

ATLAS-CMS comparison: Search for flavourchanging neutral-current couplings between the top quark and Higgs boson in multilepton final states

Marvin Emin Geyik for the ATLAS and CMS Collaborations

LHCtopWG Meeting April 2024, 25.04.2024

ATLAS Analysis: [arXiv:2404.02123] [Website]

CMS Analysis: [CMS-PAS-TOP-22-002] [Website]

ATLAS-CMS comparison: *tHq* FCNC couplings in multi-lepton final states Marvin Emin Geyik | marvin.emin.geyik@cern.ch

25.04.2023

Content

1. Introduction

2. ATLAS Analysis Strategy

Background estimation, signal-background separation and fit results

- 3. Comparison to CMS Analysis
 - Differences in the analysis strategy and limit comparison
- 4. Conclusion

ATLAS-CMS comparison: *tHq* FCNC couplings in multi-lepton final states Marvin Emin Geyik | marvin.emin.geyik@cern.ch

Introduction

tHq FCNC couplings and multilepton final states

ATLAS-CMS comparison: *tHq* FCNC couplings in multi-lepton final states Marvin Emin Geyik | marvin.emin.geyik@cern.ch

25.04.2023

tHq FCNC Couplings

- FCNC processes forbidden at tree-level in the SM, higher orders suppressed by GIM mechanism
 → Any observation at the LHC indication of new physics
- Model-independent searches using an Effective Field Theory (EFT) with the full ATLAS/ CMS Run 2 datasets taken at $\sqrt{s} = 13$ TeV:

$$\mathcal{L}_{EFT} = \sum_{q=u,c} \frac{C_{u\phi}^{tq}}{\Lambda^2} \mathcal{O}_{u\phi}^{tq} + \frac{C_{u\phi}^{qt}}{\Lambda^2} \mathcal{O}_{u\phi}^{qt}; \quad C_{u\phi}^{qt}, C_{u\phi}^{tq}: \text{Wilson coeff.}$$

• Considering $t\overline{t}(t \rightarrow Hq)$ decay process and $gq \rightarrow Ht$ production process

ATLAS-CMS comparison: *tHq* FCNC couplings in multi-lepton final states Marvin Emin Geyik | marvin.emin.geyik@cern.ch

25.04.2023

Multi-lepton final states

- Final states of two leptons with the same charge $(2\ell SS)$ or three leptons (3ℓ)
- Primary Higgs-boson decay mode: $H \rightarrow WW^*$ (~ 75 % of events)
- Additional contributions from $H \rightarrow ZZ^*$ and leptonic $H \rightarrow \tau^+ \tau^-$ decays

ATLAS Analysis Strategy

Background estimation, signal-background separation and fit results

ATLAS-CMS comparison: *tHq* FCNC couplings in multi-lepton final states Marvin Emin Geyik | marvin.emin.geyik@cern.ch

25.04.2023

Signal Regions and background composition

- Definition of **4 signal regions** (SRs): 2 per final state, each focuses either on decay or production signal ($N_{b-tags} = 1$ in all of them)
- Contribution of prompt-lepton background processes (with leptons originating from onshell W/H/Z-boson decay) and non-prompt lepton background processes

Marvin Emin Geyik | marvin.emin.geyik@cern.ch

25.04.2023

B-hadron decay and Q-misID background

Leptons from *B*-hadron decay (HF-decay e/μ)

- Assumption: Shape of kinematic distributions accurately modelled by Monte-Carlo (MC) simulations
- Free normalisation in final fit
- 4 control regions (CRs) defined to constrain normalisation (2 CRs per final state)

Q-misID electrons (only 2ℓ SS final state)

- Leptons reconstructed with inverted charge due to
 - A. false track reconstruction
 - B. Bremsstrahlung + material conversion
- Data-driven estimate using same-charge and opposite-charge events around the $Z \rightarrow ee$ mass peak
- Results in p_{T} and η -dependent efficiencies to be applied to opposite-charge data events

ATLAS-CMS comparison: *tHq* FCNC couplings in multi-lepton final states Marvin Emin Geyik | marvin.emin.geyik@cern.ch

$t\bar{t}V$ and VV background

$t\bar{t}W$ and $t\bar{t}Z$ production

- $t\bar{t}W$ cross-section measured **1**. 4 σ above prediction [arXiv:2401.05299]
- $t\bar{t}Z$ only measured for high N_{jets} while this analysis considers $N_{jets} \ge 1$ [arXiv:2312.04450]

00000

 Free-floating normalisation for both processes with 3 CRs

VV+HF production

- VV samples produced without additional b-quark
 → poor modelling in regions with N_{b-tags} ≥ 1
- Splitting VV samples by number of leptons and jet flavour
- Largest template VV3l + b/c with free-floating normalisation

ATLAS-CMS comparison: *tHq* FCNC couplings in multi-lepton final states Marvin Emin Geyik | marvin.emin.geyik@cern.ch

25.04.2023

Reconstruction Algorithms in the Signal Regions

- Extensive event reconstruction to optimise signal-background separation in SRs
- Focusing on $H \rightarrow WW^*$ decay mode
- Recursive Jigsaw Reconstruction (RJR)
 - Aims to reconstruct particles in the decay tree
 - Uses recursively defined jigsaw rules to match final-state objects and decay-tree particles, maximising a global likelihood
- Neutrino-independent combinatorics estimator (NICE) -Reconstruction
 - Identification of leptons from Higgs-boson decay using angular and charge information
 - > No direct dependence on $H \rightarrow WW^*$ decay mode
 - → Good performance also for $H \to ZZ^*$ and $H \to \tau^+ \tau^-$

ATLAS-CMS comparison: *tHq* FCNC couplings in multi-lepton final states Marvin Emin Geyik | marvin.emin.geyik@cern.ch

Neural Networks in the Signal Regions

Variable pre-processing and Neural Network (NN) training

- Separation power of all variables combined using NNs
- Training one NN per signal process (*tHu*/ *tHc*) and per SR2ℓ/3ℓ Dec/Prod
- Extensive pre-processing
 - Variable selection based on added significance
 - > Normalisation ($\mu = 0, \sigma = 1$) and decorrelation of input variables
 - Transformation to signal purity S/B with spline fit to reduce statistical fluctuations
- ightarrow Allows for NNs of very small size (1 hidden

layer)

ATLAS-CMS comparison: *tHq* FCNC couplings in multi-lepton final states Marvin Emin Geyik | marvin.emin.geyik@cern.ch

25.04.2023

Profile-Likelihood Fit – Control Regions

ATLAS-CMS comparison: *tHq* FCNC couplings in multi-lepton final states Marvin Emin Geyik | marvin.emin.geyik@cern.ch 25.04.2023

Profile-Likelihood fit – 2ℓSS Signal Regions

ATLAS-CMS comparison: *tHq* **FCNC couplings in multi-lepton final states** Marvin Emin Geyik | marvin.emin.geyik@cern.ch

25.04.2023

Profile-Likelihood Fit – 3ℓ Signal Regions

ATLAS-CMS comparison: *tHq* **FCNC couplings in multi-lepton final states** Marvin Emin Geyik | marvin.emin.geyik@cern.ch

25.04.2023

Expected Upper Limits on $\mathcal{B}(t \to Hq)$

- Results compatible with background-only hypothesis
 Determination of upper exclusion limits
- Comparison of final states: 2 ℓ SS more important, but $\sim 20~\%$ improvement due to 3ℓ
- Increase of expected upper limits due to systematic uncertainties: ~ 20 %
 → Analysis statistically limited

Fit configuration	Expected 95% $\mathcal{B}(t \to Hu)$	CL upper limits / 10^{-4} $\mathcal{B}(t \to Hc)$
Nominal fit	$3.0^{+1.2}_{-0.8}$	$3.8^{+1.5}_{-1.1}$
Statistical uncertainties only	$2.6^{+1.1}_{-0.7}$	$3.3^{+1.2}_{-1.0}$ +20 %
$2\ell SS$ final state only	$3.6^{+1.5}_{-1.0}$	$4.3^{+1.9}_{-1.2}$
3ℓ final state only	$6.5^{+2.7}_{-1.9}$	$8.9^{+3.7}_{-2.6}$

ATLAS-CMS comparison: *tHq* FCNC couplings in multi-lepton final states Marvin Emin Geyik | marvin.emin.geyik@cern.ch

25.04.2023

Impact of Systematic Uncertainties

• Impact of individual systematic uncertainties determined by fixing related nuisance parameters to $\pm 1 \sigma$ and comparing the differences in the signal normalisation μ

Mainly related to HF-decay background

 \rightarrow Difficult to separate against in NN training, largest background in high- $D_{\rm NN}$ bins

ATLAS-CMS comparison: *tHq* FCNC couplings in multi-lepton final states Marvin Emin Geyik | marvin.emin.geyik@cern.ch

25.04.2023

16

[arXiv:2404.02123]

Observed Upper Limits and Combination

• Observed (expected) upper limits on $\mathcal{B}(t \to Hq)$ of this analysis:

 $\mathcal{B}(t \to Hu) < 2.8 \ (3.0) \times 10^{-4}$ and $\mathcal{B}(t \to Hc) < 3.3 \ (3.8) \times 10^{-4}$

• Results are **combined** with **ATLAS** *tHq* **FCNC** searches in different Higgs-boson decay modes $(H \rightarrow b\bar{b}^{[1]}, H \rightarrow \gamma\gamma^{[2]} \text{ and } H \rightarrow \tau^+\tau^{-[3]})$

 $\mathcal{B}(t \to Hu) < 2.6 \ (1.8) \times 10^{-4} \text{ and } \mathcal{B}(t \to Hc) < 3.4 \ (2.3) \times 10^{-4}$

• Transformed limits on the EFT Wilson coefficients (at EFT scale of $\Lambda = 1$ TeV):

$$C_{u\phi}^{ut,tu} | < 0.71 (0.73) \text{ and } |C_{u\phi}^{ct,tc}| < 0.76 (0.82)$$

• $\mathcal{B}(t \to Hq)$ BSM predictions are as high as 10^{-4}

ATLAS

[1] JHEP 07 (2023) 199 [2] JHEP 12 (2023) 195 [3] JHEP 06 (2023) 155

ATLAS-CMS comparison: *tHq* FCNC couplings in multi-lepton final states Marvin Emin Geyik | marvin.emin.geyik@cern.ch

17

 $\sqrt{s} = 13 \text{ TeV}, 140 \text{ fb}^{-1}$

Comparison to CMS analysis

Search for *tHq* FCNC couplings in multilepton final states and combination

ATLAS-CMS comparison: *tHq* FCNC couplings in multi-lepton final states Marvin Emin Geyik | marvin.emin.geyik@cern.ch

25.04.2023

Differences between ATLAS and CMS Analyses

	Event selection	Background Estimation	Signal-Background Separation and Profile-Likelihood Fit
EXPERIMENT	 2ℓSS and 3ℓ final states (treated separately) Looser p_T(ℓ) cuts and no m(ee)-cut in 3ℓ final state 	 HF-decay semi-data-driven with normalisation free- floating in final fit ttW, ttZ and VV background given specific treatment 	 Extensive reconstruction Individual NNs trained per signal process and per SR2ℓ/3ℓ Dec/Prod Separate CRs included in fit 41 Bins in total (with 5 free-floating normalisation factors)
	 2ℓSS + n · ℓ, n = 0,1,2, (all treated as one) Tighter p_T-cut and global cut m(ee) - m_Z > 20 GeV 	 HF-decay data-driven by comparing <i>tight</i> and <i>loose</i> lepton selection ("tight-to- <i>loose ratio method"</i>) All prompt lepton background processes from MC simulation 	 Reconstruction of invariant masses and H_T One BDT per signal process trained on entire phase space Only this BDT distribution included in the fit 20 bins in total

ATLAS-CMS comparison: *tHq* FCNC couplings in multi-lepton final states Marvin Emin Geyik | marvin.emin.geyik@cern.ch

Results of the CMS Analysis

• Upper exclusion limits:

	95% CL observed (expected) limits on	
	$\mathcal{B}(t \to Hu) / 10^{-4}$	$\mathcal{B}(t \to Hc) / 10^{-4}$
	2.8 (3.0)	3.3 (3.8)
Proved Front Report	7.2(5.9)	4.3 (6.2)

- Additional sensitivity in ATLAS (probably) due to
 - > More inclusive event selection \rightarrow Larger signal statistics
 - Larger number of (signal-sensitive) bins
 - > Dedicated treatment of production signal (tHu specifically)

Post-fit BDT distribution in the tHu channel

[CMS-PAS-TOP-22-002]

ATLAS-CMS comparison: *tHq* FCNC couplings in multi-lepton final states Marvin Emin Geyik | marvin.emin.geyik@cern.ch

25.04.2023

Comparisons of Combinations

- In ATLAS: Strong **upward-fluctuation** in $H \rightarrow \tau \tau$ analysis (both tHu and tHc channel)
- In CMS: Strong **downward-fluctuation** in $H \rightarrow \gamma \gamma$ analysis (only tHu channel)
- Resulting combined limits:

	95% CL observed (expected) limits on	
	$\mathcal{B}(t \to Hu) / 10^{-4}$	$\mathcal{B}(t \to Hc) / 10^{-4}$
	2.6 (1.8)	3.4 (2.3)
Foregrand the second se	1.9 (2.7)	3.7 (3.5)
📩 Strongest observed limits to date		

ATLAS-CMS comparison: *tHq* FCNC couplings in multi-lepton final states Marvin Emin Geyik | marvin.emin.geyik@cern.ch

25.04.2023

Conclusion

- Searches for tHq FCNC couplings in multilepton final states together with combinations
- ATLAS search in multilepton final states most sensitive single-channel search to date
- Both ATLAS and CMS combinations show very high sensitivity

	95% CL observed (expected) limits on	
	$\mathcal{B}(t \to Hu) / 10^{-4}$	$\mathcal{B}(t \to Hc) / 10^{-4}$
	2.6 (1.8)	3.4 (2.3) 🖈
The second secon	1.9 (2.7)	3.7 (3.5)

Thank you for your attention! ©

[LHCtopWG Summary Plots]

ATLAS-CMS comparison: *tHq* FCNC couplings in multi-lepton final states Marvin Emin Geyik | marvin.emin.geyik@cern.ch

25.04.2023

Backup

ATLAS-CMS comparison: *tHq* FCNC couplings in multi-lepton final states Marvin Emin Geyik | marvin.emin.geyik@cern.ch

Signal region background composition

Marvin Emin Geyik | marvin.emin.geyik@cern.ch

25.04.2023

Neural Network distributions

ATLAS-CMS comparison: *tHq* FCNC couplings in multi-lepton final states Marvin Emin Geyik | marvin.emin.geyik@cern.ch

25.04.2023

Normalisation factors – Post-Fit values

Process	tHu fit	<i>tHc</i> fit
HF-decay e	1.05 ± 0.24	1.02 ± 0.23
HF-decay μ	0.94 ± 0.18	0.92 ± 0.18
$VV3\ell + b/c$	1.41 ± 0.23	1.37 ± 0.24
$t\bar{t}W$	1.15 ± 0.14	1.19 ± 0.14
$t\bar{t}Z$	1.16 ± 0.11	1.17 ± 0.11

[arXiv:2404.02123]

ATLAS-CMS comparison: *tHq* FCNC couplings in multi-lepton final states Marvin Emin Geyik | marvin.emin.geyik@cern.ch

25.04.2023

Control Regions – Pre- and Post-Fit

[arXiv:2404.02123]

ATLAS-CMS comparison: *tHq* **FCNC couplings in multi-lepton final states** Marvin Emin Geyik | marvin.emin.geyik@cern.ch

25.04.2023

Signal regions (*tHc*) – Pre- and Post-Fit

ATLAS-CMS comparison: *tHq* FCNC couplings in multi-lepton final states Marvin Emin Geyik | marvin.emin.geyik@cern.ch

25.04.2023

Signal regions (tHu) – Pre- and Post-Fit

ATLAS-CMS comparison: *tHq* FCNC couplings in multi-lepton final states Marvin Emin Geyik | marvin.emin.geyik@cern.ch

25.04.2023

CMS BDT (tHu) – Pre- and Post-Fit

ATLAS-CMS comparison: *tHq* **FCNC couplings in multi-lepton final states** Marvin Emin Geyik | marvin.emin.geyik@cern.ch

25.04.2023

CMS BDT (*tHc*) – Pre- and Post-Fit

ATLAS-CMS comparison: *tHq* **FCNC couplings in multi-lepton final states** Marvin Emin Geyik | marvin.emin.geyik@cern.ch

25.04.2023

