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Overview of lectures

1) Introduction to parton showers
- approximate higher-order corrections
- building a parton shower

2) Improving parton showers
- assessing the properties of a parton shower
- NLL accuracy and beyond

3) Matching and merging
- matching
- merging
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Introduction to parton showers – recap

• parton shower generate universal approximate higher-order
corrections using the soft-collinear limit

• as the description of the branching process is probabilistic, it
provides an event-like structure that can be iterated
⇒ description of soft-collinear (intrajet) evolution

The question is now:
How accurate is this approximation.
How can we systematically improve it?
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Improving parton showers

1 The Lund plane

2 Properties of existing showers

3 Parton shower accuracy

4 Effects

5 Summary
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Tools to assess the properties of a parton shower
–

The Lund plane
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The Lund plane – example: e+e− → qq̄ + g
• Compute everything in centre-of-mass frame of the dipole (qq̄)

pipj

η1

pT,1p1

using Sudakov decomposition p1 = p+
1 + p−

1 + pT,1, with
p2

1 = 2(p+
1 p−

1 − p2
T,1), p−

1 = 2pip1/
√

2pipj , and p+
1 = 2pjp1/

√
2pipj

• Simple expressions for transverse momentum and rapidity

p2
T ,1 = 2(pip1)(pjp1)

pipj
and η1 = 1

2 ln pip1
pjp1

• squared matrix element divergent as ∝ 1/p2
T ,

encoding both soft and collinear divergences
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The Lund plane – example: e+e− → qq̄ + g

p2
T = p+p− and η = 1

2 ln p−

p+

The Lund plane
• phase-space element ∝ dp2

T dη
ln(p2

T )

η

-
(

η, ln(p2
T )

)
plane

- phase space bounded
by diagonals

- emission classified by their(
η, ln(p2

T )
)

coordinates
- emission opens new sheet

with new η dimension
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The Lund plane – example: e+e− → qq̄ + g

emission of a gluon off a qq̄ dipole

• Nc = 3 (QCD):
CF

p
2 (i,j)
T ,1

CF

• Nc → ∞, CA = const (large Nc limit):
CA/2
p

2 (i,j)
T ,1

CA/2

remember: in Nc → ∞ limit CF → CA/2
remember: so this is consistent
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The Lund plane – example: e+e− → qq̄ + gg

Emitting a second gluon

• Nc → ∞, CA = const (large Nc limit):
(CA/2)2

p
2 (i,j)
T ,1 p

2 (i,1)
T ,2

+
(
i ↔ j

)
CA/2

emission off gluon also with CA/2
• Nc = 3 (QCD): in the soft-collinear limit, let’s take a small detour
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Angular radiation pattern

• matrix element can be written in terms of energies and angles
2pi ·pk

(pi ·q)(pk ·q)
=

Wik,j

E2

angular radiator function

Wik,j =
1 − cos θik

(1 − cos θij )(1 − cos θkj )

• divergent as θij → 0 and as θkj → 0
→ expose individual singularities using Wik,j = W̃ i

ik,j + W̃ k
ik,j

W̃ i
ik,j =

1
2

[
1 − cos θik

(1 − cos θij )(1 − cos θkj )
+

1
1 − cos θij

−
1

1 − cos θkj

]
- divergent as θij → 0, but regular as θkj → 0
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Angular radiation pattern
• work in a frame where direction of p⃗i aligned with z-axis

cos θkj = cos θk cos θj + sin θk sin θj cos ϕj

pc

pa

pb

ϕ

• integration over ϕj yields

1
2π

∫ 2π

0
dϕj W̃

i
ik,j =

1
1 − cos θj

×
{

1 if θj < θk

0 else

- on average, no radiation outside cone defined by parent dipole
- differential radiation pattern more intricate:

positive & negative contributions outside cone sum to zero

-1.0

-0.5

0

0.5

1.0

⇒ angular ordering
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Colour coherence

Physical intepretation
• individual colour charges inside a colour dipole cannot be resolved if

gluon wavelength larger than dipole size
it only “sees” the combined colour charge of the “mother” parton

↔

• net effect is destructive interference outside a cone
with opening angle set by emitting colour dipole

• known in QED as the Chudakov effect
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The Lund plane – example: e+e− → qq̄ + gg
• Full 2-guon matrix element in the soft-collinear limit

CF

p2
T ,1

1
E2

2

(
CA

2

(
W̃ i

i1,2 + W̃ 1
i1,2

)
+

(
CF −

CA

2

)
W̃ i

ij,2 +
(
i ↔ j

))

• Nc → ∞ (CF → CA/2) ✓
improved Nc → ∞ (CF ̸= CA/2) ?

CF
CA/2

- azimuthally integrated W̃ i
i1,2 = W̃ i

ij,2
if θi2 < min(θi1, θij )

- azimuthally integrated W̃ 1
i1,2

vanishes if θ12 > θi1
- if both conditions simultaneously

met (background sheet),
all CA/2 terms vanish
→ radiation from CF term alone

The simplest manifestation of angular ordering in QCD
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Properties of
angular ordered and transverse-momentum ordered

parton showers
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Angular ordered parton showers

• differential radiation probability

dVa =
∑
b

dq̃2

q̃2 dz αs

2π
Pab(z)

- dipole radiation becomes monopole radiation
→ parton (not dipole) shower

- non-Abelian structure of QCD simplifies
→ radiation off mean charge CF or CA

• Lund plane filled from center to edges
- random walk in p2

T

- colour factors correct for observables
insensitive to azimuthal correlations

Marek Schönherr Introduction to parton showers, matching and merging 15/34



The Lund plane Properties of existing showers Parton shower accuracy Effects Summary

Transverse-momentum ordered dipole showers

• differential radiation probability for the dipole

dVa =
∑
b

dp2
T ,b

p2
T ,b

dz αs

2π
P̃ab(z)

- unified picture of parton and dipole evolution,
inclusion if partial-fractioned soft limit in P̃ab(z)

- due to ordering in p2
T ,b no natural way

to recover correct colour factors as angular ordered shower does
• Lund plane filled from top to bottom

- random walk in η

- colour factors in improved
leading color approximation

Marek Schönherr Introduction to parton showers, matching and merging 16/34
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Radiation pattern of angular ordered and dipole showers
•

CF
CA/2

angular ordered parton showers
angles in centre-of-mass frame
→ coherence effects modeled by
→ angular ordering variable agree
→ on average with matrix element

•

CF
CA/2

pT ordered dipole showers
angles in colour dipole frame
→ colour coherence not reflected
→ by QCD charge of the dipole
→ emission off “back plane” in
→ Lund plane should be associated
→ with CF , but is partly CA/2
→ (fine in strict large-Nc , wrong in improved large-Nc)
→ all-orders problem that appears first in 2-gluon emission case

Marek Schönherr Introduction to parton showers, matching and merging 17/34
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Correcting the radiation pattern of dipole showers
• analyse rapidity of gluon emission in event center-of-mass frame
• sectorise phase space and assign gluon to closest parton

→ choose corresponding color charge for evolution
• same technology for higher number of emissions

CF

CA/2 →
CF

CA/2

• starting with 4 emissions, there be “colour monsters”
- quartic Casimir operators (easy)
- non-factorisable contributions (hard)

Not captured in either angular ordered or corrected dipole evolution.
Marek Schönherr Introduction to parton showers, matching and merging 18/34
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The CMW scheme

+

• approximate soft-gluon emission followed by collinear splitting gives
rise to integrated NLO correction factor in dim. reg. and MS

K =
(

67
18

−
π2

3

)
CA −

10
9

TR nf

local K -factor for soft-gluon emission
• K can be absorbed in an effective coupling

This is the so-called CMW scheme. Catani, Marchesini, Webber ’91

Marek Schönherr Introduction to parton showers, matching and merging 19/34
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Parton shower accuracy
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Parton shower accuracy

How accurate is the parton shower’s resummation
DGLAP resums leading single collinear logarithms.
Most parton showers reproduce this by construction.

How well does the parton shower resum related quantities?
Examples: jet rates, thrust, total broadening, ...

?

Marek Schönherr Introduction to parton showers, matching and merging 21/34
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How to assess formal precision?
Prerequisites:

• parton shower must recover the soft-collinear structure of
higher-order matrix elements
a crucial aspect is the colour assignment in splitting function

g1g1

η

ln p⊥Correct radiation pattern

CF

CA/2

g1g1

η

ln p⊥Dipole radiation pattern

CF

CA/2

• successive emission must not substantially alter existing branchings

∆k ij
T

k ij
T

k j
T→0
−→ 0

Marek Schönherr Introduction to parton showers, matching and merging 22/34
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How to assess formal precision?
Orbital collider limit αs → 0, λ = αsL = const

• effects of momentum conservation become irrelevant∫ zmax

zmin

dz︸ ︷︷ ︸
parton shower

−→
∫ 1

0
dz︸ ︷︷ ︸

resummation

• evaluate

Σshower

ΣNLL ∝ exp
(
f LL
shower − Lg1(αsL)

)
× exp

(
f NLL
shower − g2(αsL)

)
× exp

(
O(αn+1

s Ln)
)

→ 1 if shower reproduces LL and NLL

Marek Schönherr Introduction to parton showers, matching and merging 23/34
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How to assess formal precision?
Orbital collider limit αs → 0, λ = αsL = const

• effects of momentum conservation become irrelevant∫ zmax

zmin

dz︸ ︷︷ ︸
parton shower

−→
∫ 1

0
dz︸ ︷︷ ︸

resummation

• evaluate

Σshower

ΣNLL ∝ exp
(
f LL
shower − Lg1(αsL)

)
× exp

(
f NLL
shower − g2(αsL)

)
× exp

(
O(αn+1

s Ln)
)

→ 1 if shower reproduces LL and NLL
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NLL accuracy in parton showers

Dasgupta, Dreyer, Hamilton, Monni, Salam, Soyez ’20
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• the standard PYTHIA and DIRE showers are not NLL accurate
• newly formulated PanGlobal and PanLocal family of parton

showers designed for NLL accuracy
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NLL accuracy
Höche, Krauss, Reichelt, MS ’22
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• subsequent emissions are uncorrelated to NLL accuracy
• DIRE introduces spurious correlation between jet planes
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NLL accuracy
Höche, Krauss, Reichelt, MS ’22
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limit: αs → 0, λ = αs log O = const.
• Durham jet rate y23 β = 0
• Total jet broadening BT β = 0
• Durham jet rate FC1/2 β = 1

2
• Thrust 1 − T β = 1
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NLL accuracy
Höche, Krauss, Reichelt, MS ’22
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limit: αs → 0, λ = αs log O = const.
• Durham jet rate y23 β = 0
• Total jet broadening BT β = 0
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• Thrust 1 − T β = 1
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NLL accuracy
Höche, Krauss, Reichelt, MS ’22
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• Total jet broadening BT β = 0
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NLL accuracy
Höche, Krauss, Reichelt, MS ’22

αs = 0.0025

αs = 0.005

αs = 0.01

αs = 0.02

F =
exp(−γE R′)

Γ(1+R′)

Sh
er

pa
M

C

a = 1 , b = 1

NLL
Alaric

Dire10−7

10−6

10−5

10−4

10−3

10−2

10−1

1

Σ
(α

s
ln

(1
−

T
))

αs = 0.02

0.98

1.0

1.02

PS
/

N
L

L

αs = 0.01

0.98

1.0

1.02

PS
/

N
L

L

αs = 0.005

0.98

1.0

1.02

PS
/

N
L

L

αs = 0.0025

0.98

1.0

1.02

PS
/

N
L

L

αs → 0 (fit)

-0.6 -0.5 -0.4 -0.3 -0.2 -0.1 0

0.98

1.0

1.02

λ = αs ln(1 − T)

PS
/

N
L

L

limit: αs → 0, λ = αs log O = const.
• Durham jet rate y23 β = 0
• Total jet broadening BT β = 0
• Durham jet rate FC1/2 β = 1

2
• Thrust 1 − T β = 1

Marek Schönherr Introduction to parton showers, matching and merging 26/34



The Lund plane Properties of existing showers Parton shower accuracy Effects Summary

Effects of NLL accurate parton showers
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LEP phenomenology
Höche, Krauss, Reichelt, MS ’22
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• ALARIC+PYTHIA string had., no matching or multijet merging
• hadronisation models are not infrared safe and depend on

distribution of soft gluons
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LEP phenomenology

• ALARIC is constructed with
massless quarks so far

• quark masses are
phenomenologically relevant

• quick fix: flavour thresholds
for g → cc̄ and g → bb̄
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LHC phenomenology
Höche, Krauss, Reichelt ’24
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• ALARIC+PYTHIA string had.
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LHC phenomenology

Höche, Krauss, Reichelt ’24
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• ALARIC+PYTHIA string had., LO multijet merged
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Developments towards higher (logarithmic) accuracy
To increase the logarithmic accuracy of the parton shower we need to

1) increase the perturbative order of the splitting functions
→ NLO splitting functions
→ more involved singularity structure (double collinear,
soft-collinear, double soft) → richer flavour structure (P(1)

qq , P(1)
qq′ , ...)

2) ...
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Evolution with NLO kernels ̸= NNLL accurate Höche, Krauss, Prestel ’17
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Other developments

• beyond leading colour approximation
- many effects already included in improved large-Nc

- Nc = 3 colour correlators, amplitude evolution
• beyond QCD and QED: EW showers

- suffer from small relevance of resummed expressions at the LHC,
more so at FCC, both -ee and -hh
can often get by with fixed-order results

- spin correlations a necessity
• spin correlations

- mainstay of HERWIG parton shower,
relevant for correlations of jet planes
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Recap
This lecture:

• to achieve NLL accuracy parton showers must have
- correct colour assignments
- infrared-safe momentum maps
- reproduce NLL coefficients (in the absence of momentum

conservation)
• most standard showers are not NLL correct,

with the exception of HERWIG’s angular ordered shower
→ many new developments

• impact of formal NLL accuracy minute in standard observables

Next lectures:
• improving parton showers by process-dependent corrections

→ matching and merging
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