem),
amounts to saying that integrated higher-order corrections vanish

⇒ parton branchings can be interpreted probabilistically,
either a parton branches resolvably with a probability given by the
resolvable branching process or it does not

→ same as nuclear decay
Marek Schönherr Introduction to parton showers, matching and merging 14/31
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Radiative corrections as a branching process

• The consequence is Poisson statistics
- let the branching probability be λ
- assume indistinguishable particles → näıve probability for n emissions

Pnäıve(n, λ) =
λn

n!
- probability conservation (unitarity) implies a no-emission probability

P(n, λ) =
λn

n!
exp{−λ} −→

∞∑
n=0

P(n, λ) = 1

• introduce Sudakov form factor ∆ = exp{−λ}
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Radiative corrections as a branching process
• branching probability for parton state at scale Q2 in collinear limit in

terms of resolution variable t

λ →
∫ Q2

t

dt̄ d
dt̄

[
σn+1(t̄)

σn

]
≈

∑
jets

∫ Q2

t

dt̄
∫

dz αs

2πt̄
P(z)

• Altarelli-Parisi splitting functions P(z), spin- and colour dependent
Pqq(z) = CF

[
2z

1 − z
+ (1 − z)

]
Pgq(z) = TR

[
z2 + (1 − z)2

]
Pgg (z) = CA

[
2z

1 − z
+ z(1 − z)

]
+ (z ↔ 1 − z)

• branching process conserves momentum, colour, and on-shellness
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The improved large-Nc approximation
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Colour flow

• quark propagator in fundamental representation δij
contains Nc = 3 colour states

• gluon propagator in adjoint representation δab

contains N2
c − 1 = 8 colour states

using completeness relations
δab︸︷︷︸

standard

= 2 Tr(T aT b) = 2T a
ijT

b
ji = T a

ij 2 δikδjl︸ ︷︷ ︸
colour flow

T b
lk
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Colour flow
• Quark-gluon vertex T a

ijT
a
kl = 1

2

(
δilδjk − 1

Nc
δijδkl

)

− 1
Nc

• Gluon-gluon vertex f abcT a
ijT

b
klT

c
mn = δilδknδmj − δinδmlδkj

−
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The improved large-Nc approximation
• leading colour approximation

T a
ijT

a
kl → 1

2 δilδjk ↔

• this overestimates the colour charge of the quark:
Consider process q → qg attached to some larger diagram |M|2

∝ T a
ijT

a
jk = CF δik (QCD, Nc = 3)

→ 1
2 δilδjmδmjδlk = CA

2 δik (Nc → ∞)

• improved large-Nc approx.: keep colour charge of quarks at CF
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Monte-Carlo methods for parton showers
–

The veto algorithm
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Monte-Carlo methods: Poisson distributions
• assume branching process described by g(t)
• branching can happen only if it has not happened already,

must account for survival probability ↔ Poisson distribution

G(t) = g(t)∆(t, t0) where ∆(t, t0) = exp
{

−
∫ t0

t

dt ′ g(t ′)
}

• if G (t) is known, then we also know the integral of G(t)∫ t0

t

dt ′G(t ′) =
∫ t0

t

dt ′ d∆(t ′, t0)
dt ′ = 1 − ∆(t, t0)

• can generate events by requiring 1 − ∆(t, t0) = 1 − R (R ∈ [0, 1])

t = G−1
[
G (t0) + logR

]
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Veto algorithm – importance sampling for Poisson dists

Parton shower branching probability f (t) ∝ αs (t)
t P(z)

Problem: we do not know F (t)

Solution: veto algorithm
1 find overestimate g(t) ≥ f (t) ∀t ∈ [tc , t0],

generate event according to

G(t) = g(t) exp
{

−
∫ t0

t
dt′ g(t′)

}
2 accept with w(t) = f (t)/g(t)

3 if rejected, continue starting from t
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Veto algorithm – importance sampling for Poisson dists
Does this give the correct distribution?

• probability for immediate acceptance of emission at scale t

f (t)
g(t)

g(t) exp
{

−
∫ t0

t
dt′ g(t′)

}
• probability for acceptance after one rejection

f (t)
g(t)

g(t)
∫ t0

t
dt1 exp

{
−

∫ t1

t
dt′ g(t′)

}(
1 −

f (t1)
g(t1)

)
g(t1) exp

{
−

∫ t0

t1
dt′ g(t′)

}

• For n rejections we obtain n nested integrals
∫ t0
t

∫ t0
t1

. . .
∫ t0
tn−1

• disentangling yields 1/n!, summing over all possible rejections gives

f (t) exp
{

−
∫ t0

t
dt′ g(t′)

} ∞∑
n=0

1
n!

[∫ t0

t
dt′ [g(t′) − f (t′)

]]n
= f (t) exp

{
−

∫ t0

t
dt′ f (t′)

}
✓

Marek Schönherr Introduction to parton showers, matching and merging 24/31



Approximate higher-order corrections The parton branching process Monte-Carlo methods Effects Summary

Veto algorithm – importance sampling for Poisson dists
Does this give the correct distribution?

• probability for immediate acceptance of emission at scale t

f (t)
g(t)

g(t) exp
{

−
∫ t0

t
dt′ g(t′)

}
• probability for acceptance after one rejection

f (t)
g(t)

g(t)
∫ t0

t
dt1 exp

{
−

∫ t1

t
dt′ g(t′)

}(
1 −

f (t1)
g(t1)

)
g(t1) exp

{
−

∫ t0

t1
dt′ g(t′)

}

• For n rejections we obtain n nested integrals
∫ t0
t

∫ t0
t1

. . .
∫ t0
tn−1

• disentangling yields 1/n!, summing over all possible rejections gives

f (t) exp
{

−
∫ t0

t
dt′ g(t′)

} ∞∑
n=0

1
n!

[∫ t0

t
dt′ [g(t′) − f (t′)

]]n
= f (t) exp

{
−

∫ t0

t
dt′ f (t′)

}
✓

Marek Schönherr Introduction to parton showers, matching and merging 24/31



Approximate higher-order corrections The parton branching process Monte-Carlo methods Effects Summary

Veto algorithm – importance sampling for Poisson dists
Does this give the correct distribution?

• probability for immediate acceptance of emission at scale t

f (t)
g(t)

g(t) exp
{

−
∫ t0

t
dt′ g(t′)

}
• probability for acceptance after one rejection

f (t)
g(t)

g(t)
∫ t0

t
dt1 exp

{
−

∫ t1

t
dt′ g(t′)

}(
1 −

f (t1)
g(t1)

)
g(t1) exp

{
−

∫ t0

t1
dt′ g(t′)

}

• For n rejections we obtain n nested integrals
∫ t0
t

∫ t0
t1

. . .
∫ t0
tn−1

• disentangling yields 1/n!, summing over all possible rejections gives

f (t) exp
{

−
∫ t0

t
dt′ g(t′)

} ∞∑
n=0

1
n!

[∫ t0

t
dt′ [g(t′) − f (t′)

]]n
= f (t) exp

{
−

∫ t0

t
dt′ f (t′)

}
✓

Marek Schönherr Introduction to parton showers, matching and merging 24/31



Approximate higher-order corrections The parton branching process Monte-Carlo methods Effects Summary

Veto algorithm – importance sampling for Poisson dists
Does this give the correct distribution?

• probability for immediate acceptance of emission at scale t

f (t)
g(t)

g(t) exp
{

−
∫ t0

t
dt′ g(t′)

}
• probability for acceptance after one rejection

f (t)
g(t)

g(t)
∫ t0

t
dt1 exp

{
−

∫ t1

t
dt′ g(t′)
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1 −

f (t1)
g(t1)

)
g(t1) exp

{
−

∫ t0

t1
dt′ g(t′)
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• For n rejections we obtain n nested integrals
∫ t0
t

∫ t0
t1

. . .
∫ t0
tn−1

• disentangling yields 1/n!, summing over all possible rejections gives

f (t) exp
{

−
∫ t0

t
dt′ g(t′)

} ∞∑
n=0

1
n!

[∫ t0

t
dt′ [g(t′) − f (t′)

]]n
= f (t) exp

{
−

∫ t0

t
dt′ f (t′)

}
✓
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Veto algorithm
What have we achieved?

• we have generated a parton branching (real resolved emission)
according to

f (t) ∆(t, t0) with ∆(t, t0) = exp
{

−
∫ t0

t

dt ′ f (t ′)
}

f (t) ≡ f (t, z) = αs

2π t
P(z)

• the no-branching probability implies a virtual correction (including
unresolved real emissions) of ∆(tc , t0)
Note: The Sudakov form factor ∆ resums logs to all orders

dσ̂approx
NLO = dσ̂n

[
∆(tc , t0) +

∫ t0

tc

dt f (t) ∆(t, t0)
]

Marek Schönherr Introduction to parton showers, matching and merging 25/31



Approximate higher-order corrections The parton branching process Monte-Carlo methods Effects Summary

Veto algorithm
What have we achieved?

• we have generated a parton branching (real resolved emission)
according to

f (t) ∆(t, t0) with ∆(t, t0) = exp
{

−
∫ t0

t

dt ′ f (t ′)
}

f (t) ≡ f (t, z) = αs

2π t
P(z)

• the no-branching probability implies a virtual correction (including
unresolved real emissions) of ∆(tc , t0)
Note: The Sudakov form factor ∆ resums logs to all orders

dσ̂approx
NLO = dσ̂n

[
∆(tc , t0) +

∫ t0

tc

dt f (t) ∆(t, t0)
]

Marek Schönherr Introduction to parton showers, matching and merging 25/31



Approximate higher-order corrections The parton branching process Monte-Carlo methods Effects Summary

Veto algorithm
What have we achieved?

• we have generated a parton branching (real resolved emission)
according to

f (t) ∆(t, t0) with ∆(t, t0) = exp
{

−
∫ t0

t

dt ′ f (t ′)
}

f (t) ≡ f (t, z) = αs

2π t
P(z)

• the no-branching probability implies a virtual correction (including
unresolved real emissions) of ∆(tc , t0)
Note: The Sudakov form factor ∆ resums logs to all orders

dσ̂approx
NLO = dσ̂n

[
∆(tc , t0) +

∫ t0

tc

dt f (t) ∆(t, t0)
]

Marek Schönherr Introduction to parton showers, matching and merging 25/31



Approximate higher-order corrections The parton branching process Monte-Carlo methods Effects Summary

Veto algorithm – iteration

1) consider a set of n partons at scale t0, which evolve collectively
Sudakovs factorise, schematically

∆(t, t0) =
n∏

i=1
∆i (t, t0) , ∆i (t, t0) =

∏
j=q,g

∆i→j(t, t0)

2) find new scale t where next branching occurs using veto algorithm
- generate t using overestimate gab(t) ∝ αmax

s Pmax
ab (z)

- determine “winner” parton i and select new flavor j
- accept point with weight fab/gab = αs(k2

T )Pab(z)/αmax
s Pmax

ab (z)
3) construct splitting kinematics and update event record
4) continue until t < tc , tc infrared cut-off
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Effects of the parton shower
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Effects of the parton shower
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• Thrust and Durham 2 → 3-jet rate in e+e− → hadrons
• hadronisation region to the right (left) in left (right) plot
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Effects of the parton shower
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• Drell-Yan lepton pair production at Tevatron
• if hard cross section computed at leading order, then

parton shower is only source of transverse momentum
• starting scale of evolution chosen as Q2 = m2

W
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Recap

This lecture:
• parton showers encode approximate higher-order corrections

→ build upon universal soft-collinear approximation
→ (Altarelli-Parisi splitting functions, large-Nc , spin-averaged)

• implemented as a statistical branching process, ordered in evolution
variable t (k2

T, q̃2, etc.)
• produce resolved final state up to scale tres ≈ ΛQCD

→ further evolution needs hadrons as degrees of freedom

Next lectures:
• limitations of parton showers and how to overcome them
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