Tutorial — MG5 to Contur From Theory to Exclusion

MadGraph5 Ramon Winterhalder (UCLouvain) **Zenny Wettersten (CERN)**

Rivet+Contur Jon Butterworth (UCL) Martin Habedank (University of Glasgow)

Introduction

Monte-Carlo Physics

Our goal

- Cross section
- Differential cross section
- Unweighted events

Monte-Carlo Physics

MadGraph5 Tutorial

Ramon Winterhalder (UCLouvain) Zenny Wettersten (CERN)

Docker image

\$ docker pull hepstore/contur-tutorial:mcnet24

\$ docker run -it -v \$PWD:\$PWD hepstore/contur-tutorial:mcnet24 /bin/bash

\$ cd /contur/

If you do \$1s, you should see the following content

root@9e650987cb7	2:/contur# 1	ls			
ChangeLog	README.md	bin	contur_user	dist	ma
MG5_aMC_v3_5_4	TODOmpl.md	contur	conturenv.sh	doc	re
Makefile	attic	contur-visualiser	data	docker	re

keDoc.sh quirements.in quirements.txt setupPBZpWp.sh

setup.py setupContur.sh

tests

I. Built-in MG5 tutorial

II. Understanding the cards

III. Understanding the syntax

IV. BSM process and mass scan (bonus)

V. Generate hepMC files for the **Rivet+Contur Tutorial**

Outline of the Tutorial

Where to find help?

- Ask us
- Use the command "help" / "help XXX"
 - "help" tells you the next command that you can do
- Launchpad:
 - https://answers.launchpad.net/madgraph5
 - FAQ: <u>https://answers.launchpad.net/madgraph5/+faqs</u>

- Launch the code
 - → \$./bin/mg5_aMC
- Type "tutorial"
 - → Follow instructions!

Exercise I — Built-in Tutorial

Exercise II — Parameters and Cards

- - \rightarrow generate p p > mu+ mu-
- Check
 - What is the Z mass?
 - Are there any cuts? (Do we need cuts?)
 - Beam energy
- Useful cards to check are
 - param_card: model parameters
 - run_card: beam/run parameters and cuts

Compute the LO cross-section for our BSM background (see later)

- - \rightarrow pp > mu+ mu-
 - \rightarrow pp > z, z > mu+ mu-

 - \Rightarrow pp > mu+ mu- / z

Generate the cross-section and the distribution (invariant mass) for

\Rightarrow p p > mu+ mu- \$ z (warning set sde_strategy=1 in the run_card)

Hint: To plot automatically distributions mg5> install MadAnalysis5

Get a new model (in mg5)

./bin/mg5_aMC set auto_convert_model T import model VPrime_NLO

Check the model

./bin/mg5_aMC import model VPrime_NLO check p p > mu+ mudisplay particles zp

- Compute the cross-section for
 - \Rightarrow p p > zp
 - For zp mass 500 GeV, 1 TeV, 1.5 TeV, 2 TeV
 - Trick you can use: scan:[500,1000,1500,2000]
 - Does the cross section decrease/increase (why should it)?
 - \Rightarrow p p > zp , zp > mu+ mu-
 - For zp mass 500 GeV, 1 TeV, 1.5 TeV, 2 TeV
 - Does the cross-section decrease/increase (why should it be)?
 - What is the relation to the previous cross section?
 - Compute the branching ratio

Prerequisite for Contur

Generate hepMC file for process of interest

1. Launch

2. Type 'shower=pythia8' or just '1' and press enter

- Choose the shower/hadronization program
- 2. Choose the detector simulation program
- 3. Choose an analysis package (plot/convert)
- 4. Decay onshell particles
- 5. Add weights to events for new hypp.

3. Press enter and run. It automatically generates an hepMC file

========= values ===============	= ======== other options ====================================
shower = OFF	Pythia8
detector = Not Avail.	Please install module
analysis = Not Avail.	Please install module
madspin = OFF	ON onshell full
reweight = OFF	ON
	/

======================================	======= other options =======\
shower = Pythia8	OFF
detector = Not Avail.	Please install module
analysis = Not Avail.	Please install module
madspin = OFF	ON onshell full
reweight = OFF	ON
	/

MadGraph5 Tutorial

Solutions

- How do you change
 - ➡ Z mass
 - ➡ Z width
 - W mass
 - beam energy
 - pt cut on the lepton

Exercise II – Cards meaning

#######################################
INFORMATION FOR MASS
#######################################
Block mass
5 4.700000e+00 # MB
6 1.730000e+02 # MT
15 1.777000e+00 # MTA
23 9.118800e+01 # MZ
23 I.23000000+02 # MN
Dependent parameters, given by model restrictions.
Those values should be edited following the
analytical expression. MG5 ignores those values
but they are important for interfacing the output of MG5
to external program such as Pythia.
1 0.000000e+00 # d : 0.0
2 0.000000e+00 # u : 0.0
3 0.000000e+00 # s : 0.0
4 0.000000e+00 # c : 0.0
11 0.000000e+00 # e- : 0.0
12 0.000000e+00 # ve : 0.0
13 0.000000e+00 # mu- : 0.0
14 0.000000e+00 # vm : 0.0
16 0.000000e+00 # vt : 0.0
21 0.000000e+00 # g : 0.0
22 0.000000e+00 # a : 0.0
24 8.041900e+01 # w+ : cmath.sqrt(MZexp2/2. + cmath.se

Exercise II – Cards meaning

sqrt(MZ__exp__4/4. - (aEW*cmath.pi*MZ__exp__2)/(Gf*sqrt__2)))

#######################################	
## INFORMATION FOR MASS	
#######################################	
Block mass	
5 4.700000e+00 # MB	
6 1.730000e+02 # MT	
15 1.777000e+00 # MTA	
23 9.118800e+01 # MZ	
25 1.250000e+02 # MH	
<pre>## Dependent parameters, given by model restrictions.</pre>	
## Those values should be edited following the	
<pre>## analytical expression. MG5 ignores those values</pre>	
## but they are important for interfacing the output of M	G5
<pre>## to external program such as Pythia.</pre>	
1 0.000000e+00 # d : 0.0	
2 0.000000e+00 # u : 0.0	
3 0.000000e+00 # s : 0.0	
4 0.000000e+00 # c : 0.0	
11 0.000000e+00 # e- : 0.0 SO V	
12 0.000000e+00 # ve : 0.0	
13 0.000000e+00 # mu- : 0.0	
14 0.000000e+00 # vm : 0.0	
16 0.000000e+00 # vt : 0.0	
21 0.000000e+00 # g : 0.0	
2700000000+00 # 2 • 00	
24 8.041900e+01 # w+ : cmath.sqrt(MZexp2/2. + cmath	• S

Exercise II – Cards meaning

W mass is an internal parameter! MG5 does NOT use this value! u need to change MZ or Gf or alpha_EW

sqrt(MZ__exp__4/4. - (aEW*cmath.pi*MZ__exp__2)/(Gf*sqrt__2)))

- - \rightarrow pp > mu+ mu-
 - \rightarrow pp > z, z > mu+ mu-

 - \Rightarrow pp > mu+ mu- / z

Generate the cross-section and the distribution (invariant mass) for

\Rightarrow p p > mu+ mu- \$ z (warning set sde_strategy=1 in the run_card)

Hint: To plot automatically distributions mg5> install MadAnalysis5

p p > mu + mu -

p p > mu + mu - /z

p p > mu + mu -

Z Peak

No Z Peak

Z Peak

No Z Peak

p p > mu + mu - /z

Z Peak

No Z Peak

- (i.e. on-shell substraction).
- The "/" should be avoided \rightarrow leads to violation of gauge invariance! \otimes

Onshell cut: BW_cut $|M^* - M| < BW_{cut} * \Gamma$

The physical distribution is (very close to) exact sum of the two other one.

• The "\$" forbids the Z to be on-shell but the photon invariant mass can be at M_Z

- NEXT SLIDE is generated with bw_cut = 5
- This is Too SMALL to have a physical meaning
 → 15 the default value used in previous plot is better
- This is done to illustrate how the "\$" syntax works.

(blue curve)

pp > e+e-/Z (red curve)

adding p p > e + e - \$ Z (blue curve)

Z on-shell veto

pp > e+e-/Z (red curve)

- Z on-shell veto
- In veto area only photon contribution

pp > e+e-/Z (red curve)

- Z on-shell veto
- In veto area only photon contribution
- area sensitive to z-peak

pp > e+e-/Z (red curve)

- Z on-shell veto
- In veto area only photon contribution
- area sensitive to z-peak
- very off-shell Z, the
 difference between the
 curves is due to
 interference which needs
 to be kept in simulations.

pp > e+e-/Z (red curve)

adding p p > e + e - \$ Z (blue curve)

- Z on-shell veto
- In veto area only photon contribution
- area sensitive to z-peak
- very off-shell Z, the difference between the curves is due to interference which **needs** to be kept in simulations.

The "\$" can be use to split the sample in BG/SG area

- Syntax like
 - ⇒ p p > z > e+ e-
 - \Rightarrow pp > e+ e- / z
 - \Rightarrow pp > e+ e- \$\$ z
- Out gauge invariant!
- ③ Ignores diagram interference!
- ② Can provide unphysical distributions.

(ask one s-channel Z)

(forbids any Z)

(forbids any Z in s-channel)

- Syntax like
 - ⇒ p p > z > e+ e-
 - \Rightarrow pp > e+ e- / z
 - \Rightarrow pp > e+ e- \$\$ z
- ⊗ Not gauge invariant!
- ③ Ignores diagram interference!
- Can provide unphysical distributions.

Avoid them as much as possible!

(ask one s-channel Z)

(forbids any Z)

(forbids any Z in s-channel)

- Syntax like
 - ⇒ p p > z > e+ e-
 - \Rightarrow pp > e+ e- / z
 - \rightarrow pp > e+ e- \$\$ z
- Out gauge invariant!
- ③ Ignores diagram interference!
- Can provide unphysical distributions.

Avoid them as much as possible!

check physical meaning and gauge/Lorentz invariance if you do.

(ask one s-channel Z)

(forbids any Z)

(forbids any Z in s-channel)

- Syntax like
 - pp>z, z>e+e-
- Are linked to cuts $|M^* M| < BW_{cut} * \Gamma$
- Are safer to use

(on-shell z decaying)

• p p > e + e - Z (forbids s-channel z to be on-shell)

- Syntax like
 - pp>z, z>e+e-
- Are linked to cuts $|M^* M| < BW_{cut} * \Gamma$
- Are safer to use

Prefer this syntax over previous ones!

(on-shell z decaying)

• p p > e + e - Z (forbids s-channel z to be on-shell)

Run	Collider	Banner	Cross section (pb)	Events	Data	Output	Action
run_01	p p 6500.0 x 6500.0 GeV	<u>tag_1</u>	$175 \pm 0.18 \pm systematics$	10000	parton madevent	LHE	remove run launch detector simulation
run_02	p p 6500.0 x 6500.0 GeV	<u>tag_1</u>	$12.03 \pm 0.012 \pm systematics$	10000	parton madevent	LHE	remove run launch detector simulation
run_03	p p 6500.0 x 6500.0 GeV	<u>tag_1</u>	<u>1.981 ± 0.0017 ± systematics</u>	10000	parton madevent	LHE	remove run launch detector simulation
run_04	p p 6500.0 x 6500.0 GeV	<u>tag_1</u>	0.4651 ± 0.00043 ± systematics	10000	parton madevent	LHE	remove run launch detector simulation

Run	Collider	Banner	Cross section (pb)	Events	Data	Output	Action
run_01	p p 6500.0 x 6500.0 GeV	<u>tag_1</u>	<u>0.9164 ± 0.00088 ± systematics</u>	10000	parton madevent	<u>LHE</u>	remove run launch detector simulation
run_02	p p 6500.0 x 6500.0 GeV	<u>tag_1</u>	$\underline{0.1304 \pm 0.00025 \pm systematics}$	10000	parton madevent	<u>LHE</u>	remove run launch detector simulation
run_03	p p 6500.0 x 6500.0 GeV	<u>tag_1</u>	$\underline{0.03253 \pm 6.5e-05} \pm \underline{systematics}$	10000	parton madevent	<u>LHE</u>	remove run launch detector simulation
run_04	p p 6500.0 x 6500.0 GeV	<u>tag_1</u>	0.009965 ± 1.4e-05 ± systematics	10000	parton madevent	LHE	remove run launch detector simulation

Branching Ratio: 0.005 0.011 0.016 0.019 → Unstable Branching Ratio (What?)

Exercise IV – Results

p p > zp

p p > zp , zp > mu+ mu-

Run	Collider	Banner	Cross section (pb)	Events	Data	Output	Action
run_01	p p 6500.0 x 6500.0 GeV	<u>tag_1</u>	$175 \pm 0.18 \pm systematics$	10000	parton madevent	<u>LHE</u>	remove run launch detector simulation
run_02	p p 6500.0 x 6500.0 GeV	<u>tag_1</u>	$12.03 \pm 0.012 \pm systematics$	10000	parton madevent	<u>LHE</u>	remove run launch detector simulation
run_03	p p 6500.0 x 6500.0 GeV	<u>tag_1</u>	<u>1.981 ± 0.0017</u> ± <u>systematics</u>	10000	parton madevent	<u>LHE</u>	remove run launch detector simulation
run_04	p p 6500.0 x 6500.0 GeV	<u>tag_1</u>	0.4651 ± 0.00043 ± systematics	10000	parton madevent	LHE	remove run launch detector simulation

Run	Collider	Banner	Cross section (pb)	Events	Data	Output	Action
run_05	p p 6500.0 x 6500.0 GeV	<u>tag_1</u>	$5.647 \pm 0.0055 \pm systematics$	10000	parton madevent	<u>LHE</u>	remove run launch detector simulation
run_06	p p 6500.0 x 6500.0 GeV	<u>tag_1</u>	$\underline{0.3729 \pm 0.00036} \pm \underline{systematics}$	10000	parton madevent	<u>LHE</u>	remove run launch detector simulation
run_07	p p 6500.0 x 6500.0 GeV	<u>tag_1</u>	$\underline{0.06119 \pm 6.5e-05} \pm \underline{systematics}$	10000	parton madevent	<u>LHE</u>	remove run launch detector simulation
run_08	p p 6500.0 x 6500.0 GeV	<u>tag_1</u>	$\underline{0.01444 \pm 1e-05} \pm \underline{systematics}$	10000	parton madevent	LHE	remove run launch detector simulation

Branching Ratio: 0.032 0.031 0.030 0.03 → Stable Branching Ratio (Good)

Exercise IV — With auto width

p p > zp

p p > zp , zp > mu+ mu-

Jon Butterworth (UCL) Martin Habedank (University of Glasgow)

Rivet+Contur Tutorial