Computing on GPUs A practitioner's introduction

Enrico Bothmann, MCnet Summer School 2024, 10th-14th June 2024

Funded by DEFG Deutsche Forschungsgemeinschaft

- Motivation
- Heterogeneous computing
- Introduction to CUDA programming
- Example: Jacobi method
 - Review
 - Port to GPU
- Advanced topics
- Conclusions

Contents

Motivation

The protracted death of Moore's law

Original data up to the year 2010 collected and plotted by M. Horowitz, F. Labonte, O. Shacham, K. Olukotun, L. Hammond, and C. Batten New plot and data collected for 2010-2017 by K. Rupp

42 Years of Microprocessor Trend Data

GROMACS 2020: GPU VS CPU

NVIDIA V100-SXM2 16GB GPU vs

Dual-socket Intel Gold 6240 CPU server (36 cores total)

💿 NVIDIA.

ADH Dodeo

Cellulose 100K atoms

STMV ~1M atoms

Lattice QCD

- early adopters of GPU (since ~2006, then 20x speed-up reported)
- Now, cutting edge lattice QCD calculations all use GPU

madgraph4gpu Porting of MADGRAPH5_AMC@NLO [Valassi et al. 2312.02898]

- Collaboration of theoretical/experimental physicists with software engineers
- reengineering of MG5AMC for LO QCD processes \rightarrow alpha release available
- On GPUs, using SYCL/CUDA, O(80) total speed-up for $gg \rightarrow ttggg$:

Process	Matrix elm	Total	Momenta+ unweight	Matrix elm
$gg \rightarrow t\bar{t}ggg$	Fortran	2233.6 ± 1.9 s	$8.81 \pm 0.07 s$	2224.8 ± 1.9 s
	C++ AVX2	$697.2 \pm 1.2 \text{ s}$	8.71± 0.01s	$688.5 \pm 1.2 \text{ s}$
		$3.20 \pm 0.01 \times$	$1.01 \pm 0.01 \times$	$3.23 \pm 0.01 \times$
	Cuda Tesla A100	27.78 ± 0.05 s	$9.12 \pm 0.05 s$	$18.66 \pm 0.02 \text{ s}$
		$80.40 \pm 0.16 \times$	$0.97 \pm 0.01 \times$	$119.23 \pm 0.14 \times$

CPU: AMD EPYC 7313, GPU: NVidia Tesla A100, baseline: Fortran single-threaded CPU

PEPPER New Algorithms for Amplitudes

- large-n LO ME and phase-space is bottleneck in state-of-the-art SHERPA production for V+jets & tt+jets
 [EB et al. Eur. Phys. J. C 82 (2022), no. 12, 1128, 2209.00843]
- development of novel recursive algorithms that scale well with *n* and are portable & parallelisable (CUDA/Kokkos)
 [EB, Giele, Höche, Isaacson, Knobbe, SciPost Phys. Codebases 3 (2022), 2106.06507], [EB et al., SciPost Phys., 2302.10449], [EB et al., Phys.Rev.D 109 (2024) 014013, 2309.13154], [EB et al., submitted to SciPost Phys., 2311.06198]
- almost all the work is done on the GPU RNG, phase-space sampling & cuts, recursive calculation of $|\mathcal{M}|^2$, unweighting
- → chip-to-chip speed-ups of $\mathcal{O}(10)$
- public 1.1.1 release of fully ported parton-level generator
- particle-level simulation via read-in by SHERPA/PYTHIA

Unweighted event rate [1/h]

PEPPER unweighted event generation rates on 56-core CPU, various GPU

Motivation

current research including GPU use/porting in HEP

- MCnet: MADGRAPH5_AMC@NLO, PEPPER/SHERPA, ML, …
- experiments: trigger, detector simulation, data compression, ML, ...
- mitigate risk of being compute constrained in HL-LHC, FCC-ee, ...
- better performance means increased physics range! (e.g. multiplicity in event generators)

HPC Clusters more and more equipped/built around GPU

- this is a persistent trend since throughput is better for most applications, also fueled by DNN "revolution"
 - 9/10 top supercomputers and 10/10 top "green" supercomputers use GPU or some other accelerator
 - e.g. SUMMIT cluster (top 5 supercomputer) 95 % of compute capacity via GPU
- porting our tools would allow better exploitation of HPC resources now & in the future

CPU vs. GPU efficiencies Theoretical comparison on a development node of ITP Göttingen

	E	MFLOPS (double precision)	Watt	€ / MFLOPS	MFLOPS / Watt
Intel®Xeon®Silver 4214R 2.4 GHz 12core; 192 GB	800	40 (single thread: 2)	100	20	0.4
NVIDIA® Tesla V100S 32 GB	6000	8200	250	0.7	32.8

Heterogenous Programming

Heterogeneous programming

	CPU	GPU
optimised for	racing through serial operations	doing massively parallel calculations
minimises	latency (= how long it takes to finish a task once)	throughput (= how many times a task is completed within a time period)
architecture	high clock speed, lots of control logic, large caches, fast memory	lots of transistors dedicated to calculations, la memory bandwidth
for HEP applications	good for complex algorithms with lots of branching (if/else) and lots of caching	good for comparably simple algorithms which easy to parallelise (prime example: Monte Ca

Heterogeneous programming CPU + GPU: host/device programming model

using namespace std; #define N 1024 #define RADIUS 3

#define BLOCK_SIZE 16

Minclude <iostream> Minclude <algorithm>

> _global__ void stencil_1d(int *in, int *out) { __shared__ int temp[BLOCK_SIZE + 2 * RADIUS]; int gindex = threadidx.x + blockldx.x * blockDim.x; int lindex = threadidx.x + RADIUS;

> > // Read input elements into shared memory
> > temp[lindex] = in[gindex];
> > if (threadIdx.x < RADIUS) {
> > temp[lindex - RADIUS] = in[gindex - RADIUS];
> > temp[lindex + BLOCK_SIZE] = in[gindex + BLOCK_SIZE];
> > }</pre>

// Synchronize (ensure all the data is available)
___syncthreads();

// Apply the stencil int result = 0; for (int offset = -RADIUS ; offset <= RADIUS ; offset++) result += temp[index + offset];

// Store the result
out[gindex] = result;

/

void fill_ints(int *x, int n) { fill_n(x, n, 1);

int main(void) {

int *in, *out; // host copies of a, b, c int *d_in, *d_out; // device copies of a, b, c int size = (N + 2*RADIUS) * sizeof(int);

// Alloc space for host copies and setup values in = (int *)malloc(size); fil_ints(in, N + 2*RADIUS); out = (int *)malloc(size); fil_ints(out, N + 2*RADIUS)

// Alloc space for device copies cudaMalloc((void **)&d_in, size); cudaMalloc((void **)&d_out, size);

// Copy to device cudaMemcpy(d_in, in, size, cudaMemcpyHostToDevice); cudaMemcpy(d_out, out, size, cudaMemcpyHostToDevice);

// Launch stencil_1d() kernel on GPU stencil_1d<<<N/BLOCK_SIZE,BLOCK_SIZE>>>(d_in + RADIUS, d_out + RADIUS);

> // Copy result back to host cudaMemcpy(out, d_out, size, cudaMemcpyDeviceToHost);

// Cleanup free(in); free(out); cudaFree(d_in); cudaFree(d_out); return 0;

}

parallel fn

serial code

parallel code serial code

- simplify porting by only parallelising the parts of the code that matter ("hot spots")
- complicated by additional time
 needed to copy data
 between host and
 device memory

Heterogeneous programming Simple processing flow

to GPU memory

Heterogeneous programming Simple processing flow

- 2. Load GPU program and execute,

Heterogeneous programming Simple processing flow

- to GPU memory
- 2. Load GPU program and execute, caching data on chip for performance
- CPU memory

Introduction to CUDA

Introduction to CUDA programming Software/Hardware

- run calculations on their GPU
- Can I use CUDA on any (NVidia) GPU?

	example	32FP TFLOPS	64FP TFLOPS		
gaming	NVidia GeForce RTX 3090	35.6	0.556		
data center	NVidia V100S	16.4	8.2		

All pushes trend to reduced precision (single, half, ...) \rightarrow challenge for proper utilisation for scientific calculations

• CUDA: compiler (nvcc), C language extensions and libraries by NVidia to

• No ... and for many scientific codes you might need a data center GPU:

Introduction to CUDA programming Mixing host and device code

global void compute(void) { // this runs parallelised over BxT threads on the GPU

int main(void) { compute<<<B, T>>>(); printf("Hello World!\n"); return 0;

- __global__: function callable by host, executed on device
- <<<B, T>>>(...): call from host code to device code
 - B: number of thread blocks
 - T: number of threads per block

Complete vector addition example

```
global void add(int *a, int *b, int *c) {
 int i = blockIdx.x * blockDim.x + threadIdx.x;
 c[i] = a[i] + b[i];
int main(void) {
 int size = N * sizeof(int);
 // host memory for vectors a, b, c
 int *a, *b, *c;
 a = malloc(size); b = malloc(size); c = malloc(size);
 random fill(a);
 random fill(b);
 // device memory for vectors a, b, c
 int *da, *db, *dc;
 // copy a, b to device
 cudaMemcpy(d a, a, size, cudaMemcpyHostToDevice);
 cudaMemcpy(d_b, b, size, cudaMemcpyHostToDevice);
 compute<<<B, T>>>(a, b, c);
 // copy c from device
 cudaMemcpy(c, d_c, size, cudaMemcpyDeviceToHost);
 free(a); free(b); free(c);
 cudaFree(d_a); cudaFree(d_b); cudaFree(d_c);
 return 0;
```


Introduction to CUDA programming

For a C++ like approach, use CUDA's thrust library: (will use a mix of pure CUDA and Thrust API in the tutorial)


```
int main(void) {
 // host memory for vectors a, b, c
 thrust::host vector<int> a(N), b(N), c(N);
 // device memory for vectors a, b, c
 thrust::device_vector<int> d_a(N), d_b(N), d_c(N);
 random fill(a);
 random_fill(b);
 // copy a, b to device
 d a = a;
 db = b;
 thrust::transform(d_a.begin(), d_a.end(),
                    d b.begin(),
                    d c.begin(), thrust::plus<int>());
 // copy c from device
 c = d_c;
 return 0;
```

Examples also exist in the Python world:

from numba import cuda
import numpy as np

or use pyCUDA, pyTorch, TensorFlow ...

Example: Jacobi Method

Example: Jacobi method

task: solve $\Delta \phi(x, y) = 0$ iteratively on an NxN grid, Dirichlet boundary conditions

Example: Jacobi method Review: Algorithm

- set each point to average of neighbours: $phi[j,i] = 0.25 * (phi_prev[j,i-1])$
 - + phi_prev[j,i+1] + phi_prev[j-1,i]
 - + phi_prev[j+1,i] 4 * h * h)
- phi_prev = values from previous iteration
- h = grid spacing
- repeat for many Niterations until converged

	j-1,i		
j,i-1	j,i	j,i+1	
	j+1,i		

Example: Jacobi method Review: Pseudo Code

```
//Initialization
for j = 1, Ny
  for i = 1, Nx
     phi_prev[j,i] = 0.0
//Boundary Conditions
for i = 0, Nx-1
{
 x = i * h
  phi_prev[0,i] = x*x
 phi_prev[Nj-1,i] = x * x + 1.0
for j = 1, Ny-2
ł
  y = j*h
  phi_prev[j,0] = y*y
 phi_prev[j,Ni-1] = 1.0 + y*y
```

```
//Iteration Loop
for k = 1, Niterations
{\mathbf f}
  for j = 1, Ny-2
    for i = 1, Nx-2
      phi[j,i] = 0.25 * (
           phi_prev[j,i-1]
        + phi_prev[j,i+1]
        + phi_prev[j-1,i]
        + phi_prev[j+1,i] - 4*h*h)
  for j = 1, Ny-2
    for i = 1, Nx-2
      phi_prev[j,i] = phi[j,i];
```

Example: Jacobi method **CPU Time Profiling**

Example: Jacobi method CPU Time Profiling

241		
242		<pre>for (unsigned int k = 0;</pre>
243	0 %	<pre>for (unsigned int j = 1</pre>
244	4,6 %	for (unsigned int i =
245	17,7 %	t[i * Nj + j] =
246	17,6 %	0.25f *
247	8,4 %	(t_prev[(i - 1)
248	51,6 %	t_prev[i * Nj
249		}
250		}
251		
252		<pre>float *pingPong = t_pre</pre>
253		t_prev = t;
254		t = pingPong;
255		}
256		

```
k < nIterations; k++) {
; j < (Nj – 1); j++) {
: 1; i < (Ni – 1); i++) {
```

```
* Nj + j] + t_prev[(i + 1) * Nj + j] +
+ (j – 1)] + t_prev[i * Nj + (j + 1)] – 4 * h * h);
```

ev;

0,1		1,1	
0,2		1,2	

Example: Jacobi method GPU port: loop over i, j becomes __global__ function

```
_global__ void calculateJacobi_V1(float *input, float *output,
                                   int Nx, int Ny, float h) {
int i = blockDim.x * blockIdx.x + threadIdx.x;
int j = blockDim.y * blockIdx.y + threadIdx.y;
if (i > 0 \& \& j > 0 \& \& i < (Nx - 1) \& \& j < (Ny - 1)) {
   phi += 0.25f*input[j * Nx + i - 1];
   phi += 0.25f*input[(j - 1) * Nx + i];
   phi += 0.25f*input[j * Nx + i + 1];
   phi += 0.25f*input[(j + 1) * Nx + i];
   output[j * Nx + i] = phi;
```


Example: Jacobi method Port to GPU

Example: Jacobi method Port to GPU

\$./jacobi_gpu CPU Time: 5770.000000 ms GPU Time: 40.599007 ms Is host equal to device = 1Speedup = 142.121704xAll done

Pretty good But far away from the factor one would have hoped for by comparing theoretical FLOPS!

```
Parameters: Nx=2048, Ny=2048, nIteration=1000
```

Example: Jacobi method Profile GPU performance with NSight

Example: Jacobi method Profile GPU performance with NSight

Advanced Topics

Advanced Topics Coalesced memory access

- Uncached global memory latency: ~400 cycles
 - L2/L1 reduces this to 200/20 cycles, but limited size lacksquare
- Single-precision instruction: ~ 4 cycles \rightarrow try to limit memory reads/writes!!!
- very important consideration: 32 threads (= 1 warp) can combine ("coalesce") their memory reads/writes into a single transaction, speedups by up to 32x possible
- use structure of arrays instead array of structures

Advanced Topics Branch divergence

- warp (= 32 threads) operates in lock-step (Single Instruction Multiple Threads)
- if only some threads fulfill an if-condition, all others are idle while the code within the if-block is run
- (it's more complicated+flexible on latest hardware, e.g. V100, A100, but performance still reduced)
- ➡ try to ensure that if-conditions evaluate the same for all threads in a given warp

```
if (threadIdx.x < 4) {
        A;
        B;
} else {
        X;
        Y;
}
Z;</pre>
```


ר |)

Advanced Topics Shared Memory

- Memory that is shared between all threads in a block
- Uncached global memory latency: ~400 cycles
 - L2/L1 reduces this to 200/20 cycles, but limited size
- Shared Memory ~20 cycles (but also limited size, in fact L1 = shared memory on new GPU)
- Used to be very important, because one can not directly control what is kept by L1 With modern data-center NVidia GPU (V100, A100), not as important, because L1 is quite smart as claimed by NVidia and independently confirmed [arXiv:1804.06826]
 - this is also my experience, also for this lecture's Jacobi example
 - perhaps still useful for complicated memory access patterns
 - ... but of course automatic caching leads to much simpler code!

Conclusions

Conclusions **GPU for HEP**

- Increasing number of GPU-accelerated applications in HEP calculations • Calculations can be sped up by factors of $\mathcal{O}(10...100)$ by putting
- parallelisable algorithms on the GPU
- parallelization framework (future C++ standard?) means we can have one codebase and deploy for GPU, OpenMP, ...
- Allows to study more complex systems (higher multi etc.)
- Theoretically also much better energy and cost efficiency
- Hardware increasingly available, software tooling easier to use

Tutorial

Tutorial Port phase-space integral

• Consider cross section ("Introduction to Event Generators", slide 21)

$$\sigma = \int f_i(x_1, \mu^2) f_j(x_2, \mu^2) \frac{1}{F} \sum |M|^2 \Theta(\text{cuts}) dx_1 dx_2 d\Phi_n$$

• Divide and conquer: begin with (massless) phase-space sampling

$$V_n = \int \mathrm{d}\Phi_n = \int \delta^4 \left(P - \frac{1}{2} \right) d\Phi_n = \int \delta^4 \left(P$$

 Use flat sampling (Rambo algorithm, as mentioned in ("Introduction to Event Generators", slide 18), port from CPU → GPU

$$\sum_{i=1}^{n} p_{i} \prod_{i=1}^{n} \left(d^{4} p_{i} \delta\left(p_{i}^{2}\right) \theta\left(p_{i}^{0}\right) \right)$$

Tesla Model, Best Case Performance	P4	P40	P100	P100	P100	V100	V100	V100	T4	A100	A100
GPU	GP104	GP102	GP100	GP100	GP100	GV100	GV100	GV100	TU104	GA100	GA100
Bus	PCI-E 3.0	PCI-E 3.0	PCI-E 3.0	PCI-E 3.0	SXM	HGX-1	PCI-E 3.0	SXM2	PCI-E 3.0	PCI-E 4.0	SXM4
GDDR5 or GDDR6/HBM2 Memory	8 GB	24 GB	12 GB	16 GB	16 GB	16 GB	16/32 GB	16/32 GB	16 GB	40 GB	40 GB
Performance / Watt											
INT8 Efficiency (Gigaops/Watt)	290.7	188.0		5	0.75	334.9	224.0	209.3	1,857.1	6,240.0	6,240.0
FP16 TC, FP32 ACC Efficiency (Gigaflops/Watt)	2.70	-	-	-	1.7	666.7	448.0	416.7	930.4	1,560.0	1,560.0
FP16 Efficiency (Gigaflops/Watt)	1	-	74.8	74.8	70.7	141.3	100.5	104.7	-	195.0	195.0
FP32/TF32 Efficiency (Gigaflops/Watt)	72.7	47.2	37.2	37.2	35.3	70.7	50.2	52.3	116.3	1,040.0	1,040.0
FP64 Efficiency (Gigaflops/Watt)	2.3	1.5	18.8	18.8	17.7	35.3	25.0	26.0	3.6	48.8	48.8
\$ / Performance											
Street Price, Single Unit	\$2,450	\$5,000	\$3,000	\$3,500	\$5,000	\$5,000	\$6,000	\$7,500	\$3,999	\$8,500	\$10,000
\$ / INT8 Gigaops	\$112	\$106		2	_	\$100	\$107	\$119	\$31	\$7	\$8
\$ / FP16 TC, FP32 ACC Gigaflops	0 - 0	1.0	-	-	0.75	\$50	\$54	\$60	\$61	\$14	\$16
\$ / FP16 Gigaflops	200	-	\$160	\$187	\$236	\$199	\$214	\$239	2.7	\$109	\$128
\$ / FP32/TF32 Gigaflops	\$450	\$424	\$323	\$376	\$472	\$472	\$478	\$478	\$491	\$27	\$32
\$ / FP64 Gigaflops	\$14,412	\$13,514	\$638	\$745	\$943	\$943	\$962	\$962	\$15,719	\$436	\$513
S / Performance / Watt											
\$ / INT8 Gigaops / Watt	\$8.43	\$26.60	-	-	2-1	\$14.93	\$26.79	\$35.83	\$2.15	\$1.36	\$1.60
\$ / FP16 TC, FP32 ACC Gigaflops / Watt	-	-	-	-	221	\$7.50	\$13.39	\$18.00	\$4.30	\$5.45	\$6.41
\$ / FP16 Gigaflops / Watt	-	-	\$40.11	\$46.79	\$70.75	\$35.38	\$59.71	\$71.66	-	\$43.59	\$51.28
\$ / FP32/TF32 Gigaflops / Watt	\$33.72	\$105.93	\$80.65	\$94.09	\$141.51	\$70.75	\$119.43	\$143.31	\$34.39	\$8.17	\$9.62
\$ / FP64 Gigaflops / Watt	\$1,080.88	\$3,378.38	\$159.57	\$186.17	\$283.02	\$141.51	\$240.38	\$288.46	\$1,100.35	\$174.36	\$205.13
* Base Teraops or Teraflops unknown											

