
Computing on GPUs
Enrico Bothmann, MCnet Summer School 2024, 10th–14th June 2024

A practitioner’s introduction

1

Contents
• Motivation

• Heterogeneous computing

• Introduction to CUDA programming

• Example: Jacobi method

• Review

• Port to GPU

• Advanced topics

• Conclusions

2

Motivation

3

The protracted death of Moore’s law

4

5

Lattice QCD

• early adopters of GPU (since ~2006, then 20x speed-up reported)

• Now, cutting edge lattice QCD calculations all use GPU
6

calculate properties of hadrons by simulation on finite four-
dimensional lattice with quark and gluon fields

madgraph4gpu
Porting of MADGRAPH5_AMC@NLO [Valassi et al. 2312.02898]

• Collaboration of theoretical/experimental physicists with software engineers

• reengineering of MG5AMC for LO QCD processes → alpha release available

• On GPUs, using SYCL/CUDA, O(80) total speed-up for gg → ttggg:

7

 CPU: AMD EPYC 7313, GPU: NVidia Tesla A100, baseline: Fortran single-threaded CPU

PEPPER
New Algorithms for Amplitudes

• large- LO ME and phase-space is bottleneck in state-of-the-art SHERPA
production for V+jets & tt+jets
[EB et al. Eur. Phys. J. C 82 (2022), no. 12, 1128, 2209.00843]

• development of novel recursive algorithms that scale well with and are
portable & parallelisable (CUDA/Kokkos)
[EB, Giele, Höche, Isaacson, Knobbe, SciPost Phys. Codebases 3 (2022), 2106.06507], [EB et al.,
SciPost Phys., 2302.10449], [EB et al., Phys.Rev.D 109 (2024) 014013, 2309.13154], [EB et al.,
submitted to SciPost Phys.,
2311.06198]

• almost all the work is done on the GPU
RNG, phase-space sampling & cuts, recursive calculation
of , unweighting

➡ chip-to-chip speed-ups of

➡ public 1.1.1 release of fully ported
parton-level generator

➡ particle-level simulation via read-in by
SHERPA/PYTHIA

n

n

|ℳ |2

𝒪(10)

8

PEPPER unweighted event generation rates on 56-core CPU, various GPU

Dyck words of minimal amplitudes basis [Melia 1304.7809]

1

2

n

1

jm = n

j1
j1 + 1

j2

jm−1 + 1

= Σ
m, {jk}

Berends–Giele recursion
[Berends, Giele, Nucl. Phys. B306, 759 (1988)]

0 1 2 3 4 5

n

10
4

10
5

10
6

10
7

10
8

10
9

10
10

U
n
w

ei
gh

te
d

ev
en

t
ra

te
[1

/h
]

p?,j ∏ 20 GeV, |¥j | ∑ 5, ¢Rjj ∏ 0.4

66 GeV ∑ me+e° ∑ 116 GeV

µ2
R = µ2

F = m2
Z

P
e
p
p
e
r

M
C

pp ! e°e+ + n jets at
p

s = 13 TeV

2£Skylake8180

V100

A100

H100

MI100
1/2£MI250

PVC

0 1 2 3 4

n

10
4

10
5

10
6

10
7

10
8

10
9

10
10

p?,j ∏ 20 GeV, |¥j | ∑ 5, ¢Rjj ∏ 0.4

µ2
R = µ2

F = m2
t

P
e
p
p
e
r

M
C

pp ! tt̄ + n jets at
p

s = 13 TeV

Motivation
current research including GPU use/porting in HEP

• MCnet: MADGRAPH5_AMC@NLO, PEPPER/SHERPA, ML, …

• experiments: trigger, detector simulation,
data compression, ML, …

• mitigate risk of being compute constrained in HL-LHC, FCC-ee, …

• better performance means increased physics range! (e.g. multiplicity in event generators)

HPC Clusters more and more equipped/built around GPU

• this is a persistent trend since throughput is better for most applications, also fueled by DNN
„revolution“

• 9/10 top supercomputers and 10/10 top „green“ supercomputers use GPU or some other accelerator

• e.g. SUMMIT cluster (top 5 supercomputer) 95 % of compute capacity via GPU

• porting our tools would allow better exploitation of HPC resources now & in the future

9

CPU vs. GPU efficiencies
Theoretical comparison on a development node of ITP Göttingen

10

€ MFLOPS
(double precision) Watt € / MFLOPS MFLOPS / Watt

Intel®Xeon®Silver
4214R 2.4 GHz
12core; 192 GB

800 40
(single thread: 2) 100 20 0.4

NVIDIA® Tesla
V100S 32 GB 6000 8200 250 0.7 32.8

Heterogenous Programming

11

Heterogeneous programming

12

CPU GPU

optimised for … racing through serial operations doing massively parallel calculations

minimises … latency (= how long it takes to finish a task
once)

throughput (= how many times a task is
completed within a time period)

architecture high clock speed, lots of control logic, large
caches, fast memory

lots of transistors dedicated to calculations, large
memory bandwidth

for HEP applications good for complex algorithms with lots of
branching (if/else) and lots of caching

good for comparably simple algorithms which are
easy to parallelise (prime example: Monte Carlo)

Heterogeneous programming
CPU + GPU: host/device programming model

13

• simplify porting by
only parallelising the
parts of the code that
matter („hot spots“)

• complicated by
additional time
needed to copy data
between host and
device memory

Heterogeneous programming
Simple processing flow

14

Heterogeneous programming
Simple processing flow

15

Heterogeneous programming
Simple processing flow

16

Introduction to CUDA

17

Introduction to CUDA programming
Software/Hardware

• CUDA: compiler (nvcc), C language extensions and libraries by NVidia to
run calculations on their GPU

• Can I use CUDA on any (NVidia) GPU?

• No … and for many scientific codes you might need a data center GPU:

18

example 32FP TFLOPS 64FP TFLOPS

gaming NVidia GeForce RTX 3090 35.6 0.556

data center NVidia V100S 16.4 8.2

AI pushes trend to reduced precision (single, half, …) → challenge for proper utilisation for scientific calculations

Introduction to CUDA programming
Mixing host and device code

__global__ void compute(void) {
 // this runs parallelised over BxT threads on the GPU
}

int main(void) {
 compute<<<B, T>>>();
 printf("Hello World!\n");
 return 0;
}

19

• __global__: function callable by host, executed on device

• <<<B, T>>>(…): call from host code to device code

• B: number of thread blocks

• T: number of threads per block

Complete vector addition example
__global__ void add(int *a, int *b, int *c) {
 int i = blockIdx.x * blockDim.x + threadIdx.x;
 c[i] = a[i] + b[i];
}

int main(void) {
 int size = N * sizeof(int);

 // host memory for vectors a, b, c
 int *a, *b, *c;
 a = malloc(size); b = malloc(size); c = malloc(size);
 random_fill(a);
 random_fill(b);

 // device memory for vectors a, b, c
 int *da, *db, *dc;
 cudaMalloc(*da, size); cudaMalloc(*db, size); cudaMalloc(*dc, size);

 // copy a, b to device
 cudaMemcpy(d_a, a, size, cudaMemcpyHostToDevice);
 cudaMemcpy(d_b, b, size, cudaMemcpyHostToDevice);

 compute<<<B, T>>>(a, b, c);

 // copy c from device
 cudaMemcpy(c, d_c, size, cudaMemcpyDeviceToHost);

 free(a); free(b); free(c);
 cudaFree(d_a); cudaFree(d_b); cudaFree(d_c);

 return 0;
}

20

Introduction to CUDA programming

int main(void) {
 // host memory for vectors a, b, c
 thrust::host_vector<int> a(N), b(N), c(N);

 // device memory for vectors a, b, c
 thrust::device_vector<int> d_a(N), d_b(N), d_c(N);

 random_fill(a);
 random_fill(b);

 // copy a, b to device
 d_a = a;
 d_b = b;

 thrust::transform(d_a.begin(), d_a.end(),
 d_b.begin(),
 d_c.begin(), thrust::plus<int>());

 // copy c from device
 c = d_c;

 return 0;
}

21

For a C++ like approach, use CUDA’s thrust library:
(will use a mix of pure CUDA and Thrust API in the tutorial)

Examples also exist in the Python world:

from numba import cuda
import numpy as np

@cuda.jit
def add(a, b, c):
 i = (cuda.blockIdx.x * cuda.blockDim.x
 + cuda.threadIdx.x)
 c[i] = a[i] + b[i]

a = np.random(N)
b = np.random(N)
c = np.zeros(N)

numpy array copied automatically
add(a, b, c)

or use pyCUDA, pyTorch, TensorFlow …

Example: Jacobi Method

22

23

Example: Jacobi method

task: solve iteratively on an NxN grid, Dirichlet boundary conditionsΔϕ(x, y) = 0

Example: Jacobi method
Review: Algorithm

• set each point to average of neighbours:
phi[j,i] = 0.25 * (phi_prev[j,i-1]
 + phi_prev[j,i+1]
 + phi_prev[j-1,i]
 + phi_prev[j+1,i] - 4 * h * h)

• phi_prev = values from previous iteration

• h = grid spacing

• repeat for many Niterations until converged

24

j-1,i

j,i-1 j,i j,i+1

j+1,i

Example: Jacobi method
Review: Pseudo Code

//Initialization
for j = 1,Ny
 for i = 1,Nx
 phi_prev[j,i] = 0.0

//Boundary Conditions
for i = 0,Nx-1
{
 x = i*h
 phi_prev[0,i] = x*x
 phi_prev[Nj-1,i] = x*x + 1.0
}
for j = 1,Ny-2
{
 y = j*h
 phi_prev[j,0] = y*y
 phi_prev[j,Ni-1] = 1.0 + y*y
}

25

//Iteration Loop
for k = 1,Niterations
{
 for j = 1,Ny-2
 for i = 1,Nx-2
 phi[j,i] = 0.25 * (
 phi_prev[j,i-1]
 + phi_prev[j,i+1]
 + phi_prev[j-1,i]
 + phi_prev[j+1,i] - 4*h*h)

 for j = 1,Ny-2
 for i = 1,Nx-2
 phi_prev[j,i] = phi[j,i];
}

Example: Jacobi method
CPU Time Profiling

26

Demo

Example: Jacobi method
CPU Time Profiling

27

Example: Jacobi method
GPU port: loop over i, j becomes __global__ function

28

 for (int k = 0; k < nIterations; k++) {
 // Launch a kernel on the GPU with one thread for each element.
 calculateJacobi_V1<<<dimGrid, dimBlock>>>(d_phi_prev, d_phi, Nx, Ny, h);

 float *pingPong = d_phi_prev;
 d_phi_prev = d_phi;
 d_phi = pingPong;
 } __global__ void calculateJacobi_V1(float *input, float *output,

 int Nx, int Ny, float h) {
 int i = blockDim.x * blockIdx.x + threadIdx.x;
 int j = blockDim.y * blockIdx.y + threadIdx.y;

 if (i > 0 && j > 0 && i < (Nx - 1) && j < (Ny - 1)) {
 float phi = - h * h;
 phi += 0.25f*input[j * Nx + i - 1];
 phi += 0.25f*input[(j - 1) * Nx + i];
 phi += 0.25f*input[j * Nx + i + 1];
 phi += 0.25f*input[(j + 1) * Nx + i];
 output[j * Nx + i] = phi;
 }
}

0,0 1,0

0,1 1,1

0,2 1,2

Example: Jacobi method
Port to GPU

29

Demo

Example: Jacobi method
Port to GPU

30

$./jacobi_gpu
Parameters: Nx=2048, Ny=2048, nIteration=1000
CPU Time: 5770.000000 ms
GPU Time: 40.599007 ms
Is host equal to device = 1
Speedup = 142.121704x
All done

Pretty good
But far away from the factor one would have hoped for by comparing theoretical FLOPS!

Example: Jacobi method
Profile GPU performance with NSight

31

Demo

Example: Jacobi method
Profile GPU performance with NSight

32

other findings:

• 10 % uncoalesced global
memory accesses (un-koala-
what?) 🐨

• branch efficency: 0 (this
can't be good, right?)

→ memory-bound, not compute-bound

Advanced Topics

33

Advanced Topics
Coalesced memory access

34

• Uncached global memory latency: ~400 cycles
• L2/L1 reduces this to 200/20 cycles, but limited size

• Single-precision instruction: ~4 cycles → try to
limit memory reads/writes!!!

• very important consideration: 32 threads (= 1
warp) can combine („coalesce“) their memory
reads/writes into a single transaction, speed-
ups by up to 32x possible

• use structure of arrays instead array of
structures

data[i + thread_id] = …

data[i] = …

j ≠ 1
data[i + j * thread_id] = …

warp

memory

Advanced Topics
Branch divergence

35

• warp (= 32 threads) operates in lock-step (Single Instruction Multiple Threads)

• if only some threads fulfill an if-condition, all others are idle while the code within the if-block is run

• (it's more complicated+flexible on latest hardware, e.g. V100, A100, but performance still reduced)

➡ try to ensure that if-conditions evaluate the same for all threads in a given warp

Advanced Topics
Shared Memory

36

• Memory that is shared between all threads in a block

• Uncached global memory latency: ~400 cycles

• L2/L1 reduces this to 200/20 cycles, but limited size

• Shared Memory ~20 cycles (but also limited size, in fact L1 = shared memory on
new GPU)

• Used to be very important, because one can not directly control what is kept by L1

• With modern data-center NVidia GPU (V100, A100), not as important, because L1
is quite smart as claimed by NVidia and independently confirmed
[arXiv:1804.06826]

• this is also my experience, also for this lecture’s Jacobi example

• perhaps still useful for complicated memory access patterns

• … but of course automatic caching leads to much simpler code!

Conclusions

37

Conclusions
GPU for HEP

• Increasing number of GPU-accelerated applications in HEP calculations

• Calculations can be sped up by factors of by putting
parallelisable algorithms on the GPU

• parallelization framework (future C++ standard?) means we can have one
codebase and deploy for GPU, OpenMP, …

• Allows to study more complex systems (higher multi etc.)

• Theoretically also much better energy and cost efficiency

• Hardware increasingly available, software tooling easier to use

𝒪(10…100)

38

Tutorial

39

Tutorial
Port phase-space integral

• Consider cross section („Introduction to Event Generators“, slide 21)

• Divide and conquer: begin with (massless) phase-space sampling

• Use flat sampling (Rambo algorithm, as mentioned in („Introduction to Event
Generators“, slide 18), port from CPU → GPU

σ = ∫ fi (x1, μ2) fj (x2, μ2) 1
F

¯
∑ |M |2 Θ(cuts)dx1 dx2 dΦn

Vn = ∫ dΦn = ∫ δ4 (P −
n

∑
i=1

pi)
n

∏
i=1

(d4piδ (p2
i) θ (p0

i))

40

Backup

41

42

