
Machine Learning and MC
Generators

Manuel Szewc
MCNet 13/06/2024

Plan of the lecture
The lecture contains a lot of material, which is also meant to be there for you
later.

- Introduction to Machine Learning
- Examples of applications to MC Generators

- Phase space sampling
- ME computation
- PDFs
- Hadronization
- Detector simulation
- Tuning
- Inference

Intro to ML

What is Machine Learning?

Image from
https://blogs.nvidia.com/blog/whats-difference-artificial-intelligence-machine-learning-deep-learning-ai/

https://blogs.nvidia.com/blog/whats-difference-artificial-intelligence-machine-learning-deep-learning-ai/

What is Machine Learning?
Machine learning is a fairly broad term, but we can think of it as

Getting a computer program to solve a specific task from data without explicit
instructions.

By this definition, even a simple least squares fit for a linear model is machine
learning. A lot of Machine Learning is applying probability and statistics.

There is a vast amount of very nice books, reviews etc. Hard to keep up to
date though. I greatly enjoy Aurelien Geron’s book as an introduction, it’s a
classic that keeps being updated.

https://github.com/ageron/handson-ml3

Machine Learning for us

Data + Problem to
solve

Data preprocessing
Choice of loss function

Choice(s) of
algorithms

Model that produces
predictions / actions

/ densities / …

Re-assessment

Training

Deployment

Evaluation

Example: Top Tagger

The landscape of ML problems
Things you need to decide:

- How much information do you have? Supervised, unsupervised,
semi-supervised, Reinforcement learning

- Do you want to train once and be done with it (offline learning) or be
able to update your model with new data (online learning)

- Non-parametric vs parametric models.

The
landscape

of ML
problems

Supervised

Unsupervised

Semi-
supervised

Reinforcement
Learning

Regression Classification

Dimensionality
reduction

Clustering

Anomaly
detection

Density
estimation

labels?

rewards

yes

no

kind of

The
landscape

of ML
problems

Supervised

Unsupervised

Semi-
supervised

Reinforcement
Learning

Regression Classification

Dimensionality
reduction

Clustering

Anomaly
detection

Density
estimation

labels?

rewards

yes

no

kind of

Original image by https://x.com/Ciaraioch

https://x.com/Ciaraioch

The landscape of ML losses!
The training loss depends on the problem. The most common are:

Regression:

- Mean Squared error: (ymeas-ypred)2

- Mean Absolute error: |ymeas-ypred|

Classification:

- Binary classes: binary cross entropy -(ymeasLn(ypred)+(1-ymeas)Ln(1-ypred))
- K classes : categorical cross-entropy Σk ymeas(k)Ln(ypred(k))

The landscape of ML metrics!
So, evaluating our models is hugely important. Some task-agnostic metrics are

Supervised:

- Regression: Measures of similarity between target and prediction → same as
losses!

- Classification: Accuracy, precision, Area Under the Curve, confusion matrix

Unsupervised are usually more task specific but some fairly general are:

- Dimensionality reduction: Explained Variance Ratio for PCA,
- Clustering: the Silhouette coefficient for K-Means
- Density learning: BIC or AIC for generative models

Useful libraries + algorithms
- scikit-learn: For most of the “basic” algorithms like Linear Regression and

Boosted Decision Trees. Also useful for preprocessing, model
combination, etc.

- XGBoost, LightGBM, CatBoost: For optimized tree-based models
- Tensorflow, Pytorch, Jax: For deep learning models

Tree-based models
A decision tree is an algorithm that greedily optimizes a given task by
performing cuts on the feature space. Tree-based models combine
ensembles of decision trees in various ways, such as bagging
(RandomForests) and boosting (GradientBoosting).

Image from https://xgboost.readthedocs.io/en/stable/tutorials/model.html

https://xgboost.readthedocs.io/en/stable/tutorials/model.html

Tree-based models
A decision tree is an algorithm that greedily optimizes a given task by
performing cuts on the feature space. Tree-based models combine
ensembles of decision trees in various ways, such as bagging
(RandomForests) and boosting (GradientBoosting).

Image from https://xgboost.readthedocs.io/en/stable/tutorials/model.html

They are incredibly powerful and easy to tune. I won’t cover
them much here, but you should be aware than in many cases

they might be more convenient than Neural Networks.

https://xgboost.readthedocs.io/en/stable/tutorials/model.html

Deep learning
The reason all the fuss is happening. The power of Deep Learning lies in its
adaptability and expressivity. These huge models are able to capture
non-linear problems with surprising effectiveness.

At the core of the deep learning revolution lie hardware development, big
data collection and backpropagation, which renders the loss function
minimization possible.

Feed-forward or neural network (NNs)
The classic. A function that takes N numbers and returns K outputs, with the
hidden layers and non-linear activation functions providing the power.

Image from
https://cs.stanford.edu/people/eroberts/courses/soco/projects/neural-networks/Architecture/feedforward.html

https://cs.stanford.edu/people/eroberts/courses/soco/projects/neural-networks/Architecture/feedforward.html

Convolutional Neural Networks (CNNs)
The DL revolution started in earnest with Alex-Net, a CNN.

To better deal with images, the learnable parameters are filters which are
convoluted along the specified dimensions.Translation invariance for
enhanced pattern location

Images from https://en.wikipedia.org/wiki/Convolutional_neural_network

http://yann.lecun.com/exdb/publis/pdf/lecun-01a.pdf
https://en.wikipedia.org/wiki/Convolutional_neural_network

Generative Adversarial Networks (GANs)
More of a philosophy of training for generative learning than a specific
choice of architecture. We train two networks, a Generator and a
Discriminator which “fight” each other.

Image from https://blogs.mathworks.com/deep-learning/2021/12/02/synthetic-image-generation-using-gans/

https://arxiv.org/abs/1406.2661
https://blogs.mathworks.com/deep-learning/2021/12/02/synthetic-image-generation-using-gans/

Normalizing Flows (NFs)
A generative model that learns how the data density relates to a simpler
base distribution. We learn the parameters of chosen invertible functions
that transform samples from the base distribution to the data distribution.

Less flexible but easier to train + access to the exact likelihood

Image from https://lilianweng.github.io/posts/2018-10-13-flow-models/

https://arxiv.org/abs/1505.05770
https://lilianweng.github.io/posts/2018-10-13-flow-models/

Graph Neural Networks (GNNs)
A more general representation of data. The Neural networks are applied over
graphs defined by nodes, features and edges with a process called Message
passing. The Neural Network updates each node by looking at its relation to
its neighbors and learns an embedding of the graph to be used downstream.

Image from https://arxiv.org/abs/1609.02907

https://ieeexplore.ieee.org/document/4700287
https://arxiv.org/abs/1609.02907

The Attention Mechanism and the Transformer
The Attention mechanism is a more efficient

way to embed an input with context.

The transformer leverages the attention
mechanism to optimize the necessary task
(embedding, generation, translation, etc…)

https://arxiv.org/pdf/1706.03762

Score-based and Denoising Diffusion models
Similar to NFs, they relate the distribution of interest to a simple base
distribution by adding noise and learn how to invert this process.

More expensive but more flexible than NFs. They have been shown to
produce the best samples in several datasets, retaining access to the
likelihood.

https://arxiv.org/abs/2011.13456
https://arxiv.org/pdf/2006.11239

Most of the state of the art is generative!
As you see, the recent developments have been all about how to get better
generative models (with prompts for text / image / stuff generation).

This is awfully convenient for us as well!

Uncertainty estimation in NNs
We have discussed how to define a model that yields certain predictions.
However, these models have been deterministic (even if the task is
probabilistic such as sampling). Here is a nice review.

For the cases of interest here, the two main methods are Ensembles and
Bayesian Neural Networks.

Image from
http://krasserm.github.io/2019/03/14/bayesian-neural-networks/

https://link.springer.com/article/10.1007/s10462-023-10562-9
http://krasserm.github.io/2019/03/14/bayesian-neural-networks/

Some wisdom regarding ML problems
Most of the work goes into data collection and more importantly problem
specification. The problem selects the algorithms, not viceversa. This is
specially true because most state-of-the-art problems are data-intensive and
computationally expensive (training is an art, not a science…).

It’s always better to start with “basic” algorithms even if only as a baseline
against which to compare other models.

Hyperparameters are important and overfitting is really deceiving
(underfitting can also happen!). Be sure to validate on unseen data
(cross-validation is a life saver, but expensive), and always evaluate your final
models on more unseen data (if possible).

A notebook for later
- End-to-end project involving the Top Quark Tagging dataset.
- The project shows how to preprocess data and then perform

classification for Top vs QCD
- You could adapt this for regression (learn the top quark C3 coefficient

from the constituents) or event generation using GANs

https://github.com/ManuelSzewc/SimpleTopTagger
https://zenodo.org/records/2603256

ML4MC

ML for MC
ML is useful in general and for a lot of High Energy Physics applications (Living
review https://iml-wg.github.io/HEPML-LivingReview/, Snowmass
https://inspirehep.net/files/1d860552406c3700aaf4598c7054137f) but what
are its specific uses regarding Monte Carlo generators?

A nice review: https://arxiv.org/pdf/2203.07460

Image by Ramon Winterhalder

https://iml-wg.github.io/HEPML-LivingReview/
https://inspirehep.net/files/1d860552406c3700aaf4598c7054137f
https://arxiv.org/pdf/2203.07460

To sample from hard processes f(x)~|M|2 composed of several Feynman
diagrams, we need to efficiently sample over the possible phase space.

The complexity of f(x) and the sheer dimensionality of the phase space
make efficient sampling and integration challenging.

Current trick is to define channels 𝜶i and sample Ni events per-channel, using
a sampling function gi(x).

ML for phase space sampling

MadNIS (Madgraph-ready Neural Networks for Multi-Channel Importance Sampling)

Ultra-fast event generation by
promoting the channel weights 𝛼 and
the channel densities gi to neural
networks.

𝛼 is a feed-forward neural network
and gi is a normalizing flow.

Parametric density estimation that
combines online training and offline
training to ensure speed and
precision.

The goal is to minimize the variance
of the integral estimation with smart
initialization, stratified sampling
strategies and channel dropping.

See also 2001.05478 and 2001.05478 and others for
similar works

https://arxiv.org/pdf/2311.01548
https://arxiv.org/abs/2001.05478
https://arxiv.org/pdf/2001.05478

MadNIS
The relevant metrics here are
the variance of the
cross-section estimate (which
is also the training loss!) and the
unweighting efficiency.

Errors are obtained by
ensembling.

They observe huge
improvements with respect to
VEGAS in several channels, with
tt+jets still challenging.

https://arxiv.org/pdf/2311.01548

ML for matrix elements
MEs are challenging to compute. Interpolation techniques are usually implemented to
reduce computation time.

To replace exact ME (or integrands) with NN-based surrogate models, precision and speed
are fundamental.

They need to be trained with relatively small sample size to be useful.

See e.g.:

- 2302.04005, a standard feed-forward neural networks helped by a smart
parameterization

- L-GATr, a Lorentz-Equivariant transformer without any explicit factorization
assumptions

- SYMBA, transformers to perform symbolic regression

https://arxiv.org/pdf/2302.04005
https://arxiv.org/abs/2405.14806
https://arxiv.org/pdf/2206.08901

One-loop ME emulation with factorisation awareness
Parameterized in terms of their
k-factor with respect to the tree
level ME (much cheaper to
compute)

where Xijk are the finite-substracted
antenna functions. C0 and Cijk are
the outputs of a feed-forward
neural network.

https://arxiv.org/pdf/2302.04005

One-loop ME emulation with factorisation awareness
A weighted MAE loss gives more
importance to the rarer regions of
the phase space. The samples
consist of 80k train, 20k validation,
1M test → reflects the necessary
imbalance.

They also use the MSE for the full
MEs as a metric, ensembling for
uncertainties.

https://arxiv.org/pdf/2302.04005

One-loop ME emulation with factorisation awareness
Implementing their model in ONNX, they find an improvement in speed.

https://arxiv.org/pdf/2302.04005

ML for PDFs (and FFs)
Parton Distribution Functions and Fragmentation Functions are
non-perturbative objects with well-known theoretical properties (scale
evolution, their convolution with the hard process, etc).

PDF determination can be translated to fitting a Monte Carlo ensemble of
fitted functions, where each replica is obtained by sampling a different
dataset with the covariance matrix.

A probability distribution over functions that captures how the different
theoretical and experimental uncertainties affect the PDF determination.

NNPDF
NNPDF4.0 is “the first PDF set to be based on a methodology fully selected
through a machine learning algorithm.”: every choice (ML architecture and
optimization function) is selected via automated hyperoptimization.

NNPDF uses a feed forward NN with K outputs that are combined with a
preprocessing factor and normalization constants

where k runs over a specific choice of basis (in NNPDF4.0, evolution or flavor)
at a given scale Q0

https://nnpdf.mi.infn.it/
https://arxiv.org/pdf/2109.02653

NNPDF

https://nnpdf.mi.infn.it/

NNPDF
The PDFs must satisfy physical constraints (sum rules, positivity constraints
and integrability). The first one is imposed during training through the Ak
(smart parameterization) while the latter two are imposed via Lagrange
multipliers in the loss function (training optimization).

The loss function is “basically” a chi-squared between the data replica and
the predicted data given by the Neural Network. A lot of work actually goes
into properly defining consistent datasets, replicas and a weighted
loss-function.

https://nnpdf.mi.infn.it/

NNPDF
The FK-tables are what makes all of this possible: a

connection between PDF and observable that allows for
backpropagation!

https://nnpdf.mi.infn.it/

NNPDF
The resulting set of PDFs are
implemented in an grid.

I highly recommend reading the
validation procedure for the PDF
sets.

However, challenges remain
regarding the extrapolation of
the fit into unseen regions.

https://nnpdf.mi.infn.it/

Hadronization
Hadronization is a inherently non-perturbative process. We rely on
empirical models for predictions. It is a more complicated problem that PDFs
and FFs because we do not have the differentiable convolution.

There are two main models: the Lund String model (Pythia) and the Cluster
model (Herwig), that rely on different assumptions.

For example, the Lund String Model takes
colored singlets and ~20 parameters to

produce hadrons as string breaks.

MLHAD
Treat hadronization as a generative process. As a first approximation, use NFs
to learn the fragmentation density directly.

By promoting the Normalizing Flows to Bayesian Normalizing Flows, the
model also has training uncertainties!

See also HADML using
GANs!

https://arxiv.org/pdf/2311.09296
https://arxiv.org/abs/2312.08453

MLHAD
In particular, any generator can generate only so many events before the
uncertainty on the model overcomes the statistical uncertainty of the
samples.

https://arxiv.org/pdf/2311.09296

Detector simulation
The most expensive stage of the simulation pipeline, both in time and in storage.
Fast lightweight simulation with enough precision could be a potential life-saver!

Lot of effort in calorimeter shower emulation using surrogate models. These
include VAEs, GANs, Normalizing Flows, Transformers, GNNs and Diffusion
models. Resources such as the CaloChallenge or COCOA allow to benchmark and
compare different models.

The saving in speed is great if the surrogate models use GPUs. Precision is still an
open challenge. Surrogate models perform well in the bulk but have problems
capturing the tails. This motivates hybrid surrogate model - GEANT4 scenarios.

https://calochallenge.github.io/homepage/
https://iopscience.iop.org/article/10.1088/2632-2153/acf186

CaloDiffusion
A denoising diffusion model that takes explicit advantage of cylindrical
symmetries

https://arxiv.org/pdf/2308.03876

CaloDiffusion
Very good speed and precision

https://arxiv.org/pdf/2308.03876

CaloDiffusion
Most of the explored variables are well-reproduced. However, global features
and outliers are not.

https://arxiv.org/pdf/2308.03876

ML to improve generators
Any generator, be it a Monte carlo simulator or a an end-to-end ML generative
model, is an imperfect representation of data that needs to be tuned.

Easier said than done: optimization is very expensive. But ML can help!

If parametric, tuning provides best fit values and hopefully uncertainties.

An alternative is to reweight your samples to better match the data in one
region. This has the drawback of reducing the statistical power of your
samples.

DCTR and DCTRGAN
Deep neural networks using Classification for Tuning and Reweighting. A
classifier is trained to reweight between different parameter values/refine
the GAN noise sampling.

https://arxiv.org/abs/1907.08209
https://arxiv.org/pdf/2009.03796

DCTR and DCTRGAN
Deep neural networks using Classification for Tuning and Reweighting. A
classifier is trained to reweight between different parameter values/refine
the GAN noise sampling.

https://arxiv.org/abs/1907.08209
https://arxiv.org/pdf/2009.03796

Inference using ML and MC event generators
Likelihood-free or simulation based
inference methods, such as
MadMiner, take advantage of
forward models to learn optimal
test statistics from samples obtained
by scanning over the relevant
parameter space.

These methods are usually
computationally expensive because
of sample generation and training.

https://arxiv.org/abs/1907.10621

Differential programming
Surrogate models and event reweighting are useful tools to “add” a gradient to
MC generators.

Another way of doing this would be to have fully differentiable generators
which would allow to optimise even detector construction (see MODE
collaboration)

Image from https://arxiv.org/abs/2310.01857

https://mode-collaboration.github.io/#home
https://mode-collaboration.github.io/#home
https://arxiv.org/abs/2310.01857

All in all…
ML has been successfully applied in MC relevant areas, mainly for surrogate
models. However, many challenges remain. Specifically, the trade-off
between speed and precision; trustworthiness of uncertainties and
extrapolation.

A lesson that I take from these applications: domain knowledge is vital. The
most important lessons regarding ML for MC lie in the MC part.

What you heard today
These lectures aimed to give you a “lay of the land” regarding Machine
Learning and its applications to Monte carlo event generators. ML is here to
stay and even when not using it directly it is important to know about it, its
power and its limitations.

Of course, the real work should begin after this lecture. Please don’t hesitate
to contact me with any doubts/comments/corrections you might have
regarding the lecture, the example and any future endeavors!

mailto:manuelsz24@gmail.com

