Introduction to parton showers, matching and merging

Marek Schönherr

Institute for Particle Physics Phenomenology, Durham University

CERN, 12 Jun 2024

Overview of lectures

- 1) Introduction to parton showers
 - approximate higher-order corrections
 - building a parton shower
- 2) Improving parton showers
 - assessing the properties of a parton shower
 - NLL accuracy and beyond
- 3) Matching and merging
 - matching
 - merging

The Lund plane	Properties of existing showers 000000	Parton shower accuracy	Effects 0000000	Summary O

Introduction to parton showers – recap

- parton shower generate universal approximate higher-order corrections using the soft-collinear limit
- as the description of the branching process is probabilistic, it provides an event-like structure that can be iterated
 ⇒ description of soft-collinear (intrajet) evolution

The question is now: How accurate is this approximation How can we systematically improve

The Lund plane	Properties of existing showers	Parton shower accuracy 0000000	Effects 0000000	Summary O

Introduction to parton showers – recap

- parton shower generate universal approximate higher-order corrections using the soft-collinear limit
- as the description of the branching process is probabilistic, it provides an event-like structure that can be iterated
 ⇒ description of soft-collinear (intrajet) evolution

The question is now:

How accurate is this approximation. How can we systematically improve it?

Improving parton showers

1 The Lund plane

- **2** Properties of existing showers
- **3** Parton shower accuracy

4 Effects

Tools to assess the properties of a parton shower The Lund plane

The Lund plane ○●○○○○○○○	Properties of existing showers	Parton shower accuracy	Effects 0000000	Summary O

• Compute everything in centre-of-mass frame of the dipole $(q\bar{q})$

using Sudakov decomposition $p_1 = p_1^+ + p_1^- + p_{T,1}$, with $p_1^2 = 2(p_1^+p_1^- - p_{T,1}^2), p_1^- = 2p_ip_1/\sqrt{2p_ip_j}$, and $p_1^+ = 2p_jp_1/\sqrt{2p_ip_j}$

Simple expressions for transverse momentum and rapidity

$$p_{T,1}^2 = \frac{2(p_i p_1)(p_j p_1)}{p_i p_j}$$
 and $\eta_1 = \frac{1}{2} \ln \frac{p_i p_1}{p_j p_1}$

 squared matrix element divergent as ∝ 1/p_T², encoding both soft and collinear divergences

The Lund plane ○●○○○○○○○	Properties of existing showers	Parton shower accuracy	Effects 0000000	Summary O

• Compute everything in centre-of-mass frame of the dipole (qar q)

using Sudakov decomposition $p_1 = p_1^+ + p_1^- + p_{T,1}$, with $p_1^2 = 2(p_1^+p_1^- - p_{T,1}^2), p_1^- = 2p_ip_1/\sqrt{2p_ip_j}$, and $p_1^+ = 2p_jp_1/\sqrt{2p_ip_j}$

· Simple expressions for transverse momentum and rapidity

$$p_{T,1}^2 = \frac{2(p_i p_1)(p_j p_1)}{p_i p_j}$$
 and $\eta_1 = \frac{1}{2} \ln \frac{p_i p_1}{p_j p_1}$

• squared matrix element divergent as $\propto 1/p_T^2$, encoding both soft and collinear divergences

The Lund plane ○●○○○○○○○	Properties of existing showers	Parton shower accuracy	Effects 0000000	Summary O

• Compute everything in centre-of-mass frame of the dipole (qar q)

using Sudakov decomposition $p_1 = p_1^+ + p_1^- + p_{T,1}$, with $p_1^2 = 2(p_1^+p_1^- - p_{T,1}^2), p_1^- = 2p_ip_1/\sqrt{2p_ip_i}$, and $p_1^+ = 2p_ip_1/\sqrt{2p_ip_i}$

· Simple expressions for transverse momentum and rapidity

$$p_{T,1}^2 = p_1^+ p_1^-$$
 and $\eta_1 = rac{1}{2} \ln rac{p_1^-}{p_1^+}$

• squared matrix element divergent as $\propto 1/p_T^2$, encoding both soft and collinear divergences

The Lund plane	Properties of existing showers	Parton shower accuracy 0000000	Effects 0000000	Summary O

$$p_T^2 = p^+ p^-$$
 and $\eta = \frac{1}{2} \ln \frac{p^-}{p^+}$

The Lund plane

- phase-space element $\propto \mathrm{d} p_T^2 \, \mathrm{d} \eta$
 - $\left(\eta, \ln(p_T^2)\right)$ plane
 - phase space bounded by diagonals
 - emission classified by their $\left(\eta, \ln(p_T^2)\right)$ coordinates
 - emission opens new sheet with new η dimension

The Lund plane	Properties of existing showers	Parton shower accuracy 0000000	Effects 0000000	Summary O

$$p_T^2 = p^+ p^-$$
 and $\eta = \frac{1}{2} \ln \frac{p^-}{p^+}$

The Lund plane

- phase-space element $\propto \mathrm{d} p_T^2 \, \mathrm{d} \eta$
 - $\left(\eta, \ln(p_T^2)\right)$ plane
 - phase space bounded by diagonals
 - emission classified by their $\left(\eta, \ln(p_T^2)\right)$ coordinates
 - emission opens new sheet with new η dimension

The Lund plane	Properties of existing showers	Parton shower accuracy	Effects 0000000	Summary O

The Lund plane 000●00000	Properties of existing showers	Parton shower accuracy	Effects 0000000	Summary O

The Lund plane	Properties of existing showers	Parton shower accuracy	Effects	Summary
0000●0000		0000000	0000000	O

Emitting a second gluon

•
$$N_c \rightarrow \infty$$
, $C_A = \text{const}$ (large N_c limit):

$$\frac{(C_A/2)^2}{p_{T,1}^{2(i,j)}p_{T,2}^{2(i,1)}} + (i \leftrightarrow j)$$

emission off gluon also with $C_A/2$

• $N_c = 3$ (QCD): in the soft-collinear limit, let's take a small detour

The Lund plane 00000●000	Properties of existing showers	Parton shower accuracy	Effects 0000000	Summary O

matrix element can be written in terms of energies and angles

$$\frac{2p_i \cdot p_k}{(p_i \cdot q)(p_k \cdot q)} = \frac{W_{ik,j}}{E^2}$$

angular radiator function

$$W_{ik,j} = rac{1-\cos heta_{ik}}{(1-\cos heta_{ij})(1-\cos heta_{kj})}$$

divergent as θ_{ij} → 0 and as θ_{kj} → 0
 → expose individual singularities using W_{ik,j} = W
ⁱ_{ik,j} + W
^k_{ik,j}

$$\tilde{W}^i_{ik,j} = \frac{1}{2} \left[\frac{1 - \cos \theta_{ik}}{(1 - \cos \theta_{ij})(1 - \cos \theta_{kj})} + \frac{1}{1 - \cos \theta_{ij}} - \frac{1}{1 - \cos \theta_{kj}} \right]$$

- divergent as $\theta_{ij} \rightarrow 0$, but regular as $\theta_{kj} \rightarrow 0$

The Lund plane 00000●000	Properties of existing showers	Parton shower accuracy	Effects 0000000	Summary O

matrix element can be written in terms of energies and angles

$$\frac{2p_i \cdot p_k}{(p_i \cdot q)(p_k \cdot q)} = \frac{W_{ik,j}}{E^2}$$

angular radiator function

$$W_{ik,j} = rac{1-\cos heta_{ik}}{(1-\cos heta_{ij})(1-\cos heta_{kj})}$$

divergent as θ_{ij} → 0 and as θ_{kj} → 0
 → expose individual singularities using W_{ik,j} = W̃ⁱ_{ik,i} + W̃^k_{ik,i}

$$\tilde{W}^i_{ik,j} = \frac{1}{2} \left[\frac{1 - \cos \theta_{ik}}{(1 - \cos \theta_{ij})(1 - \cos \theta_{kj})} + \frac{1}{1 - \cos \theta_{ij}} - \frac{1}{1 - \cos \theta_{kj}} \right]$$

- divergent as $\theta_{ij} \rightarrow 0$, but regular as $\theta_{kj} \rightarrow 0$

The Lund plane 00000●000	Properties of existing showers	Parton shower accuracy	Effects 0000000	Summary O

matrix element can be written in terms of energies and angles

$$\frac{2p_i \cdot p_k}{(p_i \cdot q)(p_k \cdot q)} = \frac{W_{ik,j}}{E^2}$$

angular radiator function

$$W_{ik,j} = rac{1-\cos heta_{ik}}{(1-\cos heta_{ij})(1-\cos heta_{kj})}$$

• divergent as $\theta_{ij} \to 0$ and as $\theta_{kj} \to 0$ \to expose individual singularities using $W_{ik,j} = \tilde{W}^{i}_{ik,j} + \tilde{W}^{k}_{ik,j}$

$$\tilde{W}^{i}_{ik,j} = \frac{1}{2} \left[\frac{1 - \cos \theta_{ik}}{(1 - \cos \theta_{ij})(1 - \cos \theta_{kj})} + \frac{1}{1 - \cos \theta_{ij}} - \frac{1}{1 - \cos \theta_{kj}} \right]$$

- divergent as $heta_{ij}
ightarrow$ 0, but regular as $heta_{kj}
ightarrow$ 0

The Lund plane 000000●00	Properties of existing showers	Parton shower accuracy	Effects 0000000	Summary O

• work in a frame where direction of $\vec{p_i}$ aligned with z-axis

$$\cos heta_{kj} = \cos heta_k \cos heta_j + \sin heta_k \sin heta_j \cos \phi_j$$

• integration over ϕ_j yields

$$\frac{1}{2\pi} \int_0^{2\pi} \mathrm{d}\phi_j \, \tilde{W}^i_{ik,j} = \frac{1}{1 - \cos \theta_j} \times \begin{cases} 1 & \quad \text{if} \quad \theta_j < \theta_k \\ 0 & \quad \text{else} \end{cases}$$

- on average, no radiation outside cone defined by parent dipole
- differential radiation pattern more intricate: positive & negative contributions outside cone sum to zero

The Lund plane 000000●00	Properties of existing showers	Parton shower accuracy	Effects 0000000	Summary O

• work in a frame where direction of $\vec{p_i}$ aligned with z-axis

$$\cos heta_{kj} = \cos heta_k \cos heta_j + \sin heta_k \sin heta_j \cos \phi_j$$

• integration over ϕ_j yields

$$\frac{1}{2\pi} \int_0^{2\pi} \mathrm{d}\phi_j \, \tilde{W}^i_{ik,j} = \frac{1}{1 - \cos \theta_j} \times \left\{ \begin{array}{ccc} 1 & \quad \mathrm{if} \quad \theta_j < \theta_k \\ 0 & \quad \mathrm{else} \end{array} \right.$$

- on average, no radiation outside cone defined by parent dipole
- differential radiation pattern more intricate: positive & negative contributions outside cone sum to zero

\Rightarrow angular ordering

Colour coherence

Physical intepretation

 individual colour charges inside a colour dipole cannot be resolved if gluon wavelength larger than dipole size it only "sees" the combined colour charge of the "mother" parton

- net effect is destructive interference outside a cone with opening angle set by emitting colour dipole
- known in QED as the Chudakov effect

The Lund plane	Properties of existing showers	Parton shower accuracy	Effects 0000000	Summary O

• Full 2-guon matrix element in the soft-collinear limit

$$\frac{C_F}{p_{T,1}^2} \frac{1}{E_2^2} \left(\frac{C_A}{2} \left(\tilde{W}_{i1,2}^i + \tilde{W}_{i1,2}^1 \right) + \left(C_F - \frac{C_A}{2} \right) \tilde{W}_{ij,2}^i + \left(i \leftrightarrow j \right) \right)$$

- $N_c \to \infty (C_F \to C_A/2)$ improved $N_c \to \infty (C_F \neq C_A/2)$?
 - azimuthally integrated $\tilde{W}_{i1,2}^i = \tilde{W}_{ij,2}^i$ if $\theta_{i2} < \min(\theta_{i1}, \theta_{ij})$
 - azimuthally integrated $\tilde{W}_{i1,2}^1$ vanishes if $\theta_{12} > \theta_{i1}$
 - if both conditions simultaneously met (background sheet),
 - all $C_A/2$ terms vanish
 - \rightarrow radiation from C_F term alone

The Lund plane 0000000●	Properties of existing showers	Parton shower accuracy	Effects 0000000	Summary O

• Full 2-guon matrix element in the soft-collinear limit

$$\frac{C_F}{p_{T,1}^2} \frac{1}{E_2^2} \left(\frac{C_A}{2} \left(\tilde{W}_{i1,2}^i + \tilde{W}_{i1,2}^1 \right) + \left(C_F - \frac{C_A}{2} \right) \tilde{W}_{ij,2}^i + \left(i \leftrightarrow j \right) \right)$$

• $N_c \to \infty (C_F \to C_A/2)$ improved $N_c \to \infty (C_F \neq C_A/2)$?

- azimuthally integrated $\tilde{W}_{i1,2}^i = \tilde{W}_{ij,2}^i$ if $\theta_{i2} < \min(\theta_{i1}, \theta_{ii})$
- azimuthally integrated $\tilde{W}_{i1,2}^1$ vanishes if $\theta_{12} > \theta_{i1}$
- if both conditions simultaneously met (background sheet),
 - all CA/2 terms vanish
 - \rightarrow radiation from C_F term alone

The Lund plane 00000000●	Properties of existing showers	Parton shower accuracy	Effects 0000000	Summary O

• Full 2-guon matrix element in the soft-collinear limit

$$\frac{C_F}{p_{T,1}^2} \frac{1}{E_2^2} \left(\frac{C_A}{2} \left(\tilde{W}_{i1,2}^i + \tilde{W}_{i1,2}^1 \right) + \left(C_F - \frac{C_A}{2} \right) \tilde{W}_{ij,2}^i + \left(i \leftrightarrow j \right) \right)$$

•
$$N_c \to \infty (C_F \to C_A/2)$$

improved $N_c \to \infty (C_F \neq C_A/2)$

- azimuthally integrated $\tilde{W}_{i_{1,2}}^{i} = \tilde{W}_{i_{j,2}}^{i}$ if $\theta_{i_{2}} < \min(\theta_{i_{1}}, \theta_{i_{i}})$
- azimuthally integrated $\tilde{W}_{i1,2}^1$ vanishes if $\theta_{12} > \theta_{i1}$
- if both conditions simultaneously met (background sheet),
 - all CA/2 terms vanish
 - \rightarrow radiation from C_F term alone

The Lund plane 00000000●	Properties of existing showers	Parton shower accuracy	Effects 0000000	Summary O

• Full 2-guon matrix element in the soft-collinear limit

$$\frac{C_F}{p_{T,1}^2} \frac{1}{E_2^2} \left(\frac{C_A}{2} \left(\tilde{W}_{i1,2}^i + \tilde{W}_{i1,2}^1 \right) + \left(C_F - \frac{C_A}{2} \right) \tilde{W}_{ij,2}^i + \left(i \leftrightarrow j \right) \right)$$

•
$$N_c \to \infty (C_F \to C_A/2)$$

improved $N_c \to \infty (C_F \neq C_A/2)$?

- azimuthally integrated $\tilde{W}_{i1,2}^i = \tilde{W}_{ij,2}^i$ if $\theta_{i2} < \min(\theta_{i1}, \theta_{ii})$
- azimuthally integrated $\tilde{W}_{i1,2}^1$ vanishes if $\theta_{12} > \theta_{i1}$
- if both conditions simultaneously met (background sheet),
 - all $C_A/2$ terms vanish
 - \rightarrow radiation from C_F term alone

The Lund plane	Properties of existing showers	Parton shower accuracy	Effects	Summary
00000000●		0000000	0000000	O

• Full 2-guon matrix element in the soft-collinear limit

$$\frac{C_F}{p_{T,1}^2} \frac{1}{E_2^2} \left(\frac{C_A}{2} \left(\tilde{W}_{i1,2}^i + \tilde{W}_{i1,2}^1 \right) + \left(C_F - \frac{C_A}{2} \right) \tilde{W}_{ij,2}^i + \left(i \leftrightarrow j \right) \right)$$

•
$$N_c \to \infty (C_F \to C_A/2)$$

improved $N_c \to \infty (C_F \neq C_A/2)$?

- azimuthally integrated $\tilde{W}_{i1,2}^i = \tilde{W}_{ij,2}^i$ if $\theta_{i2} < \min(\theta_{i1}, \theta_{ij})$
- azimuthally integrated $\tilde{W}_{i1,2}^1$ vanishes if $\theta_{12} > \theta_{i1}$
- if both conditions simultaneously met (background sheet),
 - all $C_A/2$ terms vanish
 - \rightarrow radiation from C_F term alone

The Lund plane	Properties of existing showers	Parton shower accuracy	Effects	Summary
00000000●		0000000	0000000	O

• Full 2-guon matrix element in the soft-collinear limit

$$\frac{C_F}{p_{T,1}^2} \frac{1}{E_2^2} \left(\frac{C_A}{2} \left(\tilde{W}_{i1,2}^i + \tilde{W}_{i1,2}^1 \right) + \left(C_F - \frac{C_A}{2} \right) \tilde{W}_{ij,2}^i + \left(i \leftrightarrow j \right) \right)$$

•
$$N_c \to \infty (C_F \to C_A/2)$$

improved $N_c \to \infty (C_F \neq C_A/2)$?

- azimuthally integrated $\tilde{W}_{i1,2}^i = \tilde{W}_{ij,2}^i$ if $\theta_{i2} < \min(\theta_{i1}, \theta_{ij})$
- azimuthally integrated $\tilde{W}_{i1,2}^1$ vanishes if $\theta_{12} > \theta_{i1}$
- if both conditions simultaneously met (background sheet), all C_A/2 terms vanish
 - \rightarrow radiation from C_F term alone

The Lund plane 00000000●	Properties of existing showers	Parton shower accuracy	Effects 0000000	Summary O

• Full 2-guon matrix element in the soft-collinear limit

$$\frac{C_F}{p_{T,1}^2} \frac{1}{E_2^2} \left(\frac{C_A}{2} \left(\tilde{W}_{i1,2}^i + \tilde{W}_{i1,2}^1 \right) + \left(C_F - \frac{C_A}{2} \right) \tilde{W}_{ij,2}^i + \left(i \leftrightarrow j \right) \right)$$

•
$$N_c \to \infty (C_F \to C_A/2)$$

improved $N_c \to \infty (C_F \neq C_A/2)$?

- azimuthally integrated $\tilde{W}_{i1,2}^i = \tilde{W}_{ij,2}^i$ if $\theta_{i2} < \min(\theta_{i1}, \theta_{ij})$
- azimuthally integrated $\tilde{W}_{i1,2}^1$ vanishes if $\theta_{12} > \theta_{i1}$
- if both conditions simultaneously met (background sheet),
 - all $C_A/2$ terms vanish
 - \rightarrow radiation from C_F term alone

The Lund plane	Properties of existing showers	Parton shower accuracy	Effects	Summary
00000000●		0000000	0000000	O

• Full 2-guon matrix element in the soft-collinear limit

$$\frac{C_F}{p_{T,1}^2} \frac{1}{E_2^2} \left(\frac{C_A}{2} \left(\tilde{W}_{i1,2}^i + \tilde{W}_{i1,2}^1 \right) + \left(C_F - \frac{C_A}{2} \right) \tilde{W}_{ij,2}^i + \left(i \leftrightarrow j \right) \right)$$

•
$$N_c \to \infty (C_F \to C_A/2)$$

improved $N_c \to \infty (C_F \neq C_A/2)$?

- azimuthally integrated $\tilde{W}_{i1,2}^i = \tilde{W}_{ij,2}^i$ if $\theta_{i2} < \min(\theta_{i1}, \theta_{ij})$
- azimuthally integrated $\tilde{W}_{i1,2}^1$ vanishes if $\theta_{12} > \theta_{i1}$
- if both conditions simultaneously met (background sheet),
 - all $C_A/2$ terms vanish
 - \rightarrow radiation from C_F term alone

Properties of

angular ordered and transverse-momentum ordered parton showers

The Lund plane	Properties of existing showers	Parton shower accuracy	Effects 0000000	Summary O

Angular ordered parton showers

differential radiation probability

$$\mathrm{d}V_{a} = \sum_{b} \frac{\mathrm{d}\tilde{q}^{2}}{\tilde{q}^{2}} \,\mathrm{d}z \,\frac{\alpha_{s}}{2\pi} \,P_{ab}(z)$$

- dipole radiation becomes monopole radiation \rightarrow parton (not *dipole*) shower
- non-Abelian structure of QCD simplifies
 - \rightarrow radiation off mean charge $\mathit{C_F}$ or $\mathit{C_A}$
- Lund plane filled from center to edges
 - random walk in p_T^2
 - colour factors correct for observables insensitive to azimuthal correlations

The Lund plane	Properties of existing showers	Parton shower accuracy 0000000	Effects 0000000	Summary O

Transverse-momentum ordered dipole showers

differential radiation probability for the dipole

$$\mathrm{d} V_{a} = \sum_{b} \frac{\mathrm{d} p_{T,b}^{2}}{p_{T,b}^{2}} \, \mathrm{d} z \, \frac{\alpha_{s}}{2\pi} \, \tilde{P}_{ab}(z)$$

- unified picture of parton and dipole evolution, inclusion if partial-fractioned soft limit in $\tilde{P}_{ab}(z)$
- due to ordering in $p_{T,b}^2$ no natural way to recover correct colour factors as angular ordered shower does
- Lund plane filled from top to bottom
 - random walk in η
 - colour factors in improved leading color approximation

The Lund plane	Properties of existing showers	Parton shower accuracy	Effects	Summary
000000000		0000000	0000000	O

Radiation pattern of angular ordered and dipole showers

- angular ordered parton showers angles in centre-of-mass frame
 → coherence effects modeled by angular ordering variable agree on average with matrix element
- p_T ordered dipole showers angles in colour dipole frame
 → colour coherence not reflected by QCD charge of the dipole
 - \rightarrow emission off "back plane" in Lund plane should be associated with C_F , but is partly $C_A/2$

(fine in strict large- N_c , wrong in improved large- N_c)

 \rightarrow all-orders problem that appears first in 2-gluon emission case

The Lund plane	Properties of existing showers	Parton shower accuracy	Effects	Summary
000000000		0000000	0000000	O

Radiation pattern of angular ordered and dipole showers

- angular ordered parton showers angles in centre-of-mass frame
 → coherence effects modeled by angular ordering variable agree on average with matrix element
- p_T ordered dipole showers angles in colour dipole frame
 → colour coherence not reflected by QCD charge of the dipole
 - \rightarrow emission off "back plane" in Lund plane should be associated with C_F , but is partly $C_A/2$

(fine in strict large- N_c , wrong in improved large- N_c)

 \rightarrow all-orders problem that appears first in 2-gluon emission case

The Lund plane	Properties of existing showers	Parton shower accuracy 0000000	Effects 0000000	Summary O

Correcting the radiation pattern of dipole showers

- analyse rapidity of gluon emission in event center-of-mass frame
- sectorise phase space and assign gluon to closest parton
 → choose corresponding color charge for evolution
- same technology for higher number of emissions

starting with 4 emissions, there be "colour monsters"

- quartic Casimir operators (easy)
- non-factorisable contributions (hard)

Not captured in either angular ordered or corrected dipole evolution

The Lund plane	Properties of existing showers	Parton shower accuracy 0000000	Effects 0000000	Summary O

Correcting the radiation pattern of dipole showers

- analyse rapidity of gluon emission in event center-of-mass frame
- sectorise phase space and assign gluon to closest parton
 → choose corresponding color charge for evolution
- same technology for higher number of emissions

- starting with 4 emissions, there be "colour monsters"
 - quartic Casimir operators (easy)
 - non-factorisable contributions (hard)

Not captured in either angular ordered or corrected dipole evolution.

The Lund plane	Properties of existing showers 00000●	Parton shower accuracy	Effects 0000000	Summary O

The CMW scheme

• approximate soft-gluon emission followed by collinear splitting gives rise to integrated NLO correction factor in dim. reg. and $\overline{\text{MS}}$

$$K = \left(rac{67}{18} - rac{\pi^2}{3}
ight) C_A - rac{10}{9} T_R n_f$$

local K-factor for soft-gluon emission

• K can be absorbed in an effective coupling

This is the so-called CMW scheme. Catani, Marchesini, Webber '91

The Lund plane	
000000000	

Parton shower accuracy

Parton shower accuracy

How accurate is the parton shower's resummation DGLAP resums leading single collinear logarithms. Most parton showers reproduce this by construction.

How well does the parton shower resum related quantities? Examples: jet rates, thrust, total broadening, ...

Parton shower accuracy

How accurate is the parton shower's resummation

DGLAP resums leading single collinear logarithms. Most parton showers reproduce this by construction.

How well does the parton shower resum related quantities? Examples: jet rates, thrust, total broadening, ...

The Lund plane	Properties of existing showers	Parton shower accuracy	Effects 0000000	Summary O

Prerequisites:

• parton shower must recover the soft-collinear structure of higher-order matrix elements

a crucial aspect is the colour assignment in splitting function

successive emission must not substantially alter existing branchings

The Lund plane	Properties of existing showers	Parton shower accuracy	Effects 0000000	Summary O

Prerequisites:

• parton shower must recover the soft-collinear structure of higher-order matrix elements

a crucial aspect is the colour assignment in splitting function

successive emission must not substantially alter existing branchings

$$\frac{\Delta k_{\rm T}^{ij}}{k_{\rm T}^{ij}} \stackrel{k_{\rm T}^{j} \to 0}{\longrightarrow} 0$$

The Lund plane	Properties of existing showers	Parton shower accuracy	Effects 0000000	Summary O

Orbital collider limit $\alpha_s \rightarrow 0$, $\lambda = \alpha_s L = \text{const}$

effects of momentum conservation become irrelevant

parton shower

resummation

evaluate

$$\begin{split} \frac{\sum^{\text{shower}}}{\sum^{\text{NLL}}} &\propto & \exp\left(f_{\text{shower}}^{\text{LL}} - Lg_1(\alpha_s L)\right) \\ &\times \exp\left(f_{\text{shower}}^{\text{NLL}} - g_2(\alpha_s L)\right) \\ &\times \exp\left(\mathcal{O}(\alpha_s^{n+1}L^n)\right) \\ &\to 1 & \text{if shower reproduces LL and NLL} \end{split}$$

The Lund plane	Properties of existing showers	Parton shower accuracy	Effects 0000000	Summary O

Orbital collider limit $\alpha_s \rightarrow 0$, $\lambda = \alpha_s L = \text{const}$

effects of momentum conservation become irrelevant

parton shower

resummation

evaluate

$$\begin{array}{l} \frac{\sum^{\text{shower}}}{\sum^{\text{NLL}}} \propto & \exp\left(f_{\text{shower}}^{\text{LL}} - Lg_1(\alpha_s L)\right) \\ & \times \exp\left(f_{\text{shower}}^{\text{NLL}} - g_2(\alpha_s L)\right) \\ & \times \exp\left(\mathcal{O}(\alpha_s^{n+1}L^n)\right) \\ & \rightarrow 1 & \text{if shower reproduces LL and NLL} \end{array}$$

NLL accuracy in parton showers

Dasgupta, Dreyer, Hamilton, Monni, Salam, Soyez '20

- the standard PYTHIA and DIRE showers are not NLL accurate
- newly formulated PANGLOBAL and PANLOCAL family of parton showers designed for NLL accuracy

The Lund plane	Properties of existing showers	Parton shower accuracy	Effects 0000000	Summary O

 $1/\sigma d\sigma/d(\Delta \psi_{12}/\pi)$ 1.5 Alaric $\alpha_c = 0.005$ SHERPA $\alpha_{*} = 0.01$ 1.4 Dire $\alpha_{0} = 0.02$ 1.3 1.2 1.1 1.0 0.9 0.8 0.7 0.2 0.6 0.8 0 0.4 $\Delta \psi_{12}/\pi$

Höche, Krauss, Reichelt, MS '22

- subsequent emissions are uncorrelated to NLL accuracy
- DIRE introduces spurious correlation between jet planes

The Lund plane	Properties of existing showers	Parton shower accuracy 000000●	Effects 0000000	Summary O

Höche, Krauss, Reichelt, MS '22

limit: $\alpha_s \to 0, \lambda = \alpha_s \log \mathcal{O} = \text{const.}$

- Durham jet rate y₂₃
 - Total jet broadening B_T β
- Durham jet rate FC_{1/2}

Thrust 1 – 7

 $\beta = 0$

The Lund plane	Properties of existing showers	Parton shower accuracy 000000●	Effects 0000000	Summary O

Höche, Krauss, Reichelt, MS '22

imit:
$$\alpha_s \to 0, \lambda = \alpha_s \log \mathcal{O} = \text{const.}$$

- Durham jet rate y_{23} $\beta = 0$
- Total jet broadening B_T $\beta = 0$
- Durham jet rate FC_{1/2}
 Thrust 1 T

Marek Schönherr

The Lund plane	Properties of existing showers	Parton shower accuracy 000000●	Effects 0000000	Summary O

Höche, Krauss, Reichelt, MS '22

limit: $\alpha_s \to 0, \lambda = \alpha_s \log \mathcal{O} = \text{const.}$

- Durham jet rate y_{23} $\beta = 0$
- Total jet broadening B_T $\beta = 0$
- Durham jet rate $FC_{1/2}$ $\beta = \frac{1}{2}$

Thrust 1 - T

The Lund plane	Properties of existing showers	Parton shower accuracy 000000●	Effects 0000000	Summary O

Höche, Krauss, Reichelt, MS '22

limit: $\alpha_s \to 0, \lambda = \alpha_s \log \mathcal{O} = \text{const.}$

- Durham jet rate y_{23} $\beta = 0$
- Total jet broadening $B_T \qquad \beta = 0$
- Durham jet rate $FC_{1/2}$ $\beta = \frac{1}{2}$
- Thrust 1 T $\beta = 1$

Effects of NLL accurate parton showers

LEP phenomenology

- ALARIC+PYTHIA string had., no matching or multijet merging
- hadronisation models are not infrared safe and depend on distribution of soft gluons

LEP phenomenology

- ALARIC is constructed with massless quarks so far
- quark masses are phenomenologically relevant
- quick fix: flavour thresholds for $g \to c\bar{c}$ and $g \to b\bar{b}$

LHC phenomenology

Höche, Krauss, Reichelt '24

• ALARIC+PYTHIA string had.

The Lund plane	Properties of existing showers	Parton shower accuracy 0000000	Effects 0000000	Summary O

LHC phenomenology

Höche, Krauss, Reichelt '24

• ALARIC+PYTHIA string had., LO multijet merged

The Lund plane	Properties of existing showers	Parton shower accuracy 0000000	Effects 00000●0	Summary O
Developmen To increase 1) increas → NL	nts towards higher the logarithmic accuracy the perturbative order O splitting functions re involved singularity str	r (logarithmic) a y of the parton showe of the splitting function	accuracy r we need to fons	

soft-collinear, double soft) \rightarrow richer flavour structure ($P_{qq}^{(1)}, P_{qq'}^{(1)}, ...$)

2) ...

Evolution with NLO kernels \neq NNLL accurate

Other developments

- beyond leading colour approximation
 - many effects already included in improved large- N_c
 - $N_c = 3$ colour correlators, amplitude evolution
- beyond QCD and QED: EW showers
 - suffer from small relevance of resummed expressions at the LHC, more so at FCC, both -ee and -hh can often get by with fixed-order results
 - spin correlations a necessity
- spin correlations
 - mainstay of HERWIG parton shower, relevant for correlations of jet planes

Recap

This lecture:

- to achieve NLL accuracy parton showers must have
 - correct colour assignments
 - infrared-safe momentum maps
 - reproduce NLL coefficients (in the absence of momentum conservation)
- most standard showers are not NLL correct, with the exception of HERWIG's angular ordered shower \rightarrow many new developments
- impact of formal NLL accuracy minute in standard observables

Next lectures:

improving parton showers by process-dependent corrections
 → matching and merging