Approximate higher-order corrections	The parton branching process	Monte-Carlo methods 000000	Effects 0000	Summary O

Introduction to parton showers, matching and merging

Marek Schönherr

Institute for Particle Physics Phenomenology, Durham University

CERN, 11 Jun 2024

Approximate higher-order corrections	The parton branching process	Monte-Carlo methods 000000	Effects 0000	Summary O

Before we begin

Parton showers are an **active field of research**, though we have the experience of over four decades of development.

Many issues are currently actively debated and developed. In many cases, there is no final answer yet.

I am an author of the SHERPA Monte-Carlo event generator. Although I endevour to be agnostic, this will invariably influence my point of view and choice of examples to some extent.

Many thanks to S. Höche for letting meal steal many plots/sketches/illustrations from his lectures in the MCnet School '21.

Approximate higher-order corrections	The parton branching process	Monte-Carlo methods	Effects 0000	Summary O

What to expect

- A basic understanding of what a parton shower is, its features and its limitations.
- The underlying concepts of matching and merging, used in most theory predictions for collider experiments today.
- The background that allows you to follow the discussions in the past, present, and (hopefully) future parton shower literature.

What not to expect

• All the latest and greatest plots, as well as a survey of all possible algorithms. This could fill the entire time of the school.

Approximate higher-order corrections	The parton branching process	Monte-Carlo methods 000000	Effects 0000	Summary O

Literature

- R. K. Ellis, W. J. Stirling, B. R. Webber QCD and Collider Physics Cambridge University Press, 2003
- 2 R. D. Field

Applications of Perturbative QCD Addison-Wesley, 1995

- M. E. Peskin, D. V. Schroeder An Introduction to Quantum Field Theory Westview Press, 1995
- T. Sjöstrand, S. Mrenna, P. Z. Skands PYTHIA 6.4 Physics and Manual JHEP 05 (2006) 026

S. Höche, Introduction to parton-shower event generators TASI lectures, 2014

Overview of lectures

- 1) Introduction to parton showers
 - approximate higher-order corrections
 - building a parton shower
- 2) Improving parton showers
 - assessing the properties of a parton shower
 - NLL accuracy and beyond
- 3) Matching and merging
 - matching
 - merging

Approximate higher-order corrections	The parton branching process	Monte-Carlo methods	Effects	Summary
000000		000000	0000	O

Introduction to parton showers

- 1 Approximate higher-order corrections
- **2** The parton branching process
- **3** Monte-Carlo methods

4 Effects

Approximate higher-order corrections •00000	The parton branching process	Monte-Carlo methods	Effects 0000	Summary O

Approximate higher-order corrections

Approximate higher-order corrections	The parton branching process	Monte-Carlo methods 000000	Effects 0000	Summary O

Leading order cross section

 hadron collider cross section for production of system Y (think Y = ℓ⁺ℓ⁻, tt̄, W⁺W⁻, dijets, ...)

$$\mathrm{d}\sigma_{pp\to Y} = \sum_{a,b\in\{q,g\}} \mathrm{d}x_a \mathrm{d}x_b \ f_a(x_a,\mu_F^2) f_b(x_b,\mu_F^2) \ \mathrm{d}\Phi_n \ \frac{\mathrm{d}\hat{\sigma}_{ab\to Y}}{\mathrm{d}\Phi_n}$$

- PDFs $f_i(x_i, \mu_F^2)$, *n*-particle phase space element $d\Phi_n$
- partonic cross section at LO

$$\mathrm{d}\hat{\sigma}_{ab
ightarrow Y+ imes} \propto |\mathcal{M}^{ extsf{tree}}_{ab
ightarrow Y}|^2$$

Note: every cross-section is inclusive in <u>some</u> additional particles. The leading order cross section does not contain them explicitly. Higher-order corrections must allow additional radiation.

Approximate higher-order corrections	The parton branching process	Monte-Carlo methods 000000	Effects 0000	Summary O

Leading order cross section

 hadron collider cross section for production of system Y (think Y = ℓ⁺ℓ⁻, tt̄, W⁺W⁻, dijets, ...)

$$\mathrm{d}\sigma_{pp\to Y+X} = \sum_{a,b\in\{q,g\}} \mathrm{d}x_a \mathrm{d}x_b \ f_a(x_a,\mu_F^2) f_b(x_b,\mu_F^2) \ \mathrm{d}\Phi_n \ \frac{\mathrm{d}\hat{\sigma}_{ab\to Y+X}(\Phi,\mu_F^2)}{\mathrm{d}\Phi_n}$$

- PDFs $f_i(x_i, \mu_F^2)$, *n*-particle phase space element $d\Phi_n$
- partonic cross section at LO

$$\mathrm{d}\hat{\sigma}_{ab\to Y+X} \propto |\mathcal{M}_{ab\to Y}^{\mathrm{tree}}|^2$$

Note: every cross-section is inclusive in <u>some</u> additional particles. The leading order cross section does not contain them explicitly. Higher-order corrections must allow additional radiation

Approximate higher-order corrections	The parton branching process	Monte-Carlo methods 000000	Effects 0000	Summary O

Leading order cross section

 hadron collider cross section for production of system Y (think Y = ℓ⁺ℓ⁻, tt̄, W⁺W⁻, dijets, ...)

$$\mathrm{d}\sigma_{pp\to Y+X} = \sum_{a,b\in\{q,g\}} \mathrm{d}x_a \mathrm{d}x_b \ f_a(x_a,\mu_F^2) f_b(x_b,\mu_F^2) \ \mathrm{d}\Phi_n \ \frac{\mathrm{d}\hat{\sigma}_{ab\to Y+X}(\Phi,\mu_F^2)}{\mathrm{d}\Phi_n}$$

- PDFs $f_i(x_i, \mu_F^2)$, *n*-particle phase space element $d\Phi_n$
- partonic cross section at LO

$$\mathrm{d}\hat{\sigma}_{ab\to Y+X} \propto |\mathcal{M}_{ab\to Y}^{\mathrm{tree}}|^2$$

Note: every cross-section is inclusive in <u>some</u> additional particles. The leading order cross section does not contain them explicitly. Higher-order corrections must allow additional radiation.

Approximate higher-order corrections	The parton branching process	Monte-Carlo methods 000000	Effects 0000	Summary O

partonic cross section at NLO

$$\mathrm{d}\hat{\sigma}_{ab\to n+X} \propto \underbrace{|\mathcal{M}_{ab\to n}^{\text{tree}}|^2}_{\text{Born}} + \underbrace{2\mathcal{R}e\left\{\mathcal{M}_{ab\to n}^{\text{loop}}\mathcal{M}_{ab\to n}^{\text{tree}*}\right\}}_{\text{virtual corr.}} + \underbrace{|\mathcal{M}_{ab\to n+1}^{\text{tree}}|^2}_{\text{real corr.}}$$

real and virtual correction separately diverging (infrared singularities caused by soft or collinear parton emission) sum is finite due to Kinoshita-Lee-Nauenberg (KLN) theorem

infrared limit is universal, depends only on external states, construct

$$\mathrm{d}\hat{\sigma}_{n+1}^{\mathsf{approx}} = \mathrm{d}\hat{\sigma}_n \otimes \sum_{i,k} \mathrm{d}V_{ik}$$

some splitting function V_{ik} , $ik \rightarrow ijk$

Approximate higher-order corrections	The parton branching process	Monte-Carlo methods 000000	Effects 0000	Summary O

partonic cross section at NLO

$$\mathrm{d}\hat{\sigma}_{ab\to n+X} \propto \underbrace{|\mathcal{M}_{ab\to n}^{\mathsf{tree}}|^2}_{\mathsf{Born}} + \underbrace{2\mathcal{R}e\left\{\mathcal{M}_{ab\to n}^{\mathsf{loop}}\mathcal{M}_{ab\to n}^{\mathsf{tree}*}\right\}}_{\mathsf{virtual \ corr.}} + \underbrace{|\mathcal{M}_{ab\to n+1}^{\mathsf{tree}}|^2}_{\mathsf{real \ corr.}}$$

real and virtual correction separately diverging (infrared singularities caused by soft or collinear parton emission) sum is finite due to Kinoshita-Lee-Nauenberg (KLN) theorem

infrared limit is universal, depends only on external states, construct

$$\mathrm{d}\hat{\sigma}_{n+1}^{\mathsf{approx}} = \mathrm{d}\hat{\sigma}_n \otimes \sum_{i,k} \mathrm{d}V_{ik}$$

some splitting function V_{ik} , $ik \rightarrow ijk$

Collinear approximation

 collinear splitting function F_{ab}(z, φ), a → bj, emission phase space parametrised thorugh (t, z, φ)

$$\mathrm{d}V_{ak} \to \frac{\mathrm{d}t}{t} \,\mathrm{d}z \,\frac{\mathrm{d}\phi}{2\pi} \frac{\alpha_s}{2\pi} \,F_{ab}(z,\phi) \stackrel{\phi \text{ av. }}{\longrightarrow} \frac{\mathrm{d}t}{t} \,\mathrm{d}z \frac{\alpha_s}{2\pi} \,P_{ab}(z)$$

- azimuthal average: $F_{ab}(z, \phi) \rightarrow P_{ab}(z)$ Altarelli-Parisi splitting functions
- azimuthally averaged collinear limit of n + 1 matrix element
- dropped spin-correlations in splitting, $\rightarrow dV_{ak}$ is purely multiplicative factor

Soft approximation

• limit of soft gluon emission

$$\mathrm{d}V_{ik} \to \omega \mathrm{d}\omega \, \frac{\mathrm{d}\Omega}{2\pi} \, \frac{\alpha_s}{2\pi} \, C_{ik} \, \frac{p_i \cdot p_k}{p_i \cdot q \, p_k \cdot q}$$

- kinematics decsribed by Eikonal
- colour factor in general matrix valued, but

$$C_{ik} = -\mathbf{T}_i \mathbf{T}_k \xrightarrow{\text{large-}N_c} \left\{ \begin{array}{cc} \mathbf{T}_i^2 + \mathcal{O}(1/N_c^2) & \text{for } i = q \\ \frac{1}{2}\mathbf{T}_i^2 + \mathcal{O}(1/N_c^2) & \text{for } i = g \end{array} \right\} \equiv C_i$$

 large-N_c colour factor not matrix-valued any longer, and only depends on parton i

Soft approximation

• limit of soft gluon emission

$$\mathrm{d}V_{ik} \to \omega \mathrm{d}\omega \, \frac{\mathrm{d}\Omega}{2\pi} \, \frac{\alpha_s}{2\pi} \, C_{ik} \, \frac{p_i \cdot p_k}{p_i \cdot q \, p_k \cdot q}$$

- kinematics decsribed by Eikonal
- colour factor in general matrix valued, but

$$C_{ik} = -\mathbf{T}_i \mathbf{T}_k \stackrel{\text{large-}N_c}{\longrightarrow} \left\{ \begin{array}{cc} \mathbf{T}_i^2 + \mathcal{O}(1/N_c^2) & \text{for } i = q \\ \frac{1}{2}\mathbf{T}_i^2 + \mathcal{O}(1/N_c^2) & \text{for } i = g \end{array} \right\} \equiv C_i$$

• large-*N_c* colour factor not matrix-valued any longer, and only depends on parton i

Approximate higher-order corrections	The parton branching process	Monte-Carlo methods 000000	Effects 0000	Summary O

partial-fractioning the Eikonal

$$rac{p_i \cdot p_k}{p_i \cdot q \ p_k \cdot q}
ightarrow rac{1}{p_i \cdot q} rac{p_i \cdot p_k}{(p_i + p_k)q} + rac{1}{p_k \cdot q} rac{p_i \cdot p_k}{(p_i + p_k)q}$$

The first term contains the soft singularity associated with the region collinear to p_i , while the second that collinear to p_k .

with this, we get

$$\mathrm{d}V_{ik}
ightarrow \mathrm{d}V_i = \omega \mathrm{d}\omega \, rac{\mathrm{d}\Omega}{2\pi} \, rac{\alpha_s}{2\pi} \, C_i \, W^i_{ijk}$$

a real-number-valued multiplicative factor of the soft gluon-emission correction in the large- N_c limit

combine with coll. limit to soft-collinear (dipole) splitting functions

Approximate higher-order corrections	The parton branching process	Monte-Carlo methods 000000	Effects 0000	Summary O

partial-fractioning the Eikonal

$$rac{p_i \cdot p_k}{p_i \cdot q \ p_k \cdot q}
ightarrow rac{1}{p_i \cdot q} rac{p_i \cdot p_k}{(p_i + p_k)q} + rac{1}{p_k \cdot q} rac{p_i \cdot p_k}{(p_i + p_k)q}$$

The first term contains the soft singularity associated with the region collinear to p_i , while the second that collinear to p_k .

• with this, we get

$$\mathrm{d}V_{ik}
ightarrow \mathrm{d}V_i = \omega \mathrm{d}\omega \; rac{\mathrm{d}\Omega}{2\pi} \; rac{lpha_s}{2\pi} \; C_i \; W^i_{ijk}$$

a real-number-valued multiplicative factor of the soft gluon-emission correction in the large- N_c limit

combine with coll. limit to soft-collinear (dipole) splitting functions

Approximate higher-order corrections 00000●	The parton branching process	Monte-Carlo methods 000000	Effects 0000	Summary O

partial-fractioning the Eikonal

$$rac{p_i \cdot p_k}{p_i \cdot q \ p_k \cdot q}
ightarrow rac{1}{p_i \cdot q} rac{p_i \cdot p_k}{(p_i + p_k)q} + rac{1}{p_k \cdot q} rac{p_i \cdot p_k}{(p_i + p_k)q}$$

The first term contains the soft singularity associated with the region collinear to p_i , while the second that collinear to p_k .

with this, we get

$$\mathrm{d}V_{ik}
ightarrow \mathrm{d}V_i = \omega \mathrm{d}\omega \; rac{\mathrm{d}\Omega}{2\pi} \; rac{lpha_s}{2\pi} \; C_i \; W^i_{ijk}$$

a real-number-valued multiplicative factor of the soft gluon-emission correction in the large- N_c limit

• combine with coll. limit to soft-collinear (dipole) splitting functions

Approximate higher-order corrections	The parton branching process	Monte-Carlo methods	Effects	Summary
000000	•0000000	000000	0000	O

Higher-order corrections and parton branchings

The heuristic view

Approximate higher-order corrections	The parton branching process	Monte-Carlo methods	Effects	Summary
	O●OOOOOO	000000	0000	O

 parton branchings are IR divergent, introduce a resolution parameter to regulate the branching process t_{res}

- resolvable,
$$t > t_c$$
, finite

include

- Assumption: corrections from resolvable and unresolvable branchings add up to zero, true for divergent leading logarithms (KLN theorem), amounts to saying that integrated higher-order corrections vanish
- ⇒ parton branchings can be interpreted probabilistically, either a parton branches resolvably with a probability given by the resolvable branching process or it does not

Approximate higher-order corrections	The parton branching process	Monte-Carlo methods 000000	Effects 0000	Summary O

 parton branchings are IR divergent, introduce a resolution parameter to regulate the branching process t_{res}

resolvable, $t > t_c$, finite

include

 $- t_c$ unresolvable, $t < t_c$, finite

- Assumption: corrections from resolvable and unresolvable branchings add up to zero, true for divergent leading logarithms (KLN theorem), amounts to saying that integrated higher-order corrections vanish
- ⇒ parton branchings can be interpreted probabilistically, either a parton branches resolvably with a probability given by the resolvable branching process or it does not

Approximate higher-order corrections	The parton branching process	Monte-Carlo methods	Effects	Summary
	○●○○○○○○	000000	0000	O

 parton branchings are IR divergent, introduce a resolution parameter to regulate the branching process t_{res}

resolvable, $t > t_c$, finite

include

 $- t_c$ unresolvable, $t < t_c$, finite

- Assumption: corrections from resolvable and unresolvable branchings add up to zero, true for divergent leading logarithms (KLN theorem), amounts to saying that integrated higher-order corrections vanish
- ⇒ parton branchings can be interpreted probabilistically, either a parton branches resolvably with a probability given by the resolvable branching process or it does not

 \rightarrow same as nuclear decay

Approximate higher-order corrections	The parton branching process	Monte-Carlo methods	Effects 0000	Summary O

- The consequence is Poisson statistics
 - let the branching probability be λ
 - assume indistinguishable particles \rightarrow naïve probability for *n* emissions

$$P_{\text{na\"ive}}(n,\lambda) = \frac{\lambda^n}{n!}$$

- probability conservation (unitarity) implies a no-emission probability

$$P(n,\lambda) = \frac{\lambda^n}{n!} \exp\{-\lambda\} \longrightarrow \sum_{n=0}^{\infty} P(n,\lambda) = 1$$

• introduce Sudakov form factor $\Delta = \exp\{-\lambda\}$

Approximate higher-order corrections	The parton branching process	Monte-Carlo methods 000000	Effects 0000	Summary O

• branching probability for parton state at scale Q^2 in collinear limit in terms of resolution variable t

$$\lambda \to \int_{t}^{Q^{2}} \mathrm{d}\bar{t} \, \frac{\mathrm{d}}{\mathrm{d}\bar{t}} \left[\frac{\sigma_{n+1}(\bar{t})}{\sigma_{n}} \right] \approx \sum_{\mathrm{locs}} \int_{t}^{Q^{2}} \mathrm{d}\bar{t} \, \int \mathrm{d}z \, \frac{\alpha_{s}}{2\pi \bar{t}} P(z)$$

• Altarelli-Parisi splitting functions P(z), spin- and colour dependent $P_{qq}(z) = C_F \left[\frac{2z}{1-z} + (1-z) \right]$ $P_{gq}(z) = T_R \left[z^2 + (1-z)^2 \right]$

branching process conserves momentum, colour, and on-shellness

Approximate higher-order corrections	The parton branching process	Monte-Carlo methods 000000	Effects 0000	Summary O

• branching probability for parton state at scale Q^2 in collinear limit in terms of resolution variable t

$$\lambda \to \int_{t}^{Q^{2}} \mathrm{d}\bar{t} \, \frac{\mathrm{d}}{\mathrm{d}\bar{t}} \left[\frac{\sigma_{n+1}(\bar{t})}{\sigma_{n}} \right] \approx \sum_{\mathrm{jets}} \int_{t}^{Q^{2}} \mathrm{d}\bar{t} \int \mathrm{d}z \, \frac{\alpha_{s}}{2\pi \bar{t}} P(z)$$

• Altarelli-Parisi splitting functions P(z), spin- and colour dependent $P_{qq}(z) = C_F \left[\frac{2z}{1-z} + (1-z) \right] \qquad P_{gq}(z) = T_R \left[z^2 + (1-z)^2 \right]$ $P_{gg}(z) = C_A \left[\frac{2z}{1-z} + z(1-z) \right] + (z \leftrightarrow 1-z)$

branching process conserves momentum, colour, and on-shellness

Approximate higher-order corrections	The parton branching process	Monte-Carlo methods 000000	Effects 0000	Summary O

• branching probability for parton state at scale Q^2 in collinear limit in terms of resolution variable t

$$\lambda \to \int_{t}^{Q^{2}} \mathrm{d}\bar{t} \, \frac{\mathrm{d}}{\mathrm{d}\bar{t}} \left[\frac{\sigma_{n+1}(\bar{t})}{\sigma_{n}} \right] \approx \sum_{\mathrm{jets}} \int_{t}^{Q^{2}} \mathrm{d}\bar{t} \int \mathrm{d}z \, \frac{\alpha_{s}}{2\pi \bar{t}} P(z)$$

• Altarelli-Parisi splitting functions P(z), spin- and colour dependent

$$P_{qq}(z) = C_F \left[\frac{2z}{1-z} + (1-z) \right] \qquad P_{gq}(z) = T_R \left[z^2 + (1-z)^2 \right] \\ P_{gg}(z) = C_A \left[\frac{2z}{1-z} + z(1-z) \right] + (z \leftrightarrow 1-z)$$

branching process conserves momentum, colour, and on-shellness

A	Approximate higher-order corrections	The parton branching process	Monte-Carlo methods 000000	Effects 0000	Summary O

The improved large- N_c approximation

The parton branching process 00000●00	Monte-Carlo methods	Effects 0000	Summary O
	The parton branching process ○○○○○●○○	The parton branching process Monte-Carlo methods OOOOO0000 OOOOO00000000000000000000000000000000	The parton branching process Monte-Carlo methods Effects OOOOOOOOO OOOOOO OOOOO OOOOO

Colour flow

- quark propagator in fundamental representation δ_{ij} contains $N_c = 3$ colour states
- gluon propagator in adjoint representation δ^{ab} contains N²_c − 1 = 8 colour states

using completeness relations

$$\underbrace{\delta^{ab}}_{\text{standard}} = 2 \operatorname{Tr}(T^a T^b) = 2 T^a_{ij} T^b_{ji} = T^a_{ij} \underbrace{2 \, \delta_{ik} \delta_{jl}}_{\text{colour flow}} T^b_{lk}$$

Approximate higher-order corrections	The parton branching process ○○○○○●○○	Monte-Carlo methods 000000	Effects 0000	Summary O
			(

Colour flow

- quark propagator in fundamental representation δ_{ij} contains $N_c = 3$ colour states
- gluon propagator in adjoint representation δ^{ab} contains $N_c^2 1 = 8$ colour states

using completeness relations

$$\underbrace{\delta^{ab}}_{\text{standard}} = 2 \operatorname{Tr}(T^a T^b) = 2 T^a_{ij} T^b_{ji} = T^a_{ij} \underbrace{2 \, \delta_{ik} \delta_{jl}}_{\text{colour flow}} T^b_{lk}$$

Approximate higher-order corrections	The parton branching process ○○○○○○●○	Monte-Carlo methods 000000	Effects 0000	Summary O

Colour flow

Approximate higher-order corrections	The parton branching process	Monte-Carlo methods	Effects	Summary
	0000000●	000000	0000	O

The improved large- N_c approximation

leading colour approximation

• this overestimates the colour charge of the quark: Consider process $q \rightarrow qg$ attached to some larger diagram $|\mathcal{M}|^2$

$$\begin{array}{c} & & \\ & &$$

improved large-N_c approx.: keep colour charge of quarks at C_F

Approximate higher-order corrections	The parton branching process	Monte-Carlo methods	Effects	Summary
	0000000●	000000	0000	O

The improved large- N_c approximation

leading colour approximation

• this overestimates the colour charge of the quark: Consider process $q \rightarrow qg$ attached to some larger diagram $|\mathcal{M}|^2$

$$\begin{array}{c} & & \\ & &$$

improved large-N_c approx.: keep colour charge of quarks at C_F

6

Approximate higher-order corrections	The parton branching process	Monte-Carlo methods	Effects 0000	Summary O

Monte-Carlo methods for parton showers The veto algorithm

Approximate higher-order corrections	The parton branching process	Monte-Carlo methods ○●○○○○	Effects 0000	Summary O

Monte-Carlo methods: Poisson distributions

- assume branching process described by g(t)
- branching can happen only if it has not happened already, must account for survival probability ↔ Poisson distribution

$$\mathcal{G}(t) = g(t)\Delta(t,t_0) \qquad ext{where} \qquad \Delta(t,t_0) = \exp\left\{-\int_t^{t_0} \mathrm{d}t' \, g(t')
ight\}$$

• if G(t) is known, then we also know the integral of $\mathcal{G}(t)$

$$\int_t^{t_0} \mathrm{d}t' \mathcal{G}(t') = \int_t^{t_0} \mathrm{d}t' \ \frac{\mathrm{d}\Delta(t', t_0)}{\mathrm{d}t'} = 1 - \Delta(t, t_0)$$

• can generate events by requiring $1 - \Delta(t, t_0) = 1 - R \; (R \in [0, 1])$

$$t = G^{-1} \Big[G(t_0) + \log R \Big]$$

Approximate higher-order corrections	The parton branching process	Monte-Carlo methods	Effects 0000	Summary O

Parton shower branching probability $f(t) \propto \frac{\alpha_s(t)}{t} P(z)$ **Problem:** we do not know F(t)

Solution: veto algorithm

find overestimate $g(t) \ge f(t) \ \forall t \in [t_c, t_0]$, generate event according to

$$\mathcal{G}(t) = g(t) \, \exp\left\{-\int_t^{t_0} \mathrm{d}t' \, g(t')
ight\}$$

2 accept with w(t) = f(t)/g(t)

if rejected, continue starting from t

Approximate higher-order corrections	The parton branching process	Monte-Carlo methods	Effects 0000	Summary O

Parton shower branching probability $f(t) \propto \frac{\alpha_s(t)}{t} P(z)$ **Problem:** we do not know F(t)

Solution: veto algorithm

1 find overestimate $g(t) \ge f(t) \ \forall t \in [t_c, t_0]$, generate event according to

$$\mathcal{G}(t) = g(t) \exp\left\{-\int_t^{t_0} \mathrm{d}t' \, g(t')
ight\}$$

- 2 accept with w(t) = f(t)/g(t)
- \bigcirc if rejected, continue starting from t

The parton branching process	Monte-Carlo methods	Effects 0000	Summary O
	The parton branching process	The parton branching process Monte-Carlo methods	The parton branching process Monte-Carlo methods Effects 00000000 0000000 0000

Does this give the correct distribution?

• probability for immediate acceptance of emission at scale t

$$\frac{f(t)}{g(t)}g(t)\exp\left\{-\int_t^{t_0}\mathrm{d}t'\,g(t')\right\}$$

$$\frac{f(t)}{g(t)}g(t)\int_{t}^{t_{0}}\mathrm{d}t_{1}\exp\left\{-\int_{t}^{t_{1}}\mathrm{d}t'\,g(t')\right\}\left(1-\frac{f(t_{1})}{g(t_{1})}\right)g(t_{1})\exp\left\{-\int_{t_{1}}^{t_{0}}\mathrm{d}t'\,g(t')\right\}$$

- For *n* rejections we obtain *n* nested integrals $\int_t^{t_0} \int_{t_1}^{t_0} \dots \int_{t_{n-1}}^{t_0}$
- disentangling yields 1/n!, summing over all possible rejections gives

$$f(t) \exp\left\{-\int_{t}^{t_{0}} dt' g(t')\right\} \sum_{n=0}^{\infty} \frac{1}{n!} \left[\int_{t}^{t_{0}} dt' \left[g(t') - f(t')\right]\right]^{n}$$

= $f(t) \exp\left\{-\int_{t}^{t_{0}} dt' f(t')\right\}$

Approximate higher-order corrections	The parton branching process	Monte-Carlo methods	Effects 0000	Summary O

Does this give the correct distribution?

• probability for immediate acceptance of emission at scale t

$$\frac{f(t)}{g(t)}g(t)\exp\left\{-\int_t^{t_0}\mathrm{d}t'\,g(t')\right\}$$

$$\frac{f(t)}{g(t)}g(t)\int_t^{t_0}\mathrm{d}t_1\exp\left\{-\int_t^{t_1}\mathrm{d}t'\,g(t')\right\}\left(1-\frac{f(t_1)}{g(t_1)}\right)g(t_1)\exp\left\{-\int_{t_1}^{t_0}\mathrm{d}t'\,g(t')\right\}$$

- For *n* rejections we obtain *n* nested integrals $\int_t^{t_0} \int_{t_1}^{t_0} \dots \int_{t_n}^{t_n}$
- disentangling yields 1/n!, summing over all possible rejections gives

$$f(t) \exp\left\{-\int_{t}^{t_{0}} dt' g(t')\right\} \sum_{n=0}^{\infty} \frac{1}{n!} \left[\int_{t}^{t_{0}} dt' \left[g(t') - f(t')\right]\right]^{n}$$

= $f(t) \exp\left\{-\int_{t}^{t_{0}} dt' f(t')\right\}$

Approximate higher-order corrections	The parton branching process	Monte-Carlo methods	Effects 0000	Summary O

Does this give the correct distribution?

• probability for immediate acceptance of emission at scale t

$$\frac{f(t)}{g(t)}g(t)\exp\left\{-\int_t^{t_0}\mathrm{d}t'\,g(t')\right\}$$

$$\frac{f(t)}{g(t)}g(t)\int_t^{t_0}\mathrm{d}t_1\exp\left\{-\int_t^{t_1}\mathrm{d}t'\,g(t')\right\}\left(1-\frac{f(t_1)}{g(t_1)}\right)g(t_1)\exp\left\{-\int_{t_1}^{t_0}\mathrm{d}t'\,g(t')\right\}$$

- For *n* rejections we obtain *n* nested integrals $\int_t^{t_0} \int_{t_1}^{t_0} \dots \int_{t_{n-1}}^{t_0}$
- disentangling yields 1/n!, summing over all possible rejections gives $f(t) \exp\left\{-\int_{t}^{t_{0}} dt' g(t')\right\} \sum_{n=0}^{\infty} \frac{1}{n!} \left[\int_{t}^{t_{0}} dt' \left[g(t') - f(t')\right]\right]^{n}$ $= f(t) \exp\left\{-\int_{t}^{t_{0}} dt' f(t')\right\}$

Approximate higher-order corrections	The parton branching process	Monte-Carlo methods	Effects 0000	Summary O

Does this give the correct distribution?

• probability for immediate acceptance of emission at scale t

$$\frac{f(t)}{g(t)}g(t)\exp\left\{-\int_t^{t_0}\mathrm{d}t'\,g(t')\right\}$$

$$\frac{f(t)}{g(t)}g(t)\int_t^{t_0}\mathrm{d}t_1\exp\left\{-\int_t^{t_1}\mathrm{d}t'\,g(t')\right\}\left(1-\frac{f(t_1)}{g(t_1)}\right)g(t_1)\exp\left\{-\int_{t_1}^{t_0}\mathrm{d}t'\,g(t')\right\}$$

- For *n* rejections we obtain *n* nested integrals $\int_t^{t_0} \int_{t_1}^{t_0} \dots \int_{t_{n-1}}^{t_0}$
- disentangling yields 1/n!, summing over all possible rejections gives

$$\begin{aligned} f(t) &\exp\left\{-\int_t^{t_0} \mathrm{d}t' \, g(t')\right\} \sum_{n=0}^{\infty} \frac{1}{n!} \left[\int_t^{t_0} \mathrm{d}t' \left[g(t') - f(t')\right]\right]^n \\ &= f(t) \exp\left\{-\int_t^{t_0} \mathrm{d}t' \, f(t')\right\} \end{aligned}$$

Approximate higher-order corrections	The parton branching process	Monte-Carlo methods	Effects 0000	Summary O

Does this give the correct distribution?

• probability for immediate acceptance of emission at scale t

$$\frac{f(t)}{g(t)}g(t)\exp\left\{-\int_t^{t_0}\mathrm{d}t'\,g(t')\right\}$$

$$\frac{f(t)}{g(t)}g(t)\int_t^{t_0}\mathrm{d}t_1\exp\left\{-\int_t^{t_1}\mathrm{d}t'\,g(t')\right\}\left(1-\frac{f(t_1)}{g(t_1)}\right)g(t_1)\exp\left\{-\int_{t_1}^{t_0}\mathrm{d}t'\,g(t')\right\}$$

- For *n* rejections we obtain *n* nested integrals $\int_t^{t_0} \int_{t_1}^{t_0} \dots \int_{t_{n-1}}^{t_0}$
- disentangling yields 1/n!, summing over all possible rejections gives

$$\begin{aligned} f(t) &\exp\left\{-\int_t^{t_0} \mathrm{d}t'\,g(t')\right\} \sum_{n=0}^\infty \frac{1}{n!} \left[\int_t^{t_0} \mathrm{d}t'\left[g(t') - f(t')\right]\right]^n \\ &= f(t) \exp\left\{-\int_t^{t_0} \mathrm{d}t'\,f(t')\right\} \quad \checkmark \end{aligned}$$

Approximate higher-order corrections	The parton branching process	Monte-Carlo methods ○○○○●○	Effects 0000	Summary O

Veto algorithm

What have we achieved?

• we have generated a parton branching (real resolved emission) according to

$$f(t) \Delta(t, t_0) \quad \text{with} \quad \Delta(t, t_0) = \exp\left\{-\int_t^{t_0} dt' f(t')\right\}$$
$$f(t) \equiv f(t, z) = \frac{\alpha_s}{2\pi t} P(z)$$

 the no-branching probability implies a virtual correction (including unresolved real emissions) of Δ(t_c, t₀)
 Note: The Sudakov form factor Δ resums logs to all orders

$$\mathrm{d}\hat{\sigma}_{\mathrm{NLO}}^{\mathrm{approx}} = \mathrm{d}\hat{\sigma}_n \left[\Delta(t_c, t_0) + \int_t^{t_0} \mathrm{d}t \ f(t) \,\Delta(t, t_0) \right]$$

Approximate higher-order corrections	The parton branching process	Monte-Carlo methods ○○○○●○	Effects 0000	Summary O

Veto algorithm

What have we achieved?

• we have generated a parton branching (real resolved emission) according to

$$f(t) \Delta(t, t_0) \quad \text{with} \quad \Delta(t, t_0) = \exp\left\{-\int_t^{t_0} dt' f(t')\right\}$$
$$f(t) \equiv f(t, z) = \frac{\alpha_s}{2\pi t} P(z)$$

the no-branching probability implies a virtual correction (including unresolved real emissions) of Δ(t_c, t₀)
 Note: The Sudakov form factor Δ resums logs to all orders

$$\mathrm{d}\hat{\sigma}_{\mathrm{NLO}}^{\mathrm{approx}} = \mathrm{d}\hat{\sigma}_n \left[\Delta(t_c, t_0) + \int^{t_0} \mathrm{d}t \ f(t) \, \Delta(t, t_0) \right]$$

Approximate higher-order corrections	The parton branching process	Monte-Carlo methods ○○○○●○	Effects 0000	Summary O

Veto algorithm

What have we achieved?

 we have generated a parton branching (real resolved emission) according to

$$f(t) \Delta(t, t_0) \quad \text{with} \quad \Delta(t, t_0) = \exp\left\{-\int_t^{t_0} dt' f(t')\right\}$$
$$f(t) \equiv f(t, z) = \frac{\alpha_s}{2\pi t} P(z)$$

the no-branching probability implies a virtual correction (including unresolved real emissions) of Δ(t_c, t₀)
 Note: The Sudakov form factor Δ resums logs to all orders

$$\mathrm{d}\hat{\sigma}_{\mathsf{NLO}}^{\mathsf{approx}} = \mathrm{d}\hat{\sigma}_n \left[\Delta(t_c,t_0) + \int_{t_c}^{t_0} \mathrm{d}t \; f(t) \, \Delta(t,t_0)
ight]$$

Approximate higher-order corrections	The parton branching process	Monte-Carlo methods ○○○○○●	Effects 0000	Summary O

 consider a set of *n* partons at scale t₀, which evolve collectively Sudakovs factorise, schematically

$$\Delta(t,t_0)=\prod_{i=1}^n\Delta_i(t,t_0)\ ,\qquad \qquad \Delta_i(t,t_0)=\prod_{j=q,g}\Delta_{i
ightarrow j}(t,t_0)$$

2) find new scale t where next branching occurs using veto algorithm

- generate t using overestimate $g_{ab}(t) \propto lpha_s^{
 m max} P_{ab}^{
 m max}(z)$
- determine "winner" parton i and select new flavor.
- accept point with weight $f_{ab}/g_{ab}=lpha_s(k_T^2)P_{ab}(z)/lpha_s^{\sf max}P_{ab}^{\sf max}(z)$
- construct splitting kinematics and update event record
- 4) continue until $t < t_c$, t_c infrared cut-off

Approximate higher-order corrections	The parton branching process	Monte-Carlo methods ○○○○○●	Effects 0000	Summary O

 consider a set of *n* partons at scale t₀, which evolve collectively Sudakovs factorise, schematically

$$\Delta(t,t_0)=\prod_{i=1}^n\Delta_i(t,t_0)\ ,\qquad \qquad \Delta_i(t,t_0)=\prod_{j=q,g}\Delta_{i
ightarrow j}(t,t_0)$$

2) find new scale t where next branching occurs using veto algorithm

- generate t using overestimate $g_{ab}(t) \propto lpha_s^{\max} P_{ab}^{\max}(z)$
- determine "winner" parton *i* and select new flavor *j*
- accept point with weight $f_{ab}/g_{ab} = \alpha_s(k_T^2)P_{ab}(z)/\alpha_s^{\max}P_{ab}^{\max}(z)$

3) construct splitting kinematics and update event record
4) continue until t < t_c, t_c infrared cut-off

Approximate higher-order corrections	The parton branching process	Monte-Carlo methods ○○○○○●	Effects 0000	Summary O

 consider a set of *n* partons at scale t₀, which evolve collectively Sudakovs factorise, schematically

$$\Delta(t,t_0)=\prod_{i=1}^n\Delta_i(t,t_0)\ ,\qquad \qquad \Delta_i(t,t_0)=\prod_{j=q,g}\Delta_{i
ightarrow j}(t,t_0)$$

2) find new scale t where next branching occurs using veto algorithm

- generate t using overestimate $g_{ab}(t) \propto \alpha_s^{\max} P_{ab}^{\max}(z)$
- determine "winner" parton *i* and select new flavor *j*
- accept point with weight $f_{ab}/g_{ab} = \alpha_s(k_T^2)P_{ab}(z)/\alpha_s^{\max}P_{ab}^{\max}(z)$
- 3) construct splitting kinematics and update event record

continue until t < t_c, t_c infrared cut-off

Approximate higher-order corrections	The parton branching process	Monte-Carlo methods ○○○○○●	Effects 0000	Summary O

 consider a set of *n* partons at scale t₀, which evolve collectively Sudakovs factorise, schematically

$$\Delta(t,t_0)=\prod_{i=1}^n\Delta_i(t,t_0)\ ,\qquad \qquad \Delta_i(t,t_0)=\prod_{j=q,g}\Delta_{i
ightarrow j}(t,t_0)$$

2) find new scale t where next branching occurs using veto algorithm

- generate t using overestimate $g_{ab}(t) \propto lpha_s^{\max} P_{ab}^{\max}(z)$
- determine "winner" parton *i* and select new flavor *j*
- accept point with weight $f_{ab}/g_{ab} = \alpha_s(k_T^2)P_{ab}(z)/\alpha_s^{\max}P_{ab}^{\max}(z)$
- 3) construct splitting kinematics and update event record
- 4) continue until $t < t_c$, t_c infrared cut-off

Approximate higher-order corrections	The parton branching process	Monte-Carlo methods	Effects •000	Summary O

Effects

0000

- Thrust and Durham 2 ightarrow 3-jet rate in e^+e^- ightarrow hadrons
- hadronisation region to the right (left) in left (right) plot

Effects

0000

- Drell-Yan lepton pair production at Tevatron
- if hard cross section computed at leading order, then parton shower is only source of transverse momentum
- starting scale of evolution chosen as $Q^2 = m_W^2$

The parton branching process 00000000

Monte-Carlo methods 000000 Effects 000●

Summary O

Recap

This lecture:

- parton showers encode approximate higher-order corrections
 → build upon universal soft-collinear approximation
 (Altarelli-Parisi splitting functions, large-N_c, spin-averaged)
- implemented as a statistical branching process, ordered in evolution variable t ($k_{\rm T}^2$, \tilde{q}^2 , etc.)
- produce resolved final state up to scale $t_{res} \approx \Lambda_{QCD}$ \rightarrow further evolution needs hadrons as degrees of freedom

Next lectures:

· limitations of parton showers and how to overcome them