Search for Baryon Number Violation in top quark production and decay using proton-proton collisions at 13 TeV

ARXIV:2402.18461

LHCtopWG2024 24-26 April 2024

On behalf of the CMS Collaboration

Motivations

- In the standard model (SM), the baryon number is a conserved quantum number
 - Not from a fundamental symmetry in the SM
- Baryon number can be violated by non-perturbative effects in the SM
 - Too small to explain the observed matter-antimatter asymmetry in the universe
- Certain scenarios of physics beyond the SM naturally include Baryon Number Violation (BNV)
 - Such as grand unified theories and supersymmetry
- Various low-energy direct searches for BNV signatures are performed
 - LHC provide the highest sensitivity for potential high-energy BNV processes involving the top quark
- I present the results of our recent search for BNV in top quark production and decay at the LHC
 - https://arxiv.org/abs/2402.18461

state of the art

Phenomenological studies for the top quark BNV search at the LHC are done in 2011

PhysRev D85 (2012) 016006 [arXiv:1107.3805]

- CMS collaboration performed a search for top quark BNV signatures at 8 TeV in lepton+jets final state
 - Phys. Lett. B 731 (2014) 173 [arXiv:1310.1618]
 - Only BNV contribution to top quark decay is included
 - Upper limits are set on the top quark BNV decay branching fraction

Table 6: Observed 95% CL upper limit on \mathcal{B} , expected median 95% CL limit for the $\mathcal{B} = 0$ hypothesis and ranges that are expected to contain 68% of all observed deviations from the expected median for the muon and electron channels and for their combination.

Channel	95% CL	Expected	68% CL exp. range
Muon	0.0016	0.0029	[0.0017, 0.0046]
Electron	0.0017	0.0030	[0.0017, 0.0047]
Combined	0.0015	0.0028	[0.0016, 0.0046]

> Our new search for top quark BNV signatures at 13 TeV is performed in dilepton final states

- > BNV contribution to single top quark production is included for the first time
- Various quark flavour combinations are considered for the first time
- Most stringent limits are set on the branching fraction of top quark BNV decays

Signal modeling

- A model independent effective field theory approach is followed
- Two independent operators can describe the BNV interactions
 - The s and t labels denote that the mass of a heavy mediator exchanged in the s or t channels

$$\mathcal{L} = \mathcal{L}_{\mathrm{SM}} + \mathcal{L}_{\mathrm{eff}} = \mathcal{L}_{\mathrm{SM}} + \sum_x rac{C_x}{\Lambda^2} O_x + \dots$$
 ,

 $O^{(s)} \equiv \epsilon^{\alpha\beta\gamma} [\overline{t_{\alpha}^{c}} (aP_{L} + bP_{R})D_{\gamma}] [\overline{U_{\beta}^{c}} (cP_{L} + dP_{R})E],$ $O^{(t)} \equiv \epsilon^{\alpha\beta\gamma} [\overline{t_{\alpha}^{c}} (a'P_{L} + b'P_{R})E] [\overline{U_{\beta}^{c}} (c'P_{L} + d'P_{R})D_{\gamma}],$

No specific chirality is assumed for the BNV interactions

 \blacktriangleright a=b=c=d= $\sqrt{C_s}$ and a'=b'=c'=d'

$$\mathcal{L}_{\text{eff}} = \frac{C_s}{\Lambda^2} \epsilon^{\alpha\beta\gamma} [\overline{\mathfrak{t}^c_{\alpha}} \mathfrak{d}_{\gamma}] [\overline{\mathfrak{u}^c_{\beta}} \ell] + \frac{C_t}{\Lambda^2}$$

BNV vertices open new top quark

Various quark flavor combinations can contribute to the BNV signal

> tlud, tlus, tlub, tlcd, tlcs,and tlcb (I = electron or muon)

- Signal events are generated at LO with MadGraph5_aMC@NLO using TopBNV model (<u>https://feynrules.irmp.ucl.ac.be/wiki/TopBNV</u>)
- Independent signal samples are generated for various quark flavor combinations in production and decay channels

Top quark decay (TT mode)

Single top quark production (ST mode)

Signal features

Signal cross sections for the production and decay modes are as the following;

Table 1: Theoretical inclusive cross sections, in units of pico barn (pb), for single top quark production (ST) and top quark-antiquark pair production with the decay (TT) via BNV interactions, assuming a top quark mass of 172.5 GeV, the top quark decay width 1.33 GeV, $\Lambda = 1$ TeV, and $C_t = 1$ or $C_s = 1$. The uncertainties arising from the choice of the renormalization and factorization scales and PDFs are given as ($\sigma \pm$ Scale \pm PDF). Here, the sum of the two cross sections is given where $\ell = e$ or μ .

Process	$\sigma(C_t = 1)$ [pb]	$\sigma(C_s = 1)$ [pb]
ST (tℓud)	$31.5 \pm 2.1 \pm 1.0$	$10.7 \pm 0.7 \pm 0.4$
ST (tℓus)	$8.1\pm0.3\pm0.5$	$2.8\pm0.1\pm0.2$
ST (tℓub)	$3.31 \pm 0.13 \pm 0.06$	$1.14 \pm 0.05 \pm 0.02$
ST (tℓcd)	$2.77 \pm 0.22 \pm 0.01$	$0.96 \pm 0.01 \pm 0.07$
ST (tℓcs)	$0.79 \pm 0.02 \pm 0.11$	$0.27 \pm 0.01 \pm 0.04$
ST (tℓcb)	$0.28 \pm 0.03 \pm 0.04$	$0.10 \pm 0.01 \pm 0.01$
TT	$0.007 \pm 0.002 \pm 0.001$	$0.007 \pm 0.002 \pm 0.001$

PhysRev D85 (2012) 016006 [arXiv:1107.3805]

FIG. 2. Transverse momentum for the charged lepton in the BNV production signal $\bar{t}\mu^+$ (from *ud* initial state) and in the W^++3 -jet and $\bar{t}W^+$ backgrounds. Top quarks are decayed hadronically. Selection cuts on the three jets and the muon are given in the text.

- The dominant signal process is the ST mode because
 - It has larger cross section compared to the TT mode
 - > Its final-state particles have a harder pT spectrum compared to SM processes and the TT mode
- > We optimize our analysis based on the production mode features and add the decay mode just for completeness

Datasets, final states and selections

Datasets

Full run2 datasets corresponding to an integrated luminosity of 138/fb

- Final states
 - > Dilepton (e⁺e⁻, e[±] μ^{\mp} , and $\mu^{+}\mu^{-}$)
- BG processes are estimated by Monte Carlo simulation
 - $\succ t\bar{t}, tW$: POWHEG v2.0
 - \succ $t\bar{t}W, t\bar{t}Z, DY + jets, W + jets, WW, WZ, ZZ: MadGraph5_aMC@NLO$

> Trigger

- A combination of single lepton and dilepton triggers
- Object selections
 - Electron (muon) candidates are selected with pt>35 (53) GeV and $|\eta| < 2.4$
 - > AK4 jet candidate are selected with pt> 30 GeV and $|\eta| < 2.4$
 - DEEPJET algorithm is used to tag b-jets with an average of ~70% efficiency
- Event selections
 - Exactly one opposite-sign lepton pair
 - Invariant mass of dilepton system > 106 GeV and MET> 60 GeV
 - Exactly one b-tagged jet irrespective of the number of untagged jets
- Background combination after event selection
 - \succ tt (~89%), tW (~9%), DY (~1%)

7

Signal discrimination

- Signal events in the ST mode have specific features
 - The lepton and top quark are produced directly from the annihilation of the incoming quarks and are Lorentz-boosted and approximately back-to-back
 - > The subleading lepton in the ST mode is primarily from the top quark decay chain
- To benefit from these features, we reconstruct the top quark candidate in the ST mode
 - The four-momentum vectors of the top quarks are reconstructed from the subleading lepton, the neutrino, and the b jet candidate
 - The neutrino pt is inferred from MET and its pz component is calculated using the W mass constraint
- A boosted decision tree is employed to separate signal from background events with 10 input variables
 - Pt of the leading lepton (ℓ1), subleading lepton (ℓ2), and the top quark candidate (t); ∆R(ℓ1, ℓ2), and ∆R(ℓ1, t); ∆φ(ℓ1, ℓ2), and ∆φ(ℓ1, t), the invariant mass and pt of the dilepton system; and |p^t_T - p^{ℓ1}_T|/|p^t_T +p^{ℓ1}_T|
- Different quark flavor combination signal show similar shapes for the input variables
 - We combine all signal events of the ST mode and train them against the SM backgrounds

Uncertainties

> We have considered the following uncertainty sources

- > Uncertainties on the lepton reconstruction identification, isolation and trigger scale factors
- Uncertainties in the integrated luminosity
- Uncertainties on the modeling of pileup effects
- Uncertainties on the jet energy scale and resolution
- Uncertainties in the calculation of the MET
- Uncertainties on the normalization of the background processes
- \blacktriangleright Uncertainties on the $t\bar{t}$ and signal modeling
 - > PDFs, renormalization and factorization scales, and initial- and final-state QCD radiation
- > More $t\bar{t}$ modeling uncertainties
 - > Uncertainties from the matching of the matrix element level calculation to the parton shower
 - > Uncertainties on the modeling of the underlying event defined in PYTHIA tunes
 - Uncertainties on the models of color reconnection
- To improve the modeling of the pt spectrum of the top quark in POWHEG, simulated SM tt events are weighted as a function of the pt of the top quark to match the expectations at NNLO QCD accuracy, including electroweak corrections
 - Uncertainties from this correction is evaluated by the renormalization and factorization scales at NNLO QCD

BDT output distributions

- BDT discriminant distributions for events in three channels are shown
 - Signal distributions are well separated from the background distributions
- To extract the signal contribution, a simultaneous binned maximum-likelihood is performed in all three signal channels
 - The best fit for the BNV effective couplings is consistent with zero and no significant excess over the background expectations is observed

Results

- ➢ 95% CL exclusion limits are calculated
- The limit-setting is performed for each individual BNV coupling while setting the other BNV couplings to zero
- All described sources of uncertainties are treated as nuisance parameters
- The importance of the uncertainties in the limit setting procedure depends on the signal shape (quark flavor combination)
 - Three main common sources of uncertainty the normalization of the SM tW process, muon energy scale, and modeling of the top quark pt
- The limits on the strengths of the BNV couplings are translated to limits on the branching fractions for the BNV top quark decays
- The differences between different quark flavor combination stems mainly from the different PDFs involved in the production mode
- The results improve the previous bounds by three to six orders of magnitude based on the fermion flavor combination of the baryon number violating interactions

Summary

- A search for baryon number violation (BNV) in events with top quarks is performed using the LHC pp collision data collected by the CMS experiment in 2016-2018
- > A model independent EFT approach is followed for modeling the BNV signal
 - All relevant quark flavor combinations are probed
- Dilepton events are selected for this search
- The analysis explores baryon number violating effects in single top quark production for the first time
- BDT is used to discriminate between signal and background events
- > No significant excess of events over the background prediction is observed
- Expected upper limit are set on the 24 Wilson coefficients and then translated to the limits on the branching fractions of top quark BNV decays
- Upper limits on the branching fractions of top quark BNV decays are multiple orders of magnitude more stringent than the previous limits

