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Figure 1: Born diagrams for the qq̄ (a) and for the ⇥⇥ (b,c) subprocesses.

which is depicted in figure 1 (a). This process is a neutral current process and its amplitude,
neglecting the Higgs-boson contribution, is mediated by s-channel photon and Z-boson ex-
change. In the unitary gauge, the tree-level amplitude reads as
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where mZ is the Z-boson mass and �Z is the Z decay width, necessary to describe the Z

resonance region, s = (p1 + p2)2 is the squared partonic center-of-mass (c.m.) energy and
kµ = pµ

1 + pµ
2 , � = e2/(4⌅) is the fine structure constant, c⇥ ⇤ mW /mZ is the cosine of

the weak mixing angle. The vector and axial-vector couplings of the Z-boson to fermions
are vf = Tf � 2Qfs2

⇥ and af = �Tf where Tf = ±1/2 is the third component of the weak
isospin and Qf is the electric charge of the fermion f .

The subprocess ⇥(p1) ⇥(p2)⌅ l�(p3) l+(p4), which is depicted in figure 1 (b,c), is, at
lowest order, a pure QED reaction, whose di⇥erential cross section, in the partonic c.m.
frame and neglecting all fermion masses, reads as
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=

2⌅�2

s

�
1 + cos2 ⇤
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(2.2)

2.2 The O(�) calculation

The complete O(�) EW corrections to the neutral current Drell-Yan process have already
been computed in refs. [12, 13]. We have repeated independently the calculation and
included in addition the photon-induced processes. We summarize here the main features
of our approach.

The O(�) corrections include the contribution of real and virtual corrections. The
virtual corrections follow from the perturbative expansion of the 2⌅ 2 scattering amplitude
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  • the nature and strength of the interaction between gauge bosons and matter fields:   

     scalar, pseudo-scalar, vector, axial-vector, …

    (observables with defined properties under Lorentz and discrete symmetries)
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Fig. 4 Comparison between
data and best-fit AFB
distributions in the dimuon
(upper) and dielectron (lower)
channels. The best-fit AFB value
in each bin is obtained via linear
interpolation between two
neighboring templates. Here, the
templates are based on the
central prediction of the NLO
NNPDF3.0 PDFs. The error
bars represent the statistical
uncertainties in the data
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Figure 1: Born diagrams for the qq̄ (a) and for the ⇥⇥ (b,c) subprocesses.
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  • these experimental results are compared against the best Standard Model predictions

     sensitivity to quantum corrections and New Physics
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NEW PHYSICS SEARCHES

Hiding in small & subtle effects?

๏ interaction weak

๏ wide resonance

๏ too heavy

๏ shape distortion

๏ …
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8 Results

The dilepton invariant-mass distributions for the events that pass the full analysis selection are shown in
Figure 1. The event with highest reconstructed mass is a dielectron candidate with mee = 4.06 TeV, formed
of two electrons with ET = 2.01 TeV and ET = 1.92 TeV in the barrel region of the calorimeter. The event
with highest reconstructed mass in the dimuon channel has an invariant mass of mµµ = 2.75 TeV. Both
muon candidates are in the barrel section of the muon spectrometer and their transverse momenta are
pT = 1.82 TeV and pT = 1.04 TeV.

The fit to data3 is performed in bins of 1 GeV and uses the function in Eq. (1). In both channels, validation
tests using the extension of the functional form described in Section 6 did not yield any significant
improvement, so the function in Eq. (1) is used without modification.
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Figure 1: Distribution of the (a) dielectron and (b) dimuon invariant mass for events passing the full selection. Generic
zero-width signal shapes, scaled to 20 times the value of the corresponding expected upper limit at 95% CL on the
fiducial cross-section times branching ratio, with pole masses of mX =1.34, 2 and 3 TeV as well as background-only
fits are superimposed. The data points are plotted at the centre of each bin. The error bars indicate statistical
uncertainties only. The differences between the data and the fit results in units of standard deviations of the statistical
uncertainty are shown in the bottom panels.

The probability that the data are compatible with the background-only hypothesis is shown in Figure 2 as a
function of pole mass for zero-width signals. No significant excess is observed. The largest deviations from
the background-only hypothesis in the dielectron, dimuon and combined dilepton channels are observed at
masses of 774 GeV, 267 GeV and 264 GeV for zero-width signals with a local p0 of 2.9σ, 2.4σ and 2.3σ
and a global significance of 0.1σ, 0.3σ, and zero, respectively.

Figure 3 shows the upper limits on the fiducial cross-section times branching ratio to two leptons of a single
flavour for generic resonances of various relative widths as a function of their mass. The observed limits
for pole masses ranging from 250 to 750 GeV are obtained with a spacing of 1 GeV. The granularity is
reduced above that mass, but remains below the experimental resolution of the ee channel. The observed
limit on the fiducial cross-section times branching ratio ranges from 3.6 (13.1) fb at 250 GeV to about
0.014 (0.018) fb at 6 TeV for the zero (10%) relative width signal in the combined dilepton channel. The

3 The resulting fit parameters for dielectron channel are: a = 178000±400, b = 1.5±1.0, p0 = −12.38±0.09, p1 = −4.295±0.014,
p2 = −0.9191±0.0027, p3 = −0.0845±0.0005; for dimuon channel are: a = 138700±400, b = 11.8±0.5, p0 = −7.38±0.12,
p1 = −4.132 ± 0.017, p2 = −1.0637 ± 0.0029, p3 = −0.1022 ± 0.0005.
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Λ: Cut-off of the EFT
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1 Expected precision for EWPO at FCC-ee

Observable Expected uncertainty (Relative uncertainty)

MZ [GeV] 10
�4
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�6

)

�Z [GeV] 10
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Rµ 0.001 (5 ⇥ 10
�4

)

R⌧ 0.002 (10
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)

Rb 0.00006 (3 ⇥ 10
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)

Rc 0.00026 (15 ⇥ 10
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)

Table 1: Expected sensitivities to Z-lineshape parameters and normalized partial decay widths.
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Effects  
suppressed by

Truncate at d=6: 59 types of operators (2499 counting flavor) 
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C. Arzt, M.B. Einhorn, J. Wudka, Nucl. Phys. B433 (1995) 41 
B.Grzadkowski, M.Iskrynski, M.Misiak, J.Rosiek, JHEP 1010 (2010) 085

First complete basis, aka Warsaw basis
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The dimension-6 SMEFT

• The dimension 6 SMEFT: 

• LO new physics effects “start” at dimension 6  

• With current precision, and assuming Λ~TeV, sensitivity to d>6 is small

Power counting: EFT expansion in canonical dimension of operators
Particles and symmetries of the low-energy theory: SM
Assumes new physics is heavy + decoupling

1) What is the  Standard Model (SM)  ?

Alessandro Vicini - University of Milano                                                                                                                                                                                                                                                    CERN, 17th MCnet school, June 2024
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Fig. 2: Observed and predicted Higgs boson
production cross-sections and branching
fractions.

From: A detailed map of Higgs boson interactions by the ATLAS experiment ten

years after the discovery

a, Cross-sections for different Higgs boson production processes are measured

assuming standard model (SM) values for the decay branching fractions. b,

Branching fractions for different Higgs boson decay modes are measured

assuming SM values for the production cross-sections. The lower panels show the

ratios of the measured values to their SM predictions. The vertical bar on each

point denotes the 68% confidence interval. The p value for compatibility of the
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When Precision is a crucial tool: deciphering the nature of the Higgs boson
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Fig. 1: Examples of Feynman diagrams for

Higgs boson production and decay.

From: A detailed map of Higgs boson interactions by the ATLAS experiment ten

years after the discovery

a–e, The Higgs boson is produced via gluon–gluon fusion (a), vector boson fusion

(VBF; b) and associated production with vector bosons (c), top or b quark pairs (d),

or a single top quark (e). f–i, The Higgs boson decays into a pair of vector bosons

(f), a pair of photons or a Z boson and a photon (g), a pair of quarks (h), and a pair

of charged leptons (i). Loop-induced Higgs boson interactions with gluons or

photons are shown in blue, and processes involving couplings to W or Z bosons in

green, to quarks in orange, and to leptons in red. Two different shades of green

(orange) are used to separate the VBF and VH (  and tH) production processes.
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Quantum corrections up to third order needed 

for a significant comparison 

with the Higgs production cross sectionsWhy do we need precise theory predictions? 10

Slide by M.Grazzini

Harlander, Kilgore (2002); Anastasiou, 
Melnikov (2002); Ravindran et al (2003) 
Catani, de Florian, Nason, Grazzini (2003) 
Aglietti, Bonciani, Degrassi, AV (2004) 
Passarino et al (2008) 
de Florian, Grazzini (2008, 2012)

plot by M.Grazzini
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Motivations
 ● Global test of the data description offered by the SM  → search for tensions  
     → possible explanation in terms of higher-dimension operators  (effective description of New Physics)

                       
 are our predictions / simulations adequate ?    Can we identify BSM deviations in a significant way ?

High invariant masses (before our calculations)

4

mass window 
[GeV]

stat. unc. 
140fb-1

stat. unc. 
3ab-1

600<mµµ<900 1.4% 0.2%

900<mµµ<1300 3.2% 0.6%

arXiv:2103.02708

• Modelling of the SM background crucial for 
new physics searches 

• Measurement  of the dilepton invariant mass 
spectrum expected at  at !(1%) mℓℓ ∼ 1 TeV

dσ
dX

= dσ(0,0)

dX
1 + dσ(1,0)

dX ( dσ(0,0)

dX )
−1

+ … 1 + dσ(0,1)

dX ( dσ(0,0)

dX )
−1

+ …

= dσ(0,0)

dX
+ dσ(1,0)

dX
+ dσ(0,1)

dX
+ dσ(1,0)

dX
dσ(0,1)

dX ( dσ(0,0)

dX )
−1

+ …

Estimate from the knowledge of only NLO QCD and NLO EW corrections based on a 
factorised ansatz 

about of the LO        
at 

−2 %
mℓℓ ∼ 1 TeV

High invariant masses (before our calculations)

4

mass window 
[GeV]

stat. unc. 
140fb-1

stat. unc. 
3ab-1

600<mµµ<900 1.4% 0.2%

900<mµµ<1300 3.2% 0.6%

arXiv:2103.02708

• Modelling of the SM background crucial for 
new physics searches 

• Measurement  of the dilepton invariant mass 
spectrum expected at  at !(1%) mℓℓ ∼ 1 TeV

dσ
dX

= dσ(0,0)

dX
1 + dσ(1,0)

dX ( dσ(0,0)

dX )
−1

+ … 1 + dσ(0,1)

dX ( dσ(0,0)

dX )
−1

+ …

= dσ(0,0)

dX
+ dσ(1,0)

dX
+ dσ(0,1)

dX
+ dσ(1,0)

dX
dσ(0,1)

dX ( dσ(0,0)

dX )
−1

+ …

Estimate from the knowledge of only NLO QCD and NLO EW corrections based on a 
factorised ansatz 

about of the LO        
at 

−2 %
mℓℓ ∼ 1 TeV

Alessandro Vicini - University of Milano                                                                                                                                                                                                                                                    CERN, 17th MCnet school, June 2024



Motivations

 ● Precision determination of SM parameters ( often with precision better than 0.1% )

                 i.e.      precision            

             i.e.    precision

   How much do these results depend on the details of our simulations ?

δmexp
W ∼ 16 MeV 2 ⋅ 10−4

δ sin2 θexp
W ∼ 0.0003 1.3 ⋅ 10−3

Alessandro Vicini - University of Milano                                                                                                                                                                                                                                                    CERN, 17th MCnet school, June 2024

 ● Electroweak Physics is a promising portal towards New Physics

    Quantum corrections are not necessarily small



Outline of lecture 1

1) QED as a gauge theory. Conserved currents and SM gauge group choice. Prediction of the Z neutral current.
2) Issues with gauge invariance. The Higgs mechanism. Prediction of the existence of the Higgs boson.
3) The Higgs mechanism. Proportionality of the coupling of the Higgs boson to another field F with the mass of the field F.
4) Gauge boson polarisations. Tests of EW SSB. Cancellations avoiding unitarity violations
5) Renormalization. Basic concepts for mass and charge renormalisation.
6) Issues with the description of unstable particles. Complex mass scheme.
7) The couplings of the Z boson to fermions. Determination of the weak mixing angle(s)

Alessandro Vicini - University of Milano                                                                                                                                                                                                                                                    CERN, MCnet school, June 2024

Outline of lecture 2
1) Electroweak corrections classification 
2) Mixed QCD-EW corrections at hadron colliders (partonic results, PDFs, )
3) W mass determination at hadron colliders
4) Pole expansion, on-shell boson production, off-shell effects
5) photons, leptons, isolation  
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SM formulation



Why gauge theories?

12

QED, QCD and the weak interactions are described by QFT invariant under a group of gauge transformations.
Why this request of invariance is so important
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Why gauge theories?

Precision                       Anomalous magnetic moment of the electron

                                  (g−2)/2 = (1159.65218073 ± 0.00000028) x 10⁻⁶

                                    successfully tested against the prediction including fifth-order corrections in QED

12

QED, QCD and the weak interactions are described by QFT invariant under a group of gauge transformations.
Why this request of invariance is so important
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Why gauge theories?

Precision                       Anomalous magnetic moment of the electron

                                  (g−2)/2 = (1159.65218073 ± 0.00000028) x 10⁻⁶

                                    successfully tested against the prediction including fifth-order corrections in QED
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Accuracy single jet production

QCD accurately describes the data at percent level 

tested over more than 1 order of magnitude in energy
the rate varies by 7 orders of magnitude

QED, QCD and the weak interactions are described by QFT invariant under a group of gauge transformations.
Why this request of invariance is so important
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The EW Standard Model: QED as a gauge theory 

 ● In QED, the invariance of the fermionic lagrangian (electron field ) under a  group of global phase transformations
    implies (Noether’s theorem ) the existence of a conserved (electric) charge and of a conserved (fermion) vector current

         is invariant when  with  a real constant   (  global symmetry)

        are the conserved e.m. current and electric charge

ψ U(1)

ℒDirac = ψ (iγμ∂μ − m) ψ ψ → eieα ψ α U(1)

Jμ = ψ γμ ψ Q = ∫ d3 ⃗x J0(x)
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 ● In QED, the request of invariance of the fermionic lagrangian (electron field ) under a group of local phase transformations
    can be satisfied by the introduction of a gauge field :             ,        

        is invariant under the local trasnformation

 ●   The gauge field  describes a massless spin-1 particle with two transverse degrees of freedom (the photon field)
      which interacts with the conserved fermionic current (e.m. interaction)

ψ
Aμ ψ → eieα(x) ψ Aμ → Aμ + ∂μα(x)

ℒQED = ψ [iγμ(∂μ − ieAμ) − m] ψ

Aμ



The EW Standard Model: the currents and the choice of the  gauge groupSU(2)L × U(1)Y

 ● The EW SM is built according to the same idea / pattern

    Fermi has identified, in the study of neutron beta decay (or also muon decay) two fermionic electrically charged currents

                             with             and 

                                                                   We ask these currents to be the conserved currents of a global symmetry. 

 ● The  group has three generators  → two of its three conserved currents will be the Fermi currents.

    The Fermi currents are purely left-handed (parity violation in neutron beta decay)  → 

                            is invariant when         with   real

  ● the third (neutral) conserved current can not be the e.m. current, because it is purely left-handed

ℒFermi =
Gμ

2
Jμ

ud, L Jℓν, L
μ Jμ

ud, L = u γμ 1 − γ5

2
d Jℓν, L

μ = ℓ γμ
1 − γ5

2
ν

SU(2) τj = σj /2
SU(2)L

ΨL = (uL

dL) ℒdoublet = ΨL (iγμ∂μ) ΨL ΨL → ei g
2 σjαj ΨL αj
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The EW Standard Model: the currents and the choice of the  gauge groupSU(2)L × U(1)Y

 ●  Enlarge the transformation group to     →   4 generators: 2 charged and 2 neutral  → 4 conserved currents

 ●  We promote the global  group to a group of local (gauge) phase transformations
         and then we introduce 4 gauge fields ( ) which mediate the EW interactions

             

        We consider a linear combination of the 2 neutral generators                     

              obtaining       

  

SU(2)L × U(1)Y

SU(2)L × U(1)Y
W1, W2, W3, B

ℒint
NC = Ψ γμ [g τ3W

μ
3 + g′ 

Y
2

Bμ] Ψ

Bμ = Aμ cos θW − Zμ sin θW

Wμ
3 = Aμ sin θW + Zμ cos θW

ℒint
NC = Ψ γμ (g sin θW τ3 + g′ cos θW

Y
2 ) Ψ Aμ + Ψ γμ (g cos θW τ3 − g′ sin θW

Y
2 ) Ψ Zμ
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 ●  We require that the first combination is the electromagnetic current (assignment of the  value for each L and R field )

     The second neutral current is a prediction of this construction. It has been discovered by Gargamelle in 1973
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The weak mixing angle

sin2 θW =
(g′ )2

g2 + (g′ )2

In the construction of the SM, 
identification of the electromagnetic current  and electric charge 
→ prediction of the second neutral current, coupling the  boson to fermions

e = g sin θW
Z

18

Zff̄ ∝ i
g

cos θW
γμ (T3

1 − γ5

2
− sin2 θWQf)

It is interesting to test both:  the strength of the neutral current interaction            
                                          the mixing of the  and  gauge groups   SU(2)L U(1)Y
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Issues with gauge invariance

 1) The gauge fields are by construction massless, but we know that  are very heavy (80 times the proton mass)…
      A massive spin-1 particle has 3 polarizations , while the gauge lagrangian describes only 2 polarizations per boson
    
      An explicit mass term in the lagrangian breaks gauge invariance.

  2)  in the QED  Dirac lagrangian, in the mass term,      

       but now   and   have different transformation properties under   breaking gauge invariance

  

W±

ℒmass = − m (ψL ψR + ψR ψL)
ψL ψR SU(2)L × U(1)Y
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                Φ =
1

2 ( ϕ1 + iϕ2
v + σ + iχ) ⟨0 |Φ |0⟩ =

1

2 (0
v)
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The Higgs mechanism



  Given          and          

         3 real fields    describe the longitudinal pol. of ,         

                                                                                           1 real field  is a neutral singlet  → the Higgs boson

                           and  are Yukawa matrices 

                                                                                                with  over the fermion families 
                                                                                                 has hypercharge opposite to 

          

   All these lagrangian terms are gauge invariant
   After the spontaneous breaking of the EW symmetry,  , we generate mass terms for fermions and gauge bosons

Φ =
1

2 ( ϕ1 + iϕ2
v + σ + iχ) Dμ = ∂μ − i

g
2

σjW
μ
j − i

g′ 

2
Y Bμ

ℒhiggs = (DμΦ)
†

(DμΦ) + μ2 (Φ†Φ) − λ (Φ†Φ)2 (ϕ1, ϕ2, χ) W±, Z

σ

ℒfm = − dijΦ†Ψi L dj R − uijΦ̃†Ψi L uj R + h . c . dij uij

i, j = 1,2,3
Φ̃ = (σ2Φ*)T Φ

ℒ = ℒgauge + ℒhiggs + ℒfm

v ≠ 0
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Issues with gauge invariance: the Higgs mechanism



The EW Standard Model: masses and couplings

 ●  Assuming that the vacuum expectation value (VEV) of the complex Higgs doublet is not vanishing
     we observe that whenever the Higgs doublet couples to other fields, we obtain two contributions:
            - one mass term for the other field
            - one interaction term between the Higgs and the other field, proportional to the mass of the latter

abelian example

        

                      →   

(∂μ + ieAμ) 1

2
(v + σ − iχ) (∂μ − ieAμ)

1

2
(v + σ + iχ)

[⋯ + e2v2AμAμ + ⋯ + e2v σ AμAμ + ⋯] [⋯ + M2AμAμ + ⋯ + e M σ AμAμ + ⋯]
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The EW Standard Model: masses and couplings

 ● the interaction strength between the Higgs and any other field is proportional to the mass of the latter
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The EW Standard Model: weak gauge boson polarisations

A massive gauge boson has 3 polarisation states.  In the laboratory frame they read

 ,  ,              

 The  vector describes the longitudinal polarisation.  In the high-energy limit it grows like , i.e.   

 1)  In the production of longitudinal gauge boson pairs, individual Feynman diagrams may diverge like , 
        violating the unitarity of the S matrix.
      The gauge invariance constraints lead to specific cancellations in the full amplitude, which remove the “dangerous” terms

 2)  In ,  only the combination of all the interference terms between all the Feynman diagrams 

                                           (not only the squared of the individual diagrams) yields the correct physical prediction

εμ
T1 = (0,1,0,0) εμ

T2 = (0,0,1,0) εμ
L = ( | ⃗k |

m
,0,0,

Ek

m )
εμ

L s εμ
L ∼

kμ

m

s

|ℳ |2 = |∑
i

ℳi |
2
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The EW Standard Model: weak gauge boson polarisations
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Illustration of  “problem 2)”



The EW Standard Model: weak gauge boson polarisations
      

 ● The gauge-invariance request put strong constraints on the terms allowed in the lagrangian and their coefficients
     → unitarity cancellations

    The presence of BSM physics could modify the cancellation mechanism 
          leading to e.g. a “delayed” unitarity, compared to the SM prediction

 ●  After spontaneous breaking of the EW gauge symmetry (SSB), also longitudinal gauge boson may interact

     A careful study of Higgs and vector-boson scattering may reveal details of the EW SSB

ℒSM = ℒDirac−gauge + ℒYM + ℒHiggs + ℒfm
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Only the inclusion of all possible diagrams
guarantees the unitarity cancellations



The EW Standard Model: the flavor sector, minimal vs non-minimal formulations
 ● the Higgs mechanism yields masses for the fermions without explicit breaking of gauge invariance

              

 ● since up-type and down-type fermions carry different hypercharge values, 
    the gauge invariance of the fermion mass sector is achieved by using 
    the Higgs doublet for the down-type fermions   and   the charged conjugate Higgs doublet    for the up-type quarks
    → minimal solution

 ● In full generality it is possible to assume that two distinct scalar doublets, with opposite hypercharge values, are present

                                      

     → two Higgs doublet models (2HDM) are a large class of models (including SUSY models) 
          predicting the existence of 4 additional  fields (2 charged scalars, one neutral scalar, one neutral pseudoscalar)

ℒfm = − dijΦ†Ψi L dj R − uijΦ̃†Ψi L uj R + h . c .

Φ̃

Φ → Φd Φ̃ → Φu Y(Φd) = + 1 Y(Φu) = − 1
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The EW Standard Model: the custodial symmetry
 ● In addition to the gauge symmetry, explicitly enforced, we have accidental global symmetries of the lagrangian

                

    The scalar sector (before gauging:  instead of )   is invariant under a  global symmetry
    After EW SSB, a residual global  symmetry, called custodial, is still present in the scalar sector

 ●   At tree level    is a consequence of 

      Including the radiative corrections,  
       hypercharge effects and fermion mass splittings break 
                          

ℒscalar = (∂μΦ)
†

(∂μΦ) + μ2 (Φ†Φ) − λ (Φ†Φ)2

∂μ Dμ SU(2)L × SU(2)R
SU(2)C

ρ =
m2

W

m2
Z cos2 θW

= 1 SU(2)C

SU(2)C
ρ = 1 + Δρ
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 ●  The presence in the classical lagrangian of , 
     implies that the evaluation of  does not require renormalisation
            → the  value is a prediction of the SM   

                        ,      

            →  bounds on the top quark and Higgs masses

            → constraint on the HWW and HZZ couplings

SU(2)C
Δρ

Δρ

Δρ ∼
3Gμm2

t

8 2π
Δρ ∝ log ( m2

H

m2
W )
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SM renormalisation 
or 

what is a mass? what is a coupling?



The bare Lagrangian density

 ● The bare Lagrangian is a mathematical quantity, 
    from which we derive the equations of motion of the fields and the scattering amplitudes

    It describes a k-fold infinite set of possible theories, parametric in the k masses and couplings
       (changing the value of the electric charge affects the chemistry but not the physics of our world!)

         e.g. in QED k=2                            

 ● A precise, physical, meaning of the Lagrangian is achieved imposing the renormalisation conditions

    The renormalisation program is not specifically related to the UV divergences, 
    but it rather solves the k-fold infinite degeneracy of the bare lagrangian, 
          choosing a specific value and meaning for the couplings

 ● The renormalisation conditions are imposed at a given energy scale, the renormalisation scale.
    The dependence of the theory on this choice is controlled by the Renormalization Group Equations

ℒQED = ψ [iγμ(∂μ − ie0Aμ) − m0] ψ

32
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The couplings in the Lagrangian and their relation to physical quantities

 ● The EW SM is invariant under the gauge group , with gauge couplings  and 
    The scalar sector depends on the VEV  of the Higgs field and on the quartic scalar coupling 
    Neglecting the fermion masses and the fermion-scalar interaction, the theory is fully specified by 4 couplings

 ● In the construction of the SM there are two neutral currents
     we impose that one is the electromagnetic current, coupling to the photon field          
     the second neutral current is in turn a prediction, coupling to the Z-boson field 

     The fields  and  are a linear combination of the  gauge fields, with a rotation angle 

      and the electric charge is   

 ● After spontaneous symmetry breaking, the gauge bosons acquire mass, via the Higgs mechanism

                                            ,    ,  

 ● The Lagrangian couplings are in simple direct relation with four physical parameters

                                                              (the weak mixing angle is a derived parameter)

SU(2)L × U(1)Y g g′ 

v λ

Aμ

Zμ

Aμ Zμ SU(2)L × U(1)Y tan θW =
g′ 

g
e = g sin θW

mW =
1
2

gv mZ =
1
2

v g2 + g′ 2 mH = v 2λ

(g, g′ , v, λ) ↔ (e, mW, mZ, mH)
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A simple renormalisation scheme (Sirlin 1980)

 ● The tree level relations between the Lagrangian couplings and the chosen physical parameters hold for the bare quantities

                                           ,    ,   ,    

 ●  We express the bare physical parameters in terms of renormalised ones and counterterms
                 ,   ,   ,   

   and also the same replacement for the Lagrangian couplings
                 ,  ,  ,  

 ● We expand in powers of  the relations and identify the coefficients, order by order   
                     

    The Lagrangian coupling counterterms  can be expressed as a linear combination of 

 ● How can we compute   ?

e0 =
g0 g′ 0

g2
0 + g′ 2

0

mW,0 =
1
2

g0 v0 mZ,0 =
1
2

v0 g2
0 + g′ 2

0 mH,0 = v0 2λ0

e0 = e + δ e m2
W,0 = m2

W + δm2
W m2

Z,0 = m2
Z + δm2

Z m2
H,0 = m2

H + δm2
H

g0 = g + δg g′ 0 = g′ + δg′ v0 = v + δv λ0 = λ + δλ

ℏ
δa = (ℏ)1δa(1) + (ℏ)2δa(2) + (ℏ)3δa(3) + . . .

(δg, δg′ , δv, δλ) (δe, δm2
W, δm2

Z, δm2
H,)

(δe, δm2
W, δm2

Z, δm2
H)
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Renormalisation conditions I
 ● The counterterm defines the renormalised parameter 
    The relation between the renormalised parameter and the experimental input must then be specified

● In the on-shell renormalisation scheme, the renormalised mass coincides with the pole of the propagator
         (particle interpretation = simple pole of the propagator)

                                           

 with   

 ● In the on-shell renormalisation scheme, the request of probabilistic interpretation of the fields, 
    leads to a condition on the residue of the propagator, which must be 1 

    This leads to the definition of the renormalised fields     with  

 ● These definitions stem from the study of the propagator and are completely general, for each field

1
p2 − m2

0 + Σ(p2)
=

1
p2 − m2 − δm2 + Σ(p2)

=
1

p2 − m2 − δm2 + Σ(m2) + (p2 − m2)Σ′ (m2) + . . .
=

1
(p2 − m2) (1 + Σ′ (m2))

δm2 = Σ(m2)

ϕ0 = ϕ Z
1
2
wf Zwf = 1 + Σ′ (m2)
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Renormalisation conditions II
 ● The electric charge counterterm is defined via the study of the Thomson scattering
     i.e. the emission of a photon off a fermion, at vanishing momentum transfer 

 ● In the on-shell renormalisation scheme, 
    the renormalised charge coincides with the experimental charge, at all orders in perturbation theory

36
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    →  the electric charge counterterm cancels, order by order, the radiative corrections 
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 unbrokenU(1)e.m.



Renormalisation conditions II
 ● The electric charge counterterm is defined via the study of the Thomson scattering
     i.e. the emission of a photon off a fermion, at vanishing momentum transfer 

 ● In the on-shell renormalisation scheme, 
    the renormalised charge coincides with the experimental charge, at all orders in perturbation theory

38
Alessandro Vicini - University of Milano                                                                                                                                                                                                                                                    CERN, MCnet school, June 2024

    →  the electric charge counterterm  cancels, order by order, the radiative corrections

           from measurement of atomic transitions  

δe

α =
e2

4π2
=

1
137.035999



The renormalised Lagrangian and the choice of the input parameters

 ●  Once   have been computed from the relevant self-energies,  
     the Lagrangian is completely assigned and expressed in terms of     
       →  predictivity  =  any observable can computed and written in terms of these 4 inputs and compared with data → test

(δe, δm2
W, δm2

Z, δm2
H)

ℒ = ℒ(e, mW, mZ, mH)
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 ● An orthogonal question:

   Given some experimental kinematical distributions, which parameters can be determined from them ?
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       →  predictivity  =  any observable can computed and written in terms of these 4 inputs and compared with data → test
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 ● An orthogonal question:

   Given some experimental kinematical distributions, which parameters can be determined from them ?
   

 → only    can be determined by fitting the theoretical distributions (model dependent) to the data 
   

(e, mW, mZ, mH)



The renormalised Lagrangian and the choice of the input parameters

 ●  Once   have been computed from the relevant self-energies,  
     the Lagrangian is completely assigned and expressed in terms of     
       →  predictivity  =  any observable can computed and written in terms of these 4 inputs

(δe, δm2
W, δm2

Z, δm2
H)

(e, mW, mZ, mH)
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The renormalised Lagrangian and the choice of the input parameters
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(δe, δm2
W, δm2

Z, δm2
H)
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 ● Is this choice of input parameters unique?        no: we could use also  or  replacing  or Gμ sin2 θℓ
eff e mW



The renormalised Lagrangian and the choice of the input parameters

 ●  Once   have been computed from the relevant self-energies,  
     the Lagrangian is completely assigned and expressed in terms of     
       →  predictivity  =  any observable can computed and written in terms of these 4 inputs

(δe, δm2
W, δm2

Z, δm2
H)

(e, mW, mZ, mH)
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   ● How do we choose the input parameters?

              1) minimize the parametric uncertainty of the final results  →   are the best known quantities

                                                                                                            

              2) avoid the dependence on non-perturbative QCD uncertainties  → 

                                                                                                                   

              3) reabsorb in the definition of the input parameters large radiative corrections →  makes it

              4) extract from the data the value of one input parameter via a fitting procedure

                     →  allows to fit ,   instead   is needed to fit 

(α, Gμ, mZ, mH)

α(0) = 1/137.035999

(Gμ, mW, mZ, mH)

αGμ
= 1/132 αGμ

/α(0) ≃ 1.035

(Gμ, mW, mZ, mH)

(Gμ, mW, mZ, mH) mW (Gμ, sin2 θℓ
eff , mZ, mH) sin2 θℓ

eff

 ● Is this choice of input parameters unique?        no: we could use also  or  replacing  or Gμ sin2 θℓ
eff e mW



The independence of the QED corrections of the underlying model (Fermi theory vs SM) allows 

   -  to define  and to measure its value with high precision        = 1.1663787(6)  10⁻⁵   GeV⁻²

   - to “reabsorb” in the  definition the large logarithmic QED effects

 

Gμ Gμ

Gμ

QED corrections to         necessary for precise determination of 
                                           computable in the Fermi theory (Kinoshita, Sirlin, 1959)

Γμ Gμ

Fermi theory of β decay             

muon decay µ� ! ⌫µe
�⌫̄e

1

⌧µ
! �µ ! Gµ
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The Fermi constant and the parameterisation of the charged-current weak interaction
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The Fermi constant and the parameterisation of the charged-current weak interaction

 ● The Fermi theory and the SM can be identified, i.e. matched
   imposing that the muon decay amplitude at zero momentum transfer, in the two theories, coincide

                 

   - the QED corrections, identical in both models, simplify
   - the non-QED corrections contribute to the definition of the matching at a given perturbative order, via 

 ● It is possible to compute  using   as inputs in the on-shell scheme

                               and approximately     

 ●   is a finite physical correction.
     Its inclusion allows to use  as input to express the strength of the weak interaction

      is sensitive to BSM physics via the virtual corrections 
       

Gμ

2
=

g2

8m2
W

(1 + Δr)

Δr

Δr (e, mW, mZ, mH)

Δr = Δα(m2
Z) −

cos2 θW

sin2 θW
ρ + Δrrem Δr ∼ 0.07 − 3 ⋅ 0.01 + 𝒪(0.001) ∼ 0.035

Δr
Gμ

Δr
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Predictivity of the Standard Model

LSM = LSM (α, Gµ, mZ ;mH ;mf ;CKM)

Gµ
√

2
=

g2

8m2

W

(1 + ∆r) m2
W =

m2
Z

2

 
1 +

s
1� 4⇡↵

Gµ

p
2m2

Z

(1 +�r)

!

We trade  for  among the inputs, and solve the matching condition for mW Gμ mW
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The  boson mass: theoretical predictionW

Gµ
√

2
=

g2

8m2

W

(1 + ∆r)

45

Identification of the Fermi theory (effective theory) and Standard Model amplitudes for the muon decay process
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Identification of the Fermi theory (effective theory) and Standard Model amplitudes for the muon decay process
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+ full 2-loop         + partial 3- and 4-loop

In the Standard Model 

+ …

mW = 80.934 GeV ΔmW = 𝒪(0.5 GeV) ΔmW = 𝒪(50 MeV)
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The  boson mass: theoretical predictionW
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Identification of the Fermi theory (effective theory) and Standard Model amplitudes for the muon decay process
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+ full 2-loop         + partial 3- and 4-loop

In the Standard Model 

+ …

mW = 80.934 GeV ΔmW = 𝒪(0.5 GeV) ΔmW = 𝒪(50 MeV)

on-shell scheme       GeV   (Freitas, Hollik, Walter, Weiglein)
MSbar scheme.        GeV   (Degrassi, Gambino, Giardino)

parametric uncertainties  GeV due to the   values

mos
W = 80.353 ± 0.004

mMS
W = 80.351 ± 0.003

δmpar
W = ± 0.005 (α, Gμ, mZ, mH, mt)

Δmth
W

mW
∼ 1 ⋅ 10−4
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Experimental tests of the MW prediction
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 ● See tomorrow’s lecture for the theoretical details of the experimental determination

 ● A few comments now to discuss “what is the mass of an unstable particle ?” 
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The complex-mass scheme

 ● The quantisation of the gauge theory requires a gauge fixing term    →  gauge dependent Green’s functions

    The BRS symmetry, including the Faddeev-Popov ghosts                   → the S-matrix elements (the xsecs) are gauge invariant

   What about the parameters, like masses and couplings ?  Are they gauge invariant ?

 ●  The position of the pole of the propagator, that we interpret as mass of the particle, depends on the mass ct definition

     If   , then, starting from 2-loop EW,  gauge dependent terms in the renormalised mass

     With     we solve the gauge invariance problem to all orders

    Since the bare mass is real valued,   , then the renormalised mass  is complex valued

     The position of the complex mass is gauge invariant (as it should be if we want to fit it !!! )    → complex mass scheme

δm2
Z = Re(ΣZZ(p2 = m2

Z))

δμ2
Z = ΣZZ(p2 = μ2

Z)

m2
0 = μ2 + δμ2 μ = m −

i
2

Γ
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 ● Given ,     the mass  is a free parameter, 

                                      the decay width , has to be computed 
                                             at NᴷLO, we need the imaginary part of a self-energy a (k+1) loops
                                             → important for a smooth description of the resonance

  ● Given an input scheme like ,   then  is a shortcut for that mass combination

      Green’s functions are in general complex valued (a factor like  is not special)

μ = m −
i
2

Γ m

Γ

(Gμ, μW, μZ, μH) s2
w = 1 −

μ2
W

μ2
Z

s2
w
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The complex-mass scheme



The weak mixing angle

sin2 θW =
(g′ )2

g2 + (g′ )2

In the construction of the SM, 
identification of the electromagnetic current  and electric charge 
→ prediction of the second neutral current, coupling the  boson to fermions

e = g sin θW
Z

49

Zff̄ ∝ i
g

cos θW
γμ (T3

1 − γ5

2
− sin2 θWQf)

At tree-level (more in general at LO-EW)  , all definitions of the weak mixing angle are equivalent

Only after EW renormalisation (at NLO-EW or higher),  the meaning of this coupling, at the quantum level, becomes unique
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The weak mixing angle(s)

50

the on-shell weak mixing angle has been proposed by Sirlin in 1980 
within the framework of the on-shell renormalisation scheme 

sin2 ✓OS = 1� m2
W

m2
Z

this definition is valid to all orders in perturbation theory, as it is related to a combination of physical parameters

when using  as input parameters of the SM lagrangian, then  is a “shortcut” for that mass combination(α, mW, mZ) sin2 θOS
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The weak mixing angle(s)

51

• the effective weak mixing angle for a fermion  enters in the definition of the effective  vertex
    exactly at the Z resonance ,  

                           

f Zff̄
( q2 = m2

Z )

ℳeff
Zff̄

= ūl γα [𝒢f
v(m2

Z) − 𝒢f
a(m2

Z) γ5] vl εα
Z 4 |Qf |sin2 θ f

eff = 1 −
𝒢f

v

𝒢f
a
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The weak mixing angle(s)

51

the effective weak mixing angle receives quantum corrections through 
                                             
  - the universal self-energy corrections 

  - the flavour-dependent vertex corrections

from all those diagram which yield a different corrections to left- and right-handed currents

sensitivity to BSM physics active at  ,  different than the BSM probed by  via q2 = m2
Z mW Δr

• the effective weak mixing angle for a fermion  enters in the definition of the effective  vertex
    exactly at the Z resonance ,  

                           

f Zff̄
( q2 = m2

Z )

ℳeff
Zff̄

= ūl γα [𝒢f
v(m2

Z) − 𝒢f
a(m2

Z) γ5] vl εα
Z 4 |Qf |sin2 θ f

eff = 1 −
𝒢f

v

𝒢f
a
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Probing extended Higgs sectors with the mass of the W boson, Georg Weiglein, Orsay 2023 W mass workshop, Orsay, 02 / 2023

Prediction for MW and sin2θeff in the SM and MSSM 
vs. experimental accuracies (before new CDF result) 

22

[S. Heinemeyer, W. Hollik, G. W., L. Zeune ’18]

MW and sin2θeff have high sensitivity for model discrimination⇒

MSSM region
SM ``line’’

80.2 80.3 80.4 80.5 80.6
M

W
 [GeV]

0.2300

0.2305

0.2310

0.2315

0.2320

0.2325

0.2330

si
n

2
θ e

ff m
t
 = 170 .. 175 GeV

SM:M
H
 = 125.1 ± 0.7 GeV

MSSM

SM, MSSM
Heinemeyer, Hollik, Weiglein, Zeune et al. ’18

experimental errors 68% CL / collider experiment:

LEP/SLD/Tevatron/LHC: today

ILC/GigaZ

A
FB

 (LEP)

A
LR

 (SLD)

New CDF 
value

Relevance of a simultaneous study of  and of the effective weak mixing anglemW

sensitivity to different sets of oblique corrections, i.e. to different combinations of gauge boson self-energies

independent determinations of these two parameters crucial for testing different New Physics alternatives
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The weak mixing angle(s)

53

Gμ

2
=

g2
0

8m2
W,0

⟶ ̂s2 ̂c2 =
πα

2Gμm2
Z (1 − Δ ̂r)

̂s2 ≡ sin2 ̂θ(μR = mZ)

• the MSbar weak mixing angle stems from the renormalisation of the weak coupling in the MSbar renormalisation scheme

it is flavour independent

it has a weak dependence on the top-quark corrections  → precise theoretical prediction (fast convergence)
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The running of the MSbar weak mixing angle

The electric charge  and the vector coupling  of a  boson to a fermion  satisfy two Renormalization Group Equations,
with solution

α̂ ̂vf Z f

Energy range �1 �2 �3 �4

m̄t  µ
9
20

289
80

14
55

9
20

MW  µ < m̄t
21
44

625
176

6
11

3
22

m̄b  µ < MW
21
44

15
22

51
440

3
22

m⌧  µ < m̄b
9
20

3
5

2
19

1
5

m̄c  µ < m⌧
9
20

2
5

7
80

1
5

m̄s  µ < m̄c
1
2

1
2

5
36 0

m̄d  µ < m̄s
9
20

2
5

13
110

1
20

m̄u  µ < m̄d
3
8

1
4

3
40 0

mµ  µ < m̄u
1
4 0 0 0

me  µ < mµ
1
4 0 0 0

Table 2. Coefficients entering the higher order RGE for the weak mixing angle.

with nq the number of active quarks and N
c
i = 3 the color factor for quarks. For leptons

one substitutes N
c
i = 1 and ↵̂s = 0, while Ki = 1 for bosons.

We can relate the RGE of ↵̂ to that of sin2 ✓̂W since both, the �Z mixing tensor
⇧̂�Z and the photon vacuum polarization function ⇧̂�� are pure vector-current correlators.
Including higher order corrections, the RGE for the Z boson vector coupling to fermion f ,
v̂f = Tf � 2Qf sin

2
✓̂W , where Tf is the third component of weak isospin of fermion f , is

then

µ
2 dv̂f

dµ2
=

↵̂Qf

24⇡

"
X

i

Ki�iv̂iQi + 12�

 
X

q

Qq

! 
X

q

v̂q

!#
. (2.4)

Eqs. (2.1) and (2.4) can be used [2] to obtain

ŝ
2(µ) = ŝ

2(µ0)
↵̂(µ)

↵̂(µ0)
+ �1


1� ↵̂(µ)

↵̂(µ0)

�
+

↵̂(µ)

⇡


�2

3
ln

µ
2

µ2
0

+
3�3

4
ln

↵̂(µ)

↵̂(µ0)
+ �̃(µ0)� �̃(µ)

�
, (2.5)

where the �i are known [2] constants given in Table 2 and the explicit Ki dependence has
disappeared. The �̃ terms,

�̃(µ) =
�4

33� 2nq

5

36


(11� 24⇣3)

↵̂
2
s(µ)

⇡2
+ b

↵̂
3
s(µ)

⇡3

�
, (2.6)

with,

b ⌘ 2213

24
� 6955

24
⇣3 +

99

2
⇣4 +

775

6
⇣5 � nq

✓
55

12
� 41

4
⇣3 + 3⇣4 + 5⇣5

◆

� (153� 19nq)(11� 24⇣3)

99� 6nq
, (2.7)
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ŝ
2(µ) = ŝ
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expresses the dependence of 
  - on the renormalisation scale  
  - on the coupled running of  

̂s2(μ) ≡ sin2 ̂θW(μ)
μ

α̂(μ)

Figure 3. Scale dependence of the weak mixing angle in the MS renormalization scheme. The
dots indicate the scales where a particle is integrated out. The total uncertainty corresponds to
the thickness of the line. The �-function of SU(2)L changes sign at µ = MW , where the fermionic
screening effects of the effectively Abelian gauge theory are being overcompensated by the anti-
screening effects of the full non-Abelian electroweak theory.

where the second error is the total theoretical uncertainty from Table 4.
To facilitate the update of our results in the future, we also present a linearized formula

of the form factor (0),
sin2 ✓̂W (0) ⌘ ̂(0) sin2 ✓̂W (MZ), (7.2)

in terms of variations of the input parameters, using �↵̂s(MZ) in Eq. (3.6), as well as,

�̃↵ ⌘ �↵(2.0 GeV)� 0.005871, (7.3)

and,

�m̂c ⌘
m̂c(m̂c)

1.272 GeV
� 1, �m̂b ⌘

m̂b(m̂b)

4.180 GeV
� 1. (7.4)

We obtain,

̂(0) = 1.03196± 0.00006 + 1.14 �̃↵+ 0.025�↵̂s � 0.0016�m̂c � 0.0012�m̂b , (7.5)

which shows that the current experimental uncertainties of ±0.45 ⇥ 10�4 in �↵(2 GeV)

from Eq. (4.9) and of ±0.0016 in ↵̂s(MZ) induce errors of ±5⇥10�5 and ±4⇥10�5 in ̂(0),
respectively. Variations of ±8 MeV [37] in m̂c(m̂c) and ±30 MeV in m̂b(m̂b) both imply
⌥2 ⇥ 10�6 in ŝ(0) which is negligible. The resulting scale evolution of the weak mixing
angle is illustrated in Figure 3.
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J.Erler, M. Ramsey Musolf, hep-ph/0409169, J.Erler, R.Ferro-Hernandez, arXiv:1712.09146, 
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Interesting test of the SM
from the MeV to the TeV energy range
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Summary

  ● the SM is a renormalizable predictive theory:     using  as inputs, we predict  and 

      the comparison of the theoretical  and  with their experimental determinations allow 

          - to test the SM
          - to put constraints on the SMEFT extension                          

  ● the scalar sector in the SM is minimal
      we can understand the details of the EW SSB via
            - an experimental determination of the Higgs self-interaction couplings
            - the study of vector boson scattering
      → unitarity is a fundamental constraint
      → HL-LHC

(α, Gμ, mZ, mH) mW sin2 θℓ
eff

mW sin2 θℓ
eff
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Thank you



The SM predicts the existence of a new neutral current, different than the electromagnetic one
(Glashow 1961, Weinberg 1967, Salam 1968)

The observation of weak neutral current immediately allowed the estimate of the
value of the weak mixing angle in the correct range
GARGAMELLE, Phys.Lett. 46B (1973) 138-140

From the basic relation among the EW parameters it was immediately possible to estimate
the order of magnitude of the mass of the weak bosons, in the 80 GeV range
(Antonelli, Maiani, 1981)

The discovery at the CERN SPPS of the W and Z bosons and the first determination of their masses
allowed the planning of a new phase of precision studies accomplished with the construction of 
two e⁺e⁻ colliders (SLC and LEP) running at the Z resonance

The precise determination of MZ and of the couplings of the Z boson to fermions
and in particular the value of the effective weak mixing angle
allowed to establish a framework for a test of the SM at the level of its quantum corrections

There is evidence of EW corrections beyond QED with 26 σ significance!
Full 1-loop and leading 2-loop radiative corrections are needed to describe the data
      (indirect evidence of bosonic quantum effects, hints on the  and  values) mt mH

From the Fermi theory of weak interactions to the discovery of W and Z
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The W boson mass: theoretical prediction

Sirlin, 1980, 1984; Marciano, Sirlin, 1980, 1981;
van der Bij, Veltman, 1984; Barbieri, Ciafaloni, Strumia 1993;
Djouadi, Verzegnassi 1987; Consoli, Hollik, Jegerlehner, 1989; 
Chetyrkin, Kühn, Steinhauser, 1995;
Barbieri, Beccaria, Ciafaloni, Curci, Viceré,1992,1993; Fleischer, Tarasov, Jegerlehner, 1993;
Degrassi, Gambino, AV, 1996; Degrassi, Gambino, Sirlin, 1997;
Freitas, Hollik, Walter, Weiglein, 2000, 2003;
Awramik, Czakon, 2002; Awramik, Czakon, Onishchenko, Veretin, 2003; Onishchenko, Veretin, 2003

J
H
E
P
0
5
(
2
0
1
5
)
1
5
4

combination of the W and Z mass counterterms in eq. (3.22) once the 1/ε poles in δ(1)m2
W

and δ(1)m2
Z are expressed in terms of MS quantities.

The two-loop counterterm δ(2)m2
Z includes also the contribution from the mixed γ Z

self-energy or

δ(2)m2
Z = Re



A(1)
ZZ(m

2
Z) +A(2)

ZZ(m
2
Z) +

(
A(1)

γZ (m
2
Z)

m2
Z

)2


 (3.25)

so that YMS up to the two-loop level reads

YMS = Y (1)

MS
+ Y (2)

MS
, (3.26)

Y (1)

MS
= Re

[
A(1)

WW (m2
W )

m2
W

− ĉ2
A(1)

ZZ(m
2
Z)

m2
W

]

MS

, (3.27)

Y (2)

MS
= Re



A
(2)
WW (m2

W )

m2
W

− A(2)
ZZ(m

2
Z)

m2
Z

+

(
A(1)

γZ

m2
Z

)2




MS

. (3.28)

The one-loop contribution to YMS is reported in eq. (A.4) of the appendix. As before

we give the higher order terms via a simple formula:

Y h.o.
MS

(mZ) = 10−4 (y0 + y1ds+ y2dt+ y3dH + y4das) (3.29)

where dt = [(Mt/173.34GeV)2 − 1] and

y0 = −18.616753 y1 = 15.972019, y2 = −16.216781, y3 = 0.0152367, y4 = −13.633472 .

(3.30)

Eq. (3.29) includes, besides the Y (2)

MS
contribution from eq. (3.28), the complete O(α̂αs)

corrections, the leading three-loop O(α̂α2
sM

2
t /m

2
W ) contribution [7, 8] and the subleading

O(α̂3M6
t /m

6
W ) and O(α̂2αsM4

t /m
4
W ) [17, 18], and the four-loop O(α̂α3

sM
2
t /m

2
W ) contribu-

tion [19, 20]. It approximates the exact result to better than 0.075% for ŝ2 on the interval

(0.23− 0.232) when the other parameters in eq. (3.29) are varied simultaneously within a

3σ interval around their central values.

4 Results

In this section we report our results for α̂, sin2θ̂W and mW . All results are presented as

simple parameterizations in terms of the relevant quantities whose stated validity refers

to a simultaneous variation of the various parameters within a 3σ interval around their

central values given in table 1. As a general strategy for the evaluation of the two-loop

contributions, where ĉ2 can be identified with c2, we have replaced in all the two-loop terms

mW with mZ ĉ. This choice gives rise to the weakest µ-dependence in mW .

The two-loop computation of the MS electromagnetic coupling from eq. (3.3) and of

sin2θ̂W from eq. (1.4) can be summarized by the following parameterizations

α̂(µ) = a0 + 10−3
(
a1dH + a2dT + a3das + a4da

(5)
)

(4.1)

sin2θ̂W (µ) = s0 + s1dH + s2dt+ s3dHdt+ s4das + s5da
(5) (4.2)
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µ = mZ µ = Mt

a0 (128.13385)−1 (127.73289)−1

a1 -0.00005246 -0.00005267

a2 -0.01688835 0.02087428

a3 0.00014109 0.00168550

a4 0.22909789 0.23057967

µ = mZ µ = Mt

s0 0.2314483 0.2346176

s1 0.0005001 0.0005016

s2 -0.0026004 -0.0001361

s3 0.0000279 0.0000514

s4 0.0005015 0.0004686

s5 0.0097431 0.0098710

Table 2. Coefficients for the parameterization of α̂(µ) (left table, eq. (4.1) in the text) and
sin2θ̂W (µ) (right table, eq. (4.2) in the text).

where da(5) = [∆α(5)
had(m

2
Z)/0.02750−1] and the ai and si coefficients are reported in table 2

for two different values of the scale µ. Eq. (4.1) approximates the exact result to better

than 1.1× 10−7 (1.2× 10−7) for µ = mZ (µ = Mt), while eq. (4.2) approximates the exact

result to better than 5.1× 10−6 (6.2× 10−6) for µ = mZ (µ = Mt).

From our results on α̂ and ŝ2 it is easy to obtain the values of the g and g′ coupling

constants at the weak scale, usually identified with Mt. They can be taken as starting points

in the study of the evolution of the gauge couplings via Renormalization Group Equations

(RGE) in Grand Unified Models and in the analysis of the stability of the Higgs potential

in the SM. Ref. [57] reports the values of the gauge coupling constants at the µ = Mt

scale, g(Mt) = 0.64822 and g′(Mt) = 0.35760, obtained using a complete calculation of

the two-loop threshold corrections in the SM. Here we find g(Mt) = 0.647550 ± 0.000050

and g′(Mt) = 0.358521 ± 0.000091. The difference between the two results, which should

be a three-loop effect, is more sizable than expected. However, the results of ref. [57]

were obtained using as input parameters Gµ and the experimental values of mZ and mW ,

while our result is obtained with a different set of input parameters, i.e. Gµ, α and mZ .

In our calculation mW is a derived quantity calculable from eq. (1.5). Moreover, as shown

below, our prediction for mW is not in perfect agreement with the present experimental

determination and therefore the gauge couplings extracted using the two different sets

of inputs parameters show some discrepancy. Indeed, using our prediction for mW in the

results of ref. [57] instead of the experimental result, we find that the difference between the

g (g′) computed in the two methods is one order of magnitude smaller than the two-loops

correction and two orders smaller than the one-loop correction to g (g′).

The two-loop determination of the W mass in the MS framework from eq. (1.5) can

be parameterized as follows

mW = w0 + w1dH + w2dH
2 + w3dh+ w4dt+ w5dHdt+ w6das + w7da

(5) (4.3)

with dh = [(mH/125.15 GeV)2−1]. The wi coefficients are reported in table 3 for µ = mZ .

Two different cases are considered. In the left column the coefficients refer to the standard

case of a simultaneous variation of all parameters within a 3σ interval around their central

values. The right column applies to the case where all parameters but the Higgs mass

are varied within a 3σ interval while the latter is varied between 50 and 450GeV. In the
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sin2θ̂W (µ) (right table, eq. (4.2) in the text).

where da(5) = [∆α(5)
had(m

2
Z)/0.02750−1] and the ai and si coefficients are reported in table 2

for two different values of the scale µ. Eq. (4.1) approximates the exact result to better

than 1.1× 10−7 (1.2× 10−7) for µ = mZ (µ = Mt), while eq. (4.2) approximates the exact

result to better than 5.1× 10−6 (6.2× 10−6) for µ = mZ (µ = Mt).

From our results on α̂ and ŝ2 it is easy to obtain the values of the g and g′ coupling

constants at the weak scale, usually identified with Mt. They can be taken as starting points

in the study of the evolution of the gauge couplings via Renormalization Group Equations

(RGE) in Grand Unified Models and in the analysis of the stability of the Higgs potential

in the SM. Ref. [57] reports the values of the gauge coupling constants at the µ = Mt

scale, g(Mt) = 0.64822 and g′(Mt) = 0.35760, obtained using a complete calculation of

the two-loop threshold corrections in the SM. Here we find g(Mt) = 0.647550 ± 0.000050

and g′(Mt) = 0.358521 ± 0.000091. The difference between the two results, which should

be a three-loop effect, is more sizable than expected. However, the results of ref. [57]

were obtained using as input parameters Gµ and the experimental values of mZ and mW ,

while our result is obtained with a different set of input parameters, i.e. Gµ, α and mZ .

In our calculation mW is a derived quantity calculable from eq. (1.5). Moreover, as shown

below, our prediction for mW is not in perfect agreement with the present experimental

determination and therefore the gauge couplings extracted using the two different sets

of inputs parameters show some discrepancy. Indeed, using our prediction for mW in the

results of ref. [57] instead of the experimental result, we find that the difference between the

g (g′) computed in the two methods is one order of magnitude smaller than the two-loops

correction and two orders smaller than the one-loop correction to g (g′).

The two-loop determination of the W mass in the MS framework from eq. (1.5) can

be parameterized as follows

mW = w0 + w1dH + w2dH
2 + w3dh+ w4dt+ w5dHdt+ w6das + w7da

(5) (4.3)

with dh = [(mH/125.15 GeV)2−1]. The wi coefficients are reported in table 3 for µ = mZ .

Two different cases are considered. In the left column the coefficients refer to the standard

case of a simultaneous variation of all parameters within a 3σ interval around their central

values. The right column applies to the case where all parameters but the Higgs mass

are varied within a 3σ interval while the latter is varied between 50 and 450GeV. In the
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The hadronic contribution can be obtained from the experimental data on the cross section

in e+e− → hadrons by using a dispersion relation. Two recent evaluations of ∆α(5)
had(m

2
Z)

report very consistent results: ∆α(5)
had(m

2
Z) = (275.7 ± 1.0) × 10−4 [52], ∆α(5)

had(m
2
Z) =

(275.0 ± 3.3) × 10−4 [53]. We use the latter as reference value in our calculation. The

Π(p)
γγ term in eq. (3.6) includes the top contribution to the vacuum polarization plus the

two-loop diagrams in which a light quark couples internally to the W and Z bosons. This

contribution, as well as ReΠ(5)
γγ (m2

Z), can be safely analyzed perturbatively.

The one-loop contribution to∆α̂p(mZ) ≡ ∆α̂(mZ)−∆α(5)
had(m

2
Z) is reported in eq. (A.3)

of the appendix. The higher order contributions to ∆α̂p(mZ) are presented here as a sim-

ple formula that parametrizes the full result in terms of the top and the Higgs masses, the

strong coupling, and ŝ2:

∆α̂p, h.o.(mZ) = 10−4 (b0 + b1ds+ b2dT + b3dH + b4das) (3.7)

where

ds =

(
ŝ2

0.231
− 1

)
, dT = ln

(
Mt

173.34GeV

)
,

dH = ln
( mH

125.15GeV

)
, das =

(
αs(mZ)

0.1184
− 1

)
(3.8)

with

b0 = 1.751181 b1 = −0.523813, b2 = −0.662710, b3 = −0.000962, b4 = 0.252884 .

(3.9)

Eq. (3.7) includes the O(α) contribution2 to Π(b)
γγ (0) + Π(l)

γγ(0) + Π(p)
γγ (0) plus the O(αs)

corrections to Π(p)
γγ (0) and the O(αs, α2

s) corrections to ReΠ(5)
γγ (m2

Z) [54]. It approximates

the exact result to better than 0.045% for ŝ2 in the interval (0.23− 0.232) when the other

parameters in eq. (3.7) are varied simultaneously within a 3σ interval around their central

values, given in table 1.

3.2 ∆r̂W

The radiative parameter ∆r̂W enters the relation between the Fermi constant and the

W mass. We recall that the Fermi constant is defined in terms of the muon lifetime τµ as

computed in an effective 4-fermion V −A Fermi theory supplemented by QED interactions:

1

τµ
=

G2
µm

5
µ

192π3
F

(
m2

e

m2
µ

)
(1 +∆q)

(
1 +

3m2
µ

5m2
W

)
, (3.10)

where F (ρ) = 1 − 8ρ + 8ρ3 − ρ4 − 12ρ2 ln ρ = 0.9981295 (for ρ = m2
e/m

2
µ) is the phase

space factor and ∆q = ∆q(1) +∆q(2) = (−4.234 + 0.036) × 10−3 are the QED corrections

computed at one [55] and two loops [56]. The calculation of ∆r̂W requires the subtraction

of the QED corrections, matching the result in the SM with that in the Fermi theory

2We alert the reader that our Πγγ is defined with the e20 coupling extracted, see eqs. (3.1), (3.2); therefore

the O(α) contribution is actually due to two-loop diagrams.
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ŝ2

0.231
− 1

)
, dT = ln

(
Mt

173.34GeV

)
,

dH = ln
( mH

125.15GeV

)
, das =

(
αs(mZ)

0.1184
− 1

)
(3.8)

with

b0 = 1.751181 b1 = −0.523813, b2 = −0.662710, b3 = −0.000962, b4 = 0.252884 .

(3.9)

Eq. (3.7) includes the O(α) contribution2 to Π(b)
γγ (0) + Π(l)

γγ(0) + Π(p)
γγ (0) plus the O(αs)

corrections to Π(p)
γγ (0) and the O(αs, α2

s) corrections to ReΠ(5)
γγ (m2

Z) [54]. It approximates
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The best available prediction includes 
 the full 2-loop EW result, leading higher-order EW and QCD corrections,
 resummation of reducible terms
Missing 3-loop and 4-loop terms needed to reduce the uncertainties.
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on-shell scheme       GeV   (Freitas, Hollik, Walter, Weiglein)

MSbar scheme.        GeV   (Degrassi, Gambino, Giardino)

parametric uncertainties  GeV due to the   values

mos
W = 80.353 ± 0.004

mMS
W = 80.351 ± 0.003

δmpar
W = ± 0.005 (α, Gμ, mZ, mH, mt)
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The W boson mass: theoretical prediction

59

effects of higher-order terms on ∆r
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on-shell scheme: dominant contributions to ∆r

∆r = ∆α− c2w
s2w

∆ρ+∆rrem

∆α = Πγ
ferm(M

2
Z)−Πγ

ferm(0) → α(MZ) =
α

1−∆α

∆ρ = ΣZ(0)
M2

Z

− ΣW (0)
M2

W

= 3GFm2
t

8π2
√
2

[one-loop] ∼ m2
t

v2
∼ αt

beyond one-loop order: ∼ α2, ααt, α2
t , α

2αt, αα2
t , α

3
t , . . .

reducible higher order terms from ∆α and ∆ρ via

1 +∆r →
1

(

1−∆α
)(

1 + c2w
s2w

∆ρ
)

+ · · ·

ρ = 1 +∆ρ →
1

1−∆ρ

Consoli, WH, Jegerlehner 1989(Consoli, Hollik, Jegerlehner)
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Additional (BSM) virtual contributions modify the -function
changing the slope of the running (or even the sign) 

At low energies, 
     there is sensitivity to the effects due to light new particles
     otherwise swamped at the Z resonance or at higher scales

At high energies, we might hope to have indirect hints
     of new heavy particles

The reference experimental precision is still set by the LEP value
     (PDG)  or   

Given the size of the running effects, a SM test achievable with  determinations

Given the rich literature on the possible studies at low-energy facilities
it is natural to investigate the possibility of a determination in the TeV region
exploiting the sub-percent precision expected at the end of HL-LHC

β

sin2 ̂θW(m2
Z) = 0.23121(4) Δ sin2 θℓ

eff = 16 ⋅ 10−5

𝒪(1%)

The running of the MSbar weak mixing angle and sensitivity to New Physics

W.Marciano, arXiv:1203.2947
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