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Plan of the lecture
The lecture contains a lot of material, which is also meant to be there for you 
later.

- Introduction to Machine Learning
- Examples of applications to MC Generators

- Phase space sampling
- ME computation
- PDFs
- Hadronization
- Detector simulation
- Tuning
- Inference



Intro to ML



What is Machine Learning?

Image from 
https://blogs.nvidia.com/blog/whats-difference-artificial-intelligence-machine-learning-deep-learning-ai/ 

https://blogs.nvidia.com/blog/whats-difference-artificial-intelligence-machine-learning-deep-learning-ai/


What is Machine Learning?
Machine learning is a fairly broad term, but we can think of it as 

Getting a computer program to solve a specific task from data without explicit 
instructions.

By this definition, even a simple least squares fit for a linear model is machine 
learning. A lot of Machine Learning is applying probability and statistics.

There is a vast amount of very nice books, reviews etc. Hard to keep up to 
date though. I greatly enjoy Aurelien Geron’s book as an introduction, it’s a 
classic that keeps being updated.

https://github.com/ageron/handson-ml3


Machine Learning for us

Data + Problem to 
solve

Data preprocessing 
Choice of loss function

Choice(s) of 
algorithms

Model that produces 
predictions / actions 

/ densities / …

Re-assessment

Training

Deployment

Evaluation



Example: Top Tagger



The landscape of ML problems
Things you need to decide:

- How much information do you have? Supervised, unsupervised, 
semi-supervised, Reinforcement learning

- Do you want to train once and be done with it (offline learning) or be 
able to update your model with new data (online learning)

- Non-parametric vs parametric models.
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The landscape of ML losses!
The training loss depends on the problem. The most common are:

Regression:

- Mean Squared error: (ymeas-ypred)2

- Mean Absolute error: |ymeas-ypred|

Classification:

- Binary classes: binary cross entropy -(ymeasLn(ypred)+(1-ymeas)Ln(1-ypred))
- K classes : categorical cross-entropy Σk ymeas(k)Ln(ypred(k))



The landscape of ML metrics!
So, evaluating our models is hugely important. Some task-agnostic metrics are

Supervised:

- Regression: Measures of similarity between target and prediction → same as 
losses!

- Classification: Accuracy, precision, Area Under the Curve, confusion matrix

Unsupervised are usually more task specific but some fairly general are:

- Dimensionality reduction: Explained Variance Ratio for PCA, 
- Clustering: the Silhouette coefficient for K-Means
- Density learning: BIC or AIC for generative models



Useful libraries + algorithms
- scikit-learn: For most of the “basic” algorithms like Linear Regression and 

Boosted Decision Trees. Also useful for preprocessing, model 
combination, etc.

- XGBoost, LightGBM, CatBoost: For optimized tree-based models
- Tensorflow, Pytorch, Jax: For deep learning models



Tree-based models
A decision tree is an algorithm that greedily optimizes a given task by 
performing cuts on the feature space. Tree-based models combine 
ensembles of decision trees in various ways, such as bagging 
(RandomForests) and boosting (GradientBoosting).

Image from https://xgboost.readthedocs.io/en/stable/tutorials/model.html 
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They are incredibly powerful and easy to tune. I won’t cover 
them much here, but you should be aware than in many cases 

they might be more convenient than Neural Networks.

https://xgboost.readthedocs.io/en/stable/tutorials/model.html


Deep learning
The reason all the fuss is happening. The power of Deep Learning lies in its 
adaptability and expressivity. These huge models are able to capture 
non-linear problems with surprising effectiveness.

At the core of the deep learning revolution lie hardware development, big 
data collection and backpropagation, which renders the loss function 
minimization possible.



Feed-forward or neural network (NNs)
The classic. A function that takes N numbers and returns K outputs, with the 
hidden layers and non-linear activation functions providing the power.

Image from 
https://cs.stanford.edu/people/eroberts/courses/soco/projects/neural-networks/Architecture/feedforward.html 

https://cs.stanford.edu/people/eroberts/courses/soco/projects/neural-networks/Architecture/feedforward.html


Convolutional Neural Networks (CNNs)
The DL revolution started in earnest with Alex-Net, a CNN. 

To better deal with images, the learnable parameters are filters which are 
convoluted along the specified dimensions.Translation invariance for 
enhanced pattern location

Images from https://en.wikipedia.org/wiki/Convolutional_neural_network 

http://yann.lecun.com/exdb/publis/pdf/lecun-01a.pdf
https://en.wikipedia.org/wiki/Convolutional_neural_network


Generative Adversarial Networks (GANs)
More of a philosophy of training for generative learning than a specific 
choice of architecture. We train two networks, a Generator and a 
Discriminator which “fight” each other.

Image from https://blogs.mathworks.com/deep-learning/2021/12/02/synthetic-image-generation-using-gans/ 

https://arxiv.org/abs/1406.2661
https://blogs.mathworks.com/deep-learning/2021/12/02/synthetic-image-generation-using-gans/


Normalizing Flows (NFs)
A generative model that learns how the data density relates to a simpler 
base distribution. We learn the parameters of chosen invertible functions 
that transform samples from the base distribution to the data distribution.

Less flexible but easier to train + access to the exact likelihood

Image from https://lilianweng.github.io/posts/2018-10-13-flow-models/ 

https://arxiv.org/abs/1505.05770
https://lilianweng.github.io/posts/2018-10-13-flow-models/


Graph Neural Networks (GNNs)
A more general representation of data. The Neural networks are applied over 
graphs defined by nodes, features and edges with a process called Message 
passing. The Neural Network updates each node by looking at its relation to 
its neighbors and learns an embedding of the graph to be used downstream.

Image from https://arxiv.org/abs/1609.02907 

https://ieeexplore.ieee.org/document/4700287
https://arxiv.org/abs/1609.02907


The Attention Mechanism and the Transformer
The Attention mechanism is a more efficient 

way to embed an input with context.

The transformer leverages the attention 
mechanism to optimize the necessary task 
(embedding, generation, translation, etc…)

https://arxiv.org/pdf/1706.03762


Score-based and Denoising Diffusion models
Similar to NFs, they relate the distribution of interest to a simple base 
distribution by adding noise and learn how to invert this process.

More expensive but more flexible than NFs. They have been shown to 
produce the best samples in several datasets, retaining access to the 
likelihood.

https://arxiv.org/abs/2011.13456
https://arxiv.org/pdf/2006.11239


Most of the state of the art is generative!
As you see, the recent developments have been all about how to get better 
generative models (with prompts for text / image / stuff generation).

This is awfully convenient for us as well!



Uncertainty estimation in NNs
We have discussed how to define a model that yields certain predictions. 
However, these models have been deterministic (even if the task is 
probabilistic such as sampling). Here is a nice review.

For the cases of interest here, the two main methods are Ensembles and 
Bayesian Neural Networks.

Image from 
http://krasserm.github.io/2019/03/14/bayesian-neural-networks/ 

https://link.springer.com/article/10.1007/s10462-023-10562-9
http://krasserm.github.io/2019/03/14/bayesian-neural-networks/


Some wisdom regarding ML problems
Most of the work goes into data collection and more importantly problem 
specification. The problem selects the algorithms, not viceversa. This is 
specially true because most state-of-the-art problems are data-intensive and 
computationally expensive (training is an art, not a science…).

It’s always better to start with “basic” algorithms even if only as a baseline 
against which to compare other models.

Hyperparameters are important and overfitting is really deceiving 
(underfitting can also happen!). Be sure to validate on unseen data 
(cross-validation is a life saver, but expensive), and always evaluate your final 
models on more unseen data (if possible).



A notebook for later
- End-to-end project involving the Top Quark Tagging dataset. 
- The project shows how to preprocess data and then perform 

classification for Top vs QCD
- You could adapt this for regression (learn the top quark C3 coefficient 

from the constituents) or event generation using GANs

https://github.com/ManuelSzewc/SimpleTopTagger
https://zenodo.org/records/2603256


ML4MC



ML for MC
ML is useful in general and for a lot of High Energy Physics applications (Living 
review https://iml-wg.github.io/HEPML-LivingReview/, Snowmass 
https://inspirehep.net/files/1d860552406c3700aaf4598c7054137f) but what 
are its specific uses regarding Monte Carlo generators?

A nice review: https://arxiv.org/pdf/2203.07460 

Image by Ramon Winterhalder

https://iml-wg.github.io/HEPML-LivingReview/
https://inspirehep.net/files/1d860552406c3700aaf4598c7054137f
https://arxiv.org/pdf/2203.07460


To sample from hard processes f(x)~|M|2 composed of several Feynman 
diagrams, we need to efficiently sample over the possible phase space.

The complexity of f(x) and the sheer dimensionality of the phase space 
make efficient sampling and integration challenging. 

Current trick is to define channels 𝜶i and sample Ni events per-channel, using 
a sampling function gi(x).

ML for phase space sampling



MadNIS (Madgraph-ready Neural Networks for Multi-Channel Importance Sampling)

Ultra-fast event generation by 
promoting the channel weights 𝛼 and 
the channel densities gi to neural 
networks.

𝛼 is a feed-forward neural network 
and gi is a normalizing flow.

Parametric density estimation that 
combines online training and offline 
training to ensure speed and 
precision.

The goal is to minimize the variance 
of the integral estimation with smart 
initialization, stratified sampling 
strategies and channel dropping.

See also 2001.05478 and 2001.05478 and others for 
similar works

https://arxiv.org/pdf/2311.01548
https://arxiv.org/abs/2001.05478
https://arxiv.org/pdf/2001.05478


MadNIS
The relevant metrics here are 
the variance of the 
cross-section estimate (which 
is also the training loss!) and the 
unweighting efficiency.

Errors are obtained by 
ensembling.

They observe huge 
improvements with respect to 
VEGAS in several channels, with 
tt+jets still challenging.

https://arxiv.org/pdf/2311.01548


ML for matrix elements
MEs are challenging to compute. Interpolation techniques are usually implemented to 
reduce computation time.

To replace exact ME (or integrands) with NN-based surrogate models, precision and speed 
are fundamental. 

They need to be trained with relatively small sample size to be useful. 

See e.g.: 

- 2302.04005, a standard feed-forward neural networks helped by a smart 
parameterization

- L-GATr, a Lorentz-Equivariant transformer without any explicit factorization 
assumptions

- SYMBA, transformers to perform symbolic regression 

https://arxiv.org/pdf/2302.04005
https://arxiv.org/abs/2405.14806
https://arxiv.org/pdf/2206.08901


One-loop ME emulation with factorisation awareness
Parameterized in terms of their 
k-factor with respect to the tree 
level ME (much cheaper to 
compute)

where Xijk are the finite-substracted 
antenna functions. C0 and Cijk are 
the outputs of a feed-forward 
neural network.

https://arxiv.org/pdf/2302.04005


One-loop ME emulation with factorisation awareness
A weighted MAE loss gives more 
importance to the rarer regions of 
the phase space. The samples 
consist of 80k train, 20k validation, 
1M test → reflects the necessary 
imbalance.

They also use the MSE for the full 
MEs as a metric, ensembling for 
uncertainties. 

https://arxiv.org/pdf/2302.04005


One-loop ME emulation with factorisation awareness
Implementing their model in ONNX, they find an improvement in speed.

https://arxiv.org/pdf/2302.04005


ML for PDFs (and FFs)
Parton Distribution Functions and Fragmentation Functions are 
non-perturbative objects with well-known theoretical properties (scale 
evolution, their convolution with the hard process, etc).

PDF determination can be translated to fitting a Monte Carlo ensemble of 
fitted functions, where each replica is obtained by sampling a different 
dataset with the covariance matrix.

A probability distribution over functions that captures how the different 
theoretical and experimental uncertainties affect the PDF determination.



NNPDF
NNPDF4.0 is “the first PDF set to be based on a methodology fully selected 
through a machine learning algorithm.”: every choice (ML architecture and 
optimization function) is selected via automated hyperoptimization.

NNPDF uses a feed forward NN with K outputs that are combined with a 
preprocessing factor and normalization constants 

where k runs over a specific choice of basis (in NNPDF4.0, evolution or flavor) 
at a given scale Q0

https://nnpdf.mi.infn.it/
https://arxiv.org/pdf/2109.02653


NNPDF

https://nnpdf.mi.infn.it/


NNPDF
The PDFs must satisfy physical constraints (sum rules, positivity constraints 
and integrability). The first one is imposed during training through the Ak 
(smart parameterization) while the latter two are imposed via Lagrange 
multipliers in the loss function (training optimization).

The loss function is “basically” a chi-squared between the data replica and 
the predicted data given by the Neural Network. A lot of work actually goes 
into properly defining consistent datasets, replicas and a weighted 
loss-function.

https://nnpdf.mi.infn.it/


NNPDF
The FK-tables are what makes all of this possible: a 

connection between PDF and observable that allows for 
backpropagation!

https://nnpdf.mi.infn.it/


NNPDF
The resulting set of PDFs are 
implemented in an grid.

I highly recommend reading the 
validation procedure for the PDF 
sets.

However, challenges remain 
regarding the extrapolation of 
the fit into unseen regions.

https://nnpdf.mi.infn.it/


Hadronization
Hadronization is a inherently non-perturbative process. We rely on 
empirical models for predictions. It is a more complicated problem that PDFs 
and FFs because we do not have the differentiable convolution.

There are two main models: the Lund String model (Pythia) and the Cluster 
model (Herwig), that rely on different assumptions.

For example, the Lund String Model takes 
colored singlets and ~20 parameters to 

produce hadrons as string breaks.



MLHAD
Treat hadronization as a generative process. As a first approximation, use NFs 
to learn the fragmentation density directly.

By promoting the Normalizing Flows to Bayesian Normalizing Flows, the 
model also has training uncertainties! 

See also HADML using 
GANs!

https://arxiv.org/pdf/2311.09296
https://arxiv.org/abs/2312.08453


MLHAD
In particular, any generator can generate only so many events before the 
uncertainty on the model overcomes the statistical uncertainty of the 
samples.

https://arxiv.org/pdf/2311.09296


Detector simulation
The most expensive stage of the simulation pipeline, both in time and in storage. 
Fast lightweight simulation with enough precision could be a potential life-saver!

Lot of effort in calorimeter shower emulation using surrogate models. These 
include VAEs, GANs, Normalizing Flows, Transformers, GNNs and Diffusion 
models. Resources such as the CaloChallenge or COCOA allow to benchmark and 
compare different models.

The saving in speed is great if the surrogate models use GPUs. Precision is still an 
open challenge. Surrogate models perform well in the bulk but have problems 
capturing the tails. This motivates hybrid surrogate model - GEANT4 scenarios.

https://calochallenge.github.io/homepage/
https://iopscience.iop.org/article/10.1088/2632-2153/acf186


CaloDiffusion
A denoising diffusion model that takes explicit advantage of cylindrical 
symmetries

https://arxiv.org/pdf/2308.03876


CaloDiffusion
Very good speed and precision

https://arxiv.org/pdf/2308.03876


CaloDiffusion
Most of the explored variables are well-reproduced. However, global features 
and outliers are not.

https://arxiv.org/pdf/2308.03876


ML to improve generators
Any generator, be it a Monte carlo simulator or a an end-to-end ML generative 
model, is an imperfect representation of data that needs to be tuned.

Easier said than done: optimization is very expensive. But ML can help!

If parametric, tuning provides best fit values and hopefully uncertainties.

An alternative is to reweight your samples to better match the data in one 
region. This has the drawback of reducing the statistical power of your 
samples.



DCTR and DCTRGAN
Deep neural networks using Classification for Tuning and Reweighting. A 
classifier is trained  to reweight between different parameter values/refine 
the GAN noise sampling.

https://arxiv.org/abs/1907.08209
https://arxiv.org/pdf/2009.03796
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Inference using ML and MC event generators
Likelihood-free or simulation based 
inference methods, such as 
MadMiner, take advantage of 
forward models to learn optimal 
test statistics from samples obtained 
by scanning over the relevant 
parameter space.

These methods are usually 
computationally expensive because 
of sample generation and training.

https://arxiv.org/abs/1907.10621


Differential programming
Surrogate models and event reweighting are useful tools to “add” a gradient to 
MC generators.

Another way of doing this would be to have fully differentiable generators 
which would allow to optimise even detector construction (see MODE 
collaboration)

Image from https://arxiv.org/abs/2310.01857 

https://mode-collaboration.github.io/#home
https://mode-collaboration.github.io/#home
https://arxiv.org/abs/2310.01857


All in all…
ML has been successfully applied in MC relevant areas, mainly for surrogate 
models. However, many challenges remain. Specifically, the trade-off 
between speed and precision; trustworthiness of uncertainties and 
extrapolation.

A lesson that I take from these applications: domain knowledge is vital. The 
most important lessons regarding ML for MC lie in the MC part.



What you heard today
These lectures aimed to give you a “lay of the land” regarding Machine 
Learning and its applications to Monte carlo event generators. ML is here to 
stay and even when not using it directly it is important to know about it, its 
power and its limitations.

Of course, the real work should begin after this lecture. Please don’t hesitate 
to contact me with any doubts/comments/corrections you might have 
regarding the lecture, the example and any future endeavors!

mailto:manuelsz24@gmail.com

