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Single-top Z, a rare but special process
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CERN-EP-2018-328
2019/04/09

CMS-TOP-18-008

Observation of single top quark production in association
with a Z boson in proton-proton collisions at

p
s = 13 TeV

The CMS Collaboration⇤

Abstract

The observation of single top quark production in association with a Z boson and
a quark (tZq) is reported. Events from proton-proton collisions at a center-of-mass
energy of 13 TeV containing three charged leptons (either electrons or muons) and at
least two jets are analyzed. The data were collected with the CMS detector in 2016
and 2017, and correspond to an integrated luminosity of 77.4 fb�1. The increased
integrated luminosity, a multivariate lepton identification, and a redesigned anal-
ysis strategy improve significantly the sensitivity of the analysis compared to pre-
vious searches for tZq production. The tZq signal is observed with a significance
well over five standard deviations. The measured tZq production cross section is
s(pp ! tZq ! t`+`�q) = 111 ± 13 (stat) +11

�9 (syst) fb, for dilepton invariant masses
above 30 GeV, in agreement with the standard model expectation.

Published in Physical Review Letters as doi:10.1103/PhysRevLett.122/132003.

c� 2019 CERN for the benefit of the CMS Collaboration. CC-BY-4.0 license

⇤See Appendix B for the list of collaboration members
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DOI: 10.1007/JHEP07(2020)124

CERN-EP-2019-273
13th August 2020

Observation of the associated production of a top

quark and a Z boson in pp collisions at
p
s = 13 TeV

with the ATLAS detector

The ATLAS Collaboration

Single top-quark production in association with a Z boson, where the Z boson decays to a pair
of charged leptons, is measured in the trilepton channel. The proton–proton collision data
collected by the ATLAS experiment from 2015 to 2018 at a centre-of-mass energy of 13 TeV
are used, corresponding to an integrated luminosity of 139 fb�1. Events containing three
isolated charged leptons (electrons or muons) and two or three jets, one of which is identified
as containing a b-hadron, are selected. The main backgrounds are from tt̄Z and diboson
production. Neural networks are used to improve the background rejection and extract the
signal. The measured cross-section for t`+`�q production, including non-resonant dilepton
pairs with m`+`� > 30 GeV, is 97 ± 13 (stat.) ± 7 (syst.) fb, consistent with the Standard Model
prediction.

© 2020 CERN for the benefit of the ATLAS Collaboration.
Reproduction of this article or parts of it is allowed as specified in the CC-BY-4.0 license.
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CMS Physics Analysis Summary

Contact: cms-pag-conveners-top@cern.ch 2024/03/27

Inclusive and differential measurement of top quark cross
sections in association with a Z boson

The CMS Collaboration

Abstract

A measurement is presented of the inclusive and differential cross sections for top
quark production in association with a Z boson, in pairs (tt̄Z) or with a single top
quark (tZq and tWZ). The data were recorded in pp collisions at a center-of-mass
energy of 13 TeV, corresponding to an integrated luminosity of 138 fb�1. Events with
exactly three leptons, electrons or muons, are selected. A deep neural network is
trained to separate the signal processes and the backgrounds. The tt̄Z and tWZ pro-
cesses are measured together due to their similar experimental signature and signif-
icant interference beyond leading order. A combined profile likelihood approach is
used to unfold the differential cross sections, to account for systematic uncertainties,
and to determine the correlations between the two signal categories in one global fit.
The inclusive cross sections for a dilepton invariant mass within 70 and 110 GeV are
measured to be 1.14 ± 0.07 pb for the sum of tt̄Z and tWZ, and 0.81 ± 0.10 pb for tZq.
While good agreement of the data with the standard model prediction is found for
the tZq process, the measured inclusive cross section for tt̄Z + tWZ has a ratio to the
central value of the prediction of 1.17 ± 0.07.

c� 2024 CERN for the benefit of the CMS Collaboration. CC-BY-4.0 license
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In the SM, contributions to the partonic cross sections can be organized 
according to the powers of  and  (number of loops).αs α

2 Calculational basis

At leading order the production of tt̄ pairs in pp̄ collisions originates, via the strong interaction,
from the partonic processes qq̄ → tt̄ and gg → tt̄, which yield the O(α2

s) of the (integrated) cross
section, i.e. the denominator of AFB in (1) and (2). The antisymmetric cross section, the numerator
of AFB , starts at O(α3

s) and gets contributions from qq̄ → tt̄(g) with q = u, d (the processes from
other quark species, after convolution with the parton distributions and summation, are symmetric
under yt → −yt and thus do not contribute to AFB) as well as from qg → tt̄q and q̄g → tt̄q̄.

Writing the numerator and the denominator of AFB (for either of the definitions (1) and (2))
in powers of αs we obtain

AFB =
N

D
=

α3
sN1 + α4

sN2 + · · ·

α2
sD0 + α3

sD1 + · · ·
=

αs

D0
(N1 + αs(N2 −N1D1/D0)) + · · · . (5)

The terms up to one-loop (D0, D1, N1) have been calculated [9, 10, 11, 12, 13, 14], [15, 16, 17, 18],
[5], whereas only some parts of N2 are currently known [19, 20]. The inclusion of the N1D1/D0

term without N2 would hence be incomplete, and we have chosen to use only the lowest order cross
section in the denominator and the O(α3

s) term in the numerator, as done in [5].
Rewriting N and D to include the EW contributions yields the following expression for the

leading terms,

AFB =
N

D
=

α2Ñ0 + α3
sN1 + α2

sαÑ1 + α4
sN2 + · · ·

α2D̃0 + α2
sD0 + α3

sD1 + α2
sαD̃1 + · · ·

= αs
N1

D0
+ α

Ñ1

D0
+

α2

α2
s

Ñ0

D0
+ · · · (6)

where the incomplete O(α2
s) part has been dropped. In the following we (re-)evaluate the three

contributions on the r.h.s. of (6).
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Figure 1: Electroweak and QCD Born diagrams

Figure 1 contains all the tree level diagrams for the partonic subprocesses qq̄ → tt̄ and gg → tt̄
(Higgs exchange is completely negligible). The squared terms |Mqq̄→g→tt̄|

2 and |Mgḡ→tt̄|
2 yield

2

2 Theoretical prevision

Before starting the analysis of the non-vanishing partonic contributions to AFB , it’s worth noting
that the initial state pp̄ is basic to get:

App̄
FB = App̄

C =
σ(yt > 0)− σ(yt̄ > 0)

σ(yt > 0) + σ(yt̄ > 0)
(5a)

AFB "= 0 (5b)

Under a CP transformation a top quark with rapidity y becomes an antitop with asymmetry −y
so, assuming CP conserving interactions, (5a) is true thanks to the CP symmetric initial state.
Obviously also an Att̄

C charge asymmetry can be defined and Att̄
FB = Att̄

C .
In the case of pp collision the initial state is not only non-invariant under CP, it doesn’t exhibit a
preferred direction along the axis of the collision, so AFB it would be trivially equal to zero.
It is useful, for the analysis of AFB in the pp̄ case, to see in a more detailed way why (5b) is not true
in the pp collision. The hadronic collision is constituted by partonic subprocesses p1p2 → tt̄+X that
can be born with p1(p2) coming from the first(second) hadron H1(H2) or from H2(H1). Given a
kinematic configuration of p1p2 → tt̄+X , if it contributes to σ(yt > 0) in the H1(H2) configuration
it contributes with the same partonic weight also to σ(yt < 0) in the H2(H1) configuration. So the
total contribution to App̄

FB is non vanishing only if the weight coming from the parton distributions
is different, that is if:

fp1,H1
(x1)fp2,H2

(x2) "= fp1,H2
(x1)fp2,H1

(x2) (6)

where fpi,Hj
(xi) is the parton distribution of the parton pi in the hadron Hj . The same argument

applies also to Att̄
FB with or without cuts on Mtt̄ or ∆y .

At LHC H1 = H2 so AFB is equal to zero, at Tevatron (6) is not generally true but it can be used
to distinguish which subprocesses can give rise to contribution to AFB .
Now we can start to look at the partonic subprocesses that generate a tt̄ pair. At the Born order the
partonic processes are qq̄ → tt̄ and gg → tt̄ so, if we forget for a moment electroweak interactions,
the denominator in AFB (total cross section) is O(α2

s) at leading order. The numerator is instead
O(α3

s) at LO, indeed gg → tt̄ and qq̄ → tt̄ with q "= u, d are excluded by (6) and uū(dd̄) → tt̄
partonic cross section is symmetric under yt → −yt. The exclusion of gg → tt̄ and qq̄ → tt̄ with
q "= u, d doesn’t depend on the perturbative order, so thanks to (6) we can exclude these partonic
processes for the next calculations1.
Writing the numerator and the denominator of AFB in powers of αs we obtain

AFB =
N

D
=

α3
sN1 + α4

sN2 + · · ·

α2
sD0 + α3

sD1 + · · ·
=

αs

D0
(N1 + αs(N2 −N1D1/D0)) + · · · . (7)

The terms up to 1 loop have been already calculated (D0, D1, N1), instead only some parts of
N2 are known. The inclusion of the N1D1/D0 term without N2 could worsen the perturbative
approximation of the exact result, so we are allowed to use only the Born cross section in the
denominator and the O(α3

s) term in the numerator.
We can also rewrite N and D including EW corrections, and the leading contribution (excluding
the O(α2

s) terms) are

AFB =
N

D
=

α2Ñ0 + α3
sN1 + α2

sαÑ1 + α4
sN2 + · · ·

α2D̃0 + α2
sD0 + α3

sD1 + α2
sαD̃1 + · · ·

= αs
N1

D0
+ α

Ñ1

D0
+

α2

α2
s

Ñ0

D0
+ · · · (8)

1We know that there are PDFs with s(x) != s̄(x), but the effect is negligible.

2

It’s useful to divide electroweak contribution into 
QED (photon) and weak (Z) part. 

QED QED can be easily obtained from QCD calculation and the substitution of one 
gluon into one photon in the squared amplitudes.
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Figure 4: Three different way of replacing one gluon with a photon in the propagator of the
interference of Fig. 2 and qq̄ → g → tt̄

averaging in the initial state we find that

|Mtt̄|
2

O(α2
sα),asym

|Mtt̄|
2

O(α3
s),asym

=
2Re

(

Mtt̄
O(α)M

tt̄ ∗
O(α2

s)

)

asym
+ 2Re

(

Mtt̄
O(αs)

Mtt̄ ∗
O(αsα)

)

asym

2Re
(

Mtt̄
O(αs)

Mtt̄ ∗
O(α2

s)

)

asym

=
F tt̄
QED(αs,α, Qt, Qq)

F tt̄
QCD(αs)

(10)
where F tt̄

QED and F tt̄
QCD don’t depend on external momenta and helicities. We reexamined the

calculations and we found that, in front of the QED part of the formula shown in [8], there should
be an overall factor three, which comes from the three different replacements of the gluon propagator
(Fig. 4). Following their argument we can identify the color structure and the couplings of QCD
(F tt̄

QCD) and QED (F tt̄
QED) cases, and obtain the ratio of them.

F tt̄
QCD =

g6s
9
δADδBF δECTr(t

AtBtC)
[1

2
Tr

(

tDtEtF
)

+
1

2
Tr

(

tDtF tE
)

]

=
g6s

16 · 9
d2 (11a)

F tt̄
QED = ntt̄

{g4se
2QqQt

9
δACδBDTr(tAtB)Tr(tCtD)

}

=
6g4se

2

9
QtQq (11b)

In F tt̄
QCD there are two different color structures and the result depends on d2 = dABCdABC = 40

3

that arises from Tr(tAtBtC) = 1
4 (if

ABC+dABC), F tt̄
QED instead depends on the charges of incoming

quarks (Qq) and top (Qt), ntt̄ = 3 due to the three cases shown in Fig. 4.
Also qq̄ → tt̄g and qq̄ → tt̄γ subprocess can be evaluated through the results obtained for qq̄ → tt̄g
in the QCD case and the substitution of a gluon with a photon.

|Mtt̄g|
2

O(α2
sα),asym

|Mtt̄g|
2

O(α3
s),asym

=
2Re

(

Mtt̄g
O(α

√
αs)

Mtt̄g ∗
O(αs

√
αs)

)

asym

∣

∣Mtt̄g
O(αs

√
αs)

∣

∣

2

asym

=
F tt̄g
QED(αs,α, Qt, Qq)

F tt̄g
QCD(αs)

(12)
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Also qq̄ → tt̄g and qq̄ → tt̄γ subprocess can be evaluated through the results obtained for qq̄ → tt̄g
in the QCD case and the substitution of a gluon with a photon.

|Mtt̄g|
2

O(α2
sα),asym

|Mtt̄g|
2

O(α3
s),asym

=
2Re

(

Mtt̄g
O(α

√
αs)

Mtt̄g ∗
O(αs

√
αs)

)

asym

∣

∣Mtt̄g
O(αs

√
αs)

∣

∣

2

asym

=
F tt̄g
QED(αs,α, Qt, Qq)

F tt̄g
QCD(αs)

(12)
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|Mtt̄g|
2

O(α3
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∣

∣Mtt̄γ

O(αs

√
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∣

∣

2

asym

∣

∣Mtt̄g
O(αs

√
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∣

2

asym

=
F tt̄γ
QED(αs,α, Qt, Qq)

F tt̄g
QCD(αs)

(13)

F tt̄g
QCD, F tt̄g

QED and F tt̄γ
QED are related to F tt̄

QCD, F tt̄
QED by simple equations.

F tt̄g
QCD = F tt̄

QCD F tt̄g
QED =

2

3
F tt̄
QED F tt̄γ

QED =
1

3
F tt̄
QED (14a)

F tt̄
QED = F tt̄g

QED + F tt̄γ
QED (14b)

The first equation in (14a) is trivial, we couldn’t get the cancellation of the infrared singularity
without it. The same arguments applies also to equation (14b) that underlines how infrared finite-
ness for QED corrections can be obtained only combining tt̄, tt̄g and tt̄γ final states.
The O(α2

sα) of qq̄ → tt̄g comes from the interference of qq̄ → g → tt̄g (Fig. 3) and qq̄ → γ → tt̄g
(Fig. 5). This terms can be obtained from the results calculated in the QCD case, with the replace-
ment of one gluonic propagator with a photonic one and the right couplings, as we did in the case of
qq̄ → tt̄. The only difference is the number of replaceable gluonic propagators in the interferences
term: in the qq̄ → tt̄g case they are only two and not three.
The O(α2

sα) of qq̄ → tt̄γ comes from the squared module of the sum of qq̄ → g → tt̄γ diagrams
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(Fig. 6), and again its value can be obtained by the QCD case of the different process qq̄ → tt̄g.
In this case the particle replaced in the amplitudes is not virtual but real, so there is a one-to-one
relation between diagrams involved in QCD and QED cases.
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Only couplings and color factor!
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for the emission of gluon with mass λ and Eg < ∆E. These soft gluon terms must include only the
interference of initial and final state gluon to cancel the IR-divergence of the box, anyway the price
we pay is a dependence on ∆E. In the case of the real emission of gluon only the interference of

q

q

t

t

g
g

t q

q

t

t
g

g

t

q

q

t

t

g

q

g q

q

t
t

g
q

g

Figure 3: Real emissions of gluon

initial and final state radiation gives asymmetric term5, so demanding hard gluon with Eg > ∆E
and combining the result with soft gluon emission and loop correction, we finally obtain the total
effect of the O(α3

s) of the inclusive production of tt̄ induced by qq̄, independent of ∆E.
qg → tt̄q and q̄g → tt̄q̄ tree level diagram are the same of qq̄ → tt̄g with ingoing q̄(q) and outgoing
g crossed, so it’s easy to understand how asymmetric term can arise, but its contribution to AFB

is numerically negligible.

In order to analyze the O(α2
sα) it’s useful to divide QED corrections from the pure weak ones. In

the QED sector we obtain contributions to O(α2
sα) of N from three6 partonic processes: qq̄ → tt̄,

qq̄ → tt̄g and qq̄ → tt̄γ. If we start from the first case, we find that it can be calculated simply
substituting with a photon propagator one of the three gluon propagator that appears in the O(α3

s)
interference of boxes and tree level amplitudes.
The only differences between the calculation of O(α3

s) and of QED O(α2
sα) are the couplings and

the presence of SU(3) generators in the vertexes, so summing over color in the final state and

5These diagram are shown in Fig. 3, also a diagram with the trigluon vertex can be drawn, but it doesn’t give
any contribution to AFB

6Also γq → tt̄q and γq̄ → tt̄q̄ can contribute, but their contribution is negligible
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initial and final state radiation gives asymmetric term5, so demanding hard gluon with Eg > ∆E
and combining the result with soft gluon emission and loop correction, we finally obtain the total
effect of the O(α3

s) of the inclusive production of tt̄ induced by qq̄, independent of ∆E.
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is numerically negligible.
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qq̄ → tt̄g and qq̄ → tt̄γ. If we start from the first case, we find that it can be calculated simply
substituting with a photon propagator one of the three gluon propagator that appears in the O(α3
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interference of boxes and tree level amplitudes.
The only differences between the calculation of O(α3

s) and of QED O(α2
sα) are the couplings and

the presence of SU(3) generators in the vertexes, so summing over color in the final state and

5These diagram are shown in Fig. 3, also a diagram with the trigluon vertex can be drawn, but it doesn’t give
any contribution to AFB

6Also γq → tt̄q and γq̄ → tt̄q̄ can contribute, but their contribution is negligible
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In this work we reevaluated all the contributions that are presented in in the last term of (8).
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In Fig. 1 all the tree level diagrams of the subprocesses qq̄ → tt̄ and gg → tt̄ are shown2. From the
squared modules |Mqq̄→g→tt̄|

2 and |Mgḡ→tt̄|
2 we obtainD0 the LO cross section, from |Mqq̄→γ→tt̄+

Mqq̄→Z→tt̄|
2 instead we get the O(α2) term of the numerator of AFB. Indeed the cross section

obtained by s-channel γ, Z amplitudes contains a term (9) that contributes to AFB thanks to the
different couplings of Z with different chiralities.

dσasym

d cos θ
= 2πα2 cos θ

(

1−
4m2

t

s

)[

κ
QqQtAqAt

(s−M2
Z)

+ 2κ2AqAtVqVt
s

(s−M2
Z)

2

]

(9)

κ =
1

4 sin2(θW ) cos2(θW )
Vq = T 3

q − 2Qq sin
2(θW ) Aq = T 3

q

The interference of qq̄ → γ, Z → tt̄ and qq̄ → g → tt̄ is zero because the color structure, so we don’t
have O(αsα) terms3 in N and D.

The O(α3
s) terms that contributes to N come from four partonic processes: qq̄ → tt̄, qq̄ → tt̄g,

qg → tt̄q and q̄g → tt̄q̄. In the first case these corrections comes from the interference of the 1-loop
corrections of QCD and the Born amplitude, in the other ones simply from the tree level amplitude.
All the vertex and self-energies 1-loop correction don’t generate any asymmetric term, so only the
boxes are relevant for our purpose (Fig. 2). Box integrals don’t produce ultraviolet and collinear
divergences, only infrared singularities can arise. After regularization through a mass term λ for
the gluon4, the dependence of the result on λ can be cancelled adding soft gluon terms that account

2Higgs s-channel is completely negligible
3qq̄ → tt̄ presents O(α) W mediated t-channel diagrams leading to non-vanishing contribution to the O(αsα) of

N (with q = d) and D (with q = d, s, b). Unfortunately, this term are strongly suppressed by CKM matrix (with
q = d, s) or by parton distributions (with q = b).

4We don’t have trigluon vertex, so we don’t break the gauge symmetry

3

#(QED  diagrams)
=

3 #(QCD  diagrams)

2 Theoretical prevision

Before starting the analysis of the non-vanishing partonic contributions to AFB , it’s worth noting
that the initial state pp̄ is basic to get:

App̄
FB = App̄

C =
σ(yt > 0)− σ(yt̄ > 0)

σ(yt > 0) + σ(yt̄ > 0)
(5a)

AFB "= 0 (5b)

Under a CP transformation a top quark with rapidity y becomes an antitop with asymmetry −y
so, assuming CP conserving interactions, (5a) is true thanks to the CP symmetric initial state.
Obviously also an Att̄

C charge asymmetry can be defined and Att̄
FB = Att̄

C .
In the case of pp collision the initial state is not only non-invariant under CP, it doesn’t exhibit a
preferred direction along the axis of the collision, so AFB it would be trivially equal to zero.
It is useful, for the analysis of AFB in the pp̄ case, to see in a more detailed way why (5b) is not true
in the pp collision. The hadronic collision is constituted by partonic subprocesses p1p2 → tt̄+X that
can be born with p1(p2) coming from the first(second) hadron H1(H2) or from H2(H1). Given a
kinematic configuration of p1p2 → tt̄+X , if it contributes to σ(yt > 0) in the H1(H2) configuration
it contributes with the same partonic weight also to σ(yt < 0) in the H2(H1) configuration. So the
total contribution to App̄

FB is non vanishing only if the weight coming from the parton distributions
is different, that is if:

fp1,H1
(x1)fp2,H2

(x2) "= fp1,H2
(x1)fp2,H1

(x2) (6)

where fpi,Hj
(xi) is the parton distribution of the parton pi in the hadron Hj . The same argument

applies also to Att̄
FB with or without cuts on Mtt̄ or ∆y .

At LHC H1 = H2 so AFB is equal to zero, at Tevatron (6) is not generally true but it can be used
to distinguish which subprocesses can give rise to contribution to AFB .
Now we can start to look at the partonic subprocesses that generate a tt̄ pair. At the Born order the
partonic processes are qq̄ → tt̄ and gg → tt̄ so, if we forget for a moment electroweak interactions,
the denominator in AFB (total cross section) is O(α2

s) at leading order. The numerator is instead
O(α3

s) at LO, indeed gg → tt̄ and qq̄ → tt̄ with q "= u, d are excluded by (6) and uū(dd̄) → tt̄
partonic cross section is symmetric under yt → −yt. The exclusion of gg → tt̄ and qq̄ → tt̄ with
q "= u, d doesn’t depend on the perturbative order, so thanks to (6) we can exclude these partonic
processes for the next calculations1.
Writing the numerator and the denominator of AFB in powers of αs we obtain

AFB =
N

D
=

α3
sN1 + α4

sN2 + · · ·

α2
sD0 + α3

sD1 + · · ·
=

αs

D0
(N1 + αs(N2 −N1D1/D0)) + · · · . (7)

The terms up to 1 loop have been already calculated (D0, D1, N1), instead only some parts of
N2 are known. The inclusion of the N1D1/D0 term without N2 could worsen the perturbative
approximation of the exact result, so we are allowed to use only the Born cross section in the
denominator and the O(α3

s) term in the numerator.
We can also rewrite N and D including EW corrections, and the leading contribution (excluding
the O(α2

s) terms) are

AFB =
N

D
=

α2Ñ0 + α3
sN1 + α2

sαÑ1 + α4
sN2 + · · ·

α2D̃0 + α2
sD0 + α3

sD1 + α2
sαD̃1 + · · ·

= αs
N1

D0
+ α

Ñ1

D0
+

α2

α2
s

Ñ0

D0
+ · · · (8)

1We know that there are PDFs with s(x) != s̄(x), but the effect is negligible.

2

It’s useful to divide electroweak contribution into 
QED (photon) and weak (Z) part. 

QED QED can be easily obtained from QCD calculation and the substitution of one 
gluon into one photon in the squared amplitudes.
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Figure 4: Three different way of replacing one gluon with a photon in the propagator of the
interference of Fig. 2 and qq̄ → g → tt̄

averaging in the initial state we find that

|Mtt̄|
2

O(α2
sα),asym

|Mtt̄|
2

O(α3
s),asym

=
2Re

(

Mtt̄
O(α)M

tt̄ ∗
O(α2

s)

)

asym
+ 2Re

(

Mtt̄
O(αs)

Mtt̄ ∗
O(αsα)

)

asym

2Re
(

Mtt̄
O(αs)

Mtt̄ ∗
O(α2

s)

)

asym

=
F tt̄
QED(αs,α, Qt, Qq)

F tt̄
QCD(αs)

(10)
where F tt̄

QED and F tt̄
QCD don’t depend on external momenta and helicities. We reexamined the

calculations and we found that, in front of the QED part of the formula shown in [8], there should
be an overall factor three, which comes from the three different replacements of the gluon propagator
(Fig. 4). Following their argument we can identify the color structure and the couplings of QCD
(F tt̄

QCD) and QED (F tt̄
QED) cases, and obtain the ratio of them.

F tt̄
QCD =

g6s
9
δADδBF δECTr(t

AtBtC)
[1

2
Tr

(

tDtEtF
)

+
1

2
Tr

(

tDtF tE
)

]

=
g6s

16 · 9
d2 (11a)

F tt̄
QED = ntt̄

{g4se
2QqQt

9
δACδBDTr(tAtB)Tr(tCtD)

}

=
6g4se

2

9
QtQq (11b)

In F tt̄
QCD there are two different color structures and the result depends on d2 = dABCdABC = 40

3

that arises from Tr(tAtBtC) = 1
4 (if

ABC+dABC), F tt̄
QED instead depends on the charges of incoming

quarks (Qq) and top (Qt), ntt̄ = 3 due to the three cases shown in Fig. 4.
Also qq̄ → tt̄g and qq̄ → tt̄γ subprocess can be evaluated through the results obtained for qq̄ → tt̄g
in the QCD case and the substitution of a gluon with a photon.

|Mtt̄g|
2

O(α2
sα),asym

|Mtt̄g|
2

O(α3
s),asym

=
2Re

(

Mtt̄g
O(α

√
αs)

Mtt̄g ∗
O(αs

√
αs)

)

asym

∣

∣Mtt̄g
O(αs

√
αs)

∣

∣

2

asym

=
F tt̄g
QED(αs,α, Qt, Qq)

F tt̄g
QCD(αs)

(12)

5

q

q

t

tγ

q

q

t

t

q

g

g

t

q

q

t

t

q

g

g

t

q

q

t

tg

q

q

t

t

q

γ

g

t

q

q

t

t

q

γ

g

t

q

q

t

tg

q

q

t

t

q

g

γ

t

q

q

t

t

q

g

γ

t

Figure 4: Three different way of replacing one gluon with a photon in the propagator of the
interference of Fig. 2 and qq̄ → g → tt̄

averaging in the initial state we find that

|Mtt̄|
2

O(α2
sα),asym

|Mtt̄|
2

O(α3
s),asym

=
2Re

(

Mtt̄
O(α)M

tt̄ ∗
O(α2

s)

)

asym
+ 2Re

(

Mtt̄
O(αs)

Mtt̄ ∗
O(αsα)

)

asym

2Re
(

Mtt̄
O(αs)

Mtt̄ ∗
O(α2

s)

)

asym

=
F tt̄
QED(αs,α, Qt, Qq)

F tt̄
QCD(αs)

(10)
where F tt̄

QED and F tt̄
QCD don’t depend on external momenta and helicities. We reexamined the

calculations and we found that, in front of the QED part of the formula shown in [8], there should
be an overall factor three, which comes from the three different replacements of the gluon propagator
(Fig. 4). Following their argument we can identify the color structure and the couplings of QCD
(F tt̄

QCD) and QED (F tt̄
QED) cases, and obtain the ratio of them.

F tt̄
QCD =

g6s
9
δADδBF δECTr(t

AtBtC)
[1

2
Tr

(

tDtEtF
)

+
1

2
Tr

(

tDtF tE
)

]

=
g6s

16 · 9
d2 (11a)

F tt̄
QED = ntt̄

{g4se
2QqQt

9
δACδBDTr(tAtB)Tr(tCtD)

}

=
6g4se

2

9
QtQq (11b)

In F tt̄
QCD there are two different color structures and the result depends on d2 = dABCdABC = 40

3

that arises from Tr(tAtBtC) = 1
4 (if

ABC+dABC), F tt̄
QED instead depends on the charges of incoming

quarks (Qq) and top (Qt), ntt̄ = 3 due to the three cases shown in Fig. 4.
Also qq̄ → tt̄g and qq̄ → tt̄γ subprocess can be evaluated through the results obtained for qq̄ → tt̄g
in the QCD case and the substitution of a gluon with a photon.

|Mtt̄g|
2

O(α2
sα),asym

|Mtt̄g|
2

O(α3
s),asym

=
2Re

(

Mtt̄g
O(α

√
αs)

Mtt̄g ∗
O(αs

√
αs)

)

asym

∣

∣Mtt̄g
O(αs

√
αs)

∣

∣

2

asym

=
F tt̄g
QED(αs,α, Qt, Qq)

F tt̄g
QCD(αs)

(12)

5

q

q

t

tγ

q

q

t

t

q

g

g

t

q

q

t

t

q

g

g

t

q

q

t

tg

q

q

t

t

q

γ

g

t

q

q

t

t

q

γ

g

t

q

q

t

tg

q

q

t

t

q

g

γ

t

q

q

t

t

q

g

γ

t

Figure 4: Three different way of replacing one gluon with a photon in the propagator of the
interference of Fig. 2 and qq̄ → g → tt̄

averaging in the initial state we find that
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where F tt̄

QED and F tt̄
QCD don’t depend on external momenta and helicities. We reexamined the

calculations and we found that, in front of the QED part of the formula shown in [8], there should
be an overall factor three, which comes from the three different replacements of the gluon propagator
(Fig. 4). Following their argument we can identify the color structure and the couplings of QCD
(F tt̄

QCD) and QED (F tt̄
QED) cases, and obtain the ratio of them.
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In F tt̄
QCD there are two different color structures and the result depends on d2 = dABCdABC = 40

3

that arises from Tr(tAtBtC) = 1
4 (if

ABC+dABC), F tt̄
QED instead depends on the charges of incoming

quarks (Qq) and top (Qt), ntt̄ = 3 due to the three cases shown in Fig. 4.
Also qq̄ → tt̄g and qq̄ → tt̄γ subprocess can be evaluated through the results obtained for qq̄ → tt̄g
in the QCD case and the substitution of a gluon with a photon.
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F tt̄g
QCD, F tt̄g

QED and F tt̄γ
QED are related to F tt̄

QCD, F tt̄
QED by simple equations.

F tt̄g
QCD = F tt̄

QCD F tt̄g
QED =

2

3
F tt̄
QED F tt̄γ

QED =
1

3
F tt̄
QED (14a)

F tt̄
QED = F tt̄g

QED + F tt̄γ
QED (14b)

The first equation in (14a) is trivial, we couldn’t get the cancellation of the infrared singularity
without it. The same arguments applies also to equation (14b) that underlines how infrared finite-
ness for QED corrections can be obtained only combining tt̄, tt̄g and tt̄γ final states.
The O(α2

sα) of qq̄ → tt̄g comes from the interference of qq̄ → g → tt̄g (Fig. 3) and qq̄ → γ → tt̄g
(Fig. 5). This terms can be obtained from the results calculated in the QCD case, with the replace-
ment of one gluonic propagator with a photonic one and the right couplings, as we did in the case of
qq̄ → tt̄. The only difference is the number of replaceable gluonic propagators in the interferences
term: in the qq̄ → tt̄g case they are only two and not three.
The O(α2

sα) of qq̄ → tt̄γ comes from the squared module of the sum of qq̄ → g → tt̄γ diagrams
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(Fig. 6), and again its value can be obtained by the QCD case of the different process qq̄ → tt̄g.
In this case the particle replaced in the amplitudes is not virtual but real, so there is a one-to-one
relation between diagrams involved in QCD and QED cases.
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Only couplings and color factor!
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for the emission of gluon with mass λ and Eg < ∆E. These soft gluon terms must include only the
interference of initial and final state gluon to cancel the IR-divergence of the box, anyway the price
we pay is a dependence on ∆E. In the case of the real emission of gluon only the interference of
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initial and final state radiation gives asymmetric term5, so demanding hard gluon with Eg > ∆E
and combining the result with soft gluon emission and loop correction, we finally obtain the total
effect of the O(α3

s) of the inclusive production of tt̄ induced by qq̄, independent of ∆E.
qg → tt̄q and q̄g → tt̄q̄ tree level diagram are the same of qq̄ → tt̄g with ingoing q̄(q) and outgoing
g crossed, so it’s easy to understand how asymmetric term can arise, but its contribution to AFB

is numerically negligible.

In order to analyze the O(α2
sα) it’s useful to divide QED corrections from the pure weak ones. In

the QED sector we obtain contributions to O(α2
sα) of N from three6 partonic processes: qq̄ → tt̄,

qq̄ → tt̄g and qq̄ → tt̄γ. If we start from the first case, we find that it can be calculated simply
substituting with a photon propagator one of the three gluon propagator that appears in the O(α3

s)
interference of boxes and tree level amplitudes.
The only differences between the calculation of O(α3

s) and of QED O(α2
sα) are the couplings and

the presence of SU(3) generators in the vertexes, so summing over color in the final state and

5These diagram are shown in Fig. 3, also a diagram with the trigluon vertex can be drawn, but it doesn’t give
any contribution to AFB

6Also γq → tt̄q and γq̄ → tt̄q̄ can contribute, but their contribution is negligible
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initial and final state radiation gives asymmetric term5, so demanding hard gluon with Eg > ∆E
and combining the result with soft gluon emission and loop correction, we finally obtain the total
effect of the O(α3

s) of the inclusive production of tt̄ induced by qq̄, independent of ∆E.
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In this work we reevaluated all the contributions that are presented in in the last term of (8).
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In Fig. 1 all the tree level diagrams of the subprocesses qq̄ → tt̄ and gg → tt̄ are shown2. From the
squared modules |Mqq̄→g→tt̄|

2 and |Mgḡ→tt̄|
2 we obtainD0 the LO cross section, from |Mqq̄→γ→tt̄+

Mqq̄→Z→tt̄|
2 instead we get the O(α2) term of the numerator of AFB. Indeed the cross section

obtained by s-channel γ, Z amplitudes contains a term (9) that contributes to AFB thanks to the
different couplings of Z with different chiralities.

dσasym

d cos θ
= 2πα2 cos θ

(

1−
4m2

t

s

)[

κ
QqQtAqAt

(s−M2
Z)

+ 2κ2AqAtVqVt
s

(s−M2
Z)

2

]

(9)

κ =
1

4 sin2(θW ) cos2(θW )
Vq = T 3

q − 2Qq sin
2(θW ) Aq = T 3

q

The interference of qq̄ → γ, Z → tt̄ and qq̄ → g → tt̄ is zero because the color structure, so we don’t
have O(αsα) terms3 in N and D.

The O(α3
s) terms that contributes to N come from four partonic processes: qq̄ → tt̄, qq̄ → tt̄g,

qg → tt̄q and q̄g → tt̄q̄. In the first case these corrections comes from the interference of the 1-loop
corrections of QCD and the Born amplitude, in the other ones simply from the tree level amplitude.
All the vertex and self-energies 1-loop correction don’t generate any asymmetric term, so only the
boxes are relevant for our purpose (Fig. 2). Box integrals don’t produce ultraviolet and collinear
divergences, only infrared singularities can arise. After regularization through a mass term λ for
the gluon4, the dependence of the result on λ can be cancelled adding soft gluon terms that account

2Higgs s-channel is completely negligible
3qq̄ → tt̄ presents O(α) W mediated t-channel diagrams leading to non-vanishing contribution to the O(αsα) of

N (with q = d) and D (with q = d, s, b). Unfortunately, this term are strongly suppressed by CKM matrix (with
q = d, s) or by parton distributions (with q = b).

4We don’t have trigluon vertex, so we don’t break the gauge symmetry

3

#(QED  diagrams)
=

3 #(QCD  diagrams)

2 Theoretical prevision

Before starting the analysis of the non-vanishing partonic contributions to AFB , it’s worth noting
that the initial state pp̄ is basic to get:

App̄
FB = App̄

C =
σ(yt > 0)− σ(yt̄ > 0)

σ(yt > 0) + σ(yt̄ > 0)
(5a)

AFB "= 0 (5b)

Under a CP transformation a top quark with rapidity y becomes an antitop with asymmetry −y
so, assuming CP conserving interactions, (5a) is true thanks to the CP symmetric initial state.
Obviously also an Att̄

C charge asymmetry can be defined and Att̄
FB = Att̄

C .
In the case of pp collision the initial state is not only non-invariant under CP, it doesn’t exhibit a
preferred direction along the axis of the collision, so AFB it would be trivially equal to zero.
It is useful, for the analysis of AFB in the pp̄ case, to see in a more detailed way why (5b) is not true
in the pp collision. The hadronic collision is constituted by partonic subprocesses p1p2 → tt̄+X that
can be born with p1(p2) coming from the first(second) hadron H1(H2) or from H2(H1). Given a
kinematic configuration of p1p2 → tt̄+X , if it contributes to σ(yt > 0) in the H1(H2) configuration
it contributes with the same partonic weight also to σ(yt < 0) in the H2(H1) configuration. So the
total contribution to App̄

FB is non vanishing only if the weight coming from the parton distributions
is different, that is if:

fp1,H1
(x1)fp2,H2

(x2) "= fp1,H2
(x1)fp2,H1

(x2) (6)

where fpi,Hj
(xi) is the parton distribution of the parton pi in the hadron Hj . The same argument

applies also to Att̄
FB with or without cuts on Mtt̄ or ∆y .

At LHC H1 = H2 so AFB is equal to zero, at Tevatron (6) is not generally true but it can be used
to distinguish which subprocesses can give rise to contribution to AFB .
Now we can start to look at the partonic subprocesses that generate a tt̄ pair. At the Born order the
partonic processes are qq̄ → tt̄ and gg → tt̄ so, if we forget for a moment electroweak interactions,
the denominator in AFB (total cross section) is O(α2

s) at leading order. The numerator is instead
O(α3

s) at LO, indeed gg → tt̄ and qq̄ → tt̄ with q "= u, d are excluded by (6) and uū(dd̄) → tt̄
partonic cross section is symmetric under yt → −yt. The exclusion of gg → tt̄ and qq̄ → tt̄ with
q "= u, d doesn’t depend on the perturbative order, so thanks to (6) we can exclude these partonic
processes for the next calculations1.
Writing the numerator and the denominator of AFB in powers of αs we obtain

AFB =
N

D
=

α3
sN1 + α4

sN2 + · · ·

α2
sD0 + α3

sD1 + · · ·
=

αs

D0
(N1 + αs(N2 −N1D1/D0)) + · · · . (7)

The terms up to 1 loop have been already calculated (D0, D1, N1), instead only some parts of
N2 are known. The inclusion of the N1D1/D0 term without N2 could worsen the perturbative
approximation of the exact result, so we are allowed to use only the Born cross section in the
denominator and the O(α3

s) term in the numerator.
We can also rewrite N and D including EW corrections, and the leading contribution (excluding
the O(α2

s) terms) are

AFB =
N

D
=

α2Ñ0 + α3
sN1 + α2

sαÑ1 + α4
sN2 + · · ·

α2D̃0 + α2
sD0 + α3

sD1 + α2
sαD̃1 + · · ·

= αs
N1

D0
+ α

Ñ1

D0
+

α2

α2
s

Ñ0

D0
+ · · · (8)

1We know that there are PDFs with s(x) != s̄(x), but the effect is negligible.

2

It’s useful to divide electroweak contribution into 
QED (photon) and weak (Z) part. 

QED QED can be easily obtained from QCD calculation and the substitution of one 
gluon into one photon in the squared amplitudes.
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where F tt̄

QED and F tt̄
QCD don’t depend on external momenta and helicities. We reexamined the

calculations and we found that, in front of the QED part of the formula shown in [8], there should
be an overall factor three, which comes from the three different replacements of the gluon propagator
(Fig. 4). Following their argument we can identify the color structure and the couplings of QCD
(F tt̄

QCD) and QED (F tt̄
QED) cases, and obtain the ratio of them.
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QED by simple equations.
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The first equation in (14a) is trivial, we couldn’t get the cancellation of the infrared singularity
without it. The same arguments applies also to equation (14b) that underlines how infrared finite-
ness for QED corrections can be obtained only combining tt̄, tt̄g and tt̄γ final states.
The O(α2

sα) of qq̄ → tt̄g comes from the interference of qq̄ → g → tt̄g (Fig. 3) and qq̄ → γ → tt̄g
(Fig. 5). This terms can be obtained from the results calculated in the QCD case, with the replace-
ment of one gluonic propagator with a photonic one and the right couplings, as we did in the case of
qq̄ → tt̄. The only difference is the number of replaceable gluonic propagators in the interferences
term: in the qq̄ → tt̄g case they are only two and not three.
The O(α2

sα) of qq̄ → tt̄γ comes from the squared module of the sum of qq̄ → g → tt̄γ diagrams
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(Fig. 6), and again its value can be obtained by the QCD case of the different process qq̄ → tt̄g.
In this case the particle replaced in the amplitudes is not virtual but real, so there is a one-to-one
relation between diagrams involved in QCD and QED cases.
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for the emission of gluon with mass λ and Eg < ∆E. These soft gluon terms must include only the
interference of initial and final state gluon to cancel the IR-divergence of the box, anyway the price
we pay is a dependence on ∆E. In the case of the real emission of gluon only the interference of
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initial and final state radiation gives asymmetric term5, so demanding hard gluon with Eg > ∆E
and combining the result with soft gluon emission and loop correction, we finally obtain the total
effect of the O(α3

s) of the inclusive production of tt̄ induced by qq̄, independent of ∆E.
qg → tt̄q and q̄g → tt̄q̄ tree level diagram are the same of qq̄ → tt̄g with ingoing q̄(q) and outgoing
g crossed, so it’s easy to understand how asymmetric term can arise, but its contribution to AFB

is numerically negligible.

In order to analyze the O(α2
sα) it’s useful to divide QED corrections from the pure weak ones. In

the QED sector we obtain contributions to O(α2
sα) of N from three6 partonic processes: qq̄ → tt̄,

qq̄ → tt̄g and qq̄ → tt̄γ. If we start from the first case, we find that it can be calculated simply
substituting with a photon propagator one of the three gluon propagator that appears in the O(α3

s)
interference of boxes and tree level amplitudes.
The only differences between the calculation of O(α3

s) and of QED O(α2
sα) are the couplings and

the presence of SU(3) generators in the vertexes, so summing over color in the final state and

5These diagram are shown in Fig. 3, also a diagram with the trigluon vertex can be drawn, but it doesn’t give
any contribution to AFB

6Also γq → tt̄q and γq̄ → tt̄q̄ can contribute, but their contribution is negligible
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initial and final state radiation gives asymmetric term5, so demanding hard gluon with Eg > ∆E
and combining the result with soft gluon emission and loop correction, we finally obtain the total
effect of the O(α3
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In this work we reevaluated all the contributions that are presented in in the last term of (8).

q

q

t

tγ
q

q

t

tZ

q

q

t

tg

g

g

t

tg

g

g

t

t
t

g

g

t

tt

Figure 1: Born diagrams

In Fig. 1 all the tree level diagrams of the subprocesses qq̄ → tt̄ and gg → tt̄ are shown2. From the
squared modules |Mqq̄→g→tt̄|

2 and |Mgḡ→tt̄|
2 we obtainD0 the LO cross section, from |Mqq̄→γ→tt̄+

Mqq̄→Z→tt̄|
2 instead we get the O(α2) term of the numerator of AFB. Indeed the cross section

obtained by s-channel γ, Z amplitudes contains a term (9) that contributes to AFB thanks to the
different couplings of Z with different chiralities.

dσasym

d cos θ
= 2πα2 cos θ

(

1−
4m2

t

s

)[

κ
QqQtAqAt

(s−M2
Z)

+ 2κ2AqAtVqVt
s

(s−M2
Z)

2

]

(9)

κ =
1

4 sin2(θW ) cos2(θW )
Vq = T 3

q − 2Qq sin
2(θW ) Aq = T 3

q

The interference of qq̄ → γ, Z → tt̄ and qq̄ → g → tt̄ is zero because the color structure, so we don’t
have O(αsα) terms3 in N and D.

The O(α3
s) terms that contributes to N come from four partonic processes: qq̄ → tt̄, qq̄ → tt̄g,

qg → tt̄q and q̄g → tt̄q̄. In the first case these corrections comes from the interference of the 1-loop
corrections of QCD and the Born amplitude, in the other ones simply from the tree level amplitude.
All the vertex and self-energies 1-loop correction don’t generate any asymmetric term, so only the
boxes are relevant for our purpose (Fig. 2). Box integrals don’t produce ultraviolet and collinear
divergences, only infrared singularities can arise. After regularization through a mass term λ for
the gluon4, the dependence of the result on λ can be cancelled adding soft gluon terms that account

2Higgs s-channel is completely negligible
3qq̄ → tt̄ presents O(α) W mediated t-channel diagrams leading to non-vanishing contribution to the O(αsα) of

N (with q = d) and D (with q = d, s, b). Unfortunately, this term are strongly suppressed by CKM matrix (with
q = d, s) or by parton distributions (with q = b).

4We don’t have trigluon vertex, so we don’t break the gauge symmetry

3

#(QED  diagrams)
=

3 #(QCD  diagrams)

2 Theoretical prevision

Before starting the analysis of the non-vanishing partonic contributions to AFB , it’s worth noting
that the initial state pp̄ is basic to get:

App̄
FB = App̄

C =
σ(yt > 0)− σ(yt̄ > 0)

σ(yt > 0) + σ(yt̄ > 0)
(5a)

AFB "= 0 (5b)

Under a CP transformation a top quark with rapidity y becomes an antitop with asymmetry −y
so, assuming CP conserving interactions, (5a) is true thanks to the CP symmetric initial state.
Obviously also an Att̄

C charge asymmetry can be defined and Att̄
FB = Att̄

C .
In the case of pp collision the initial state is not only non-invariant under CP, it doesn’t exhibit a
preferred direction along the axis of the collision, so AFB it would be trivially equal to zero.
It is useful, for the analysis of AFB in the pp̄ case, to see in a more detailed way why (5b) is not true
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it contributes with the same partonic weight also to σ(yt < 0) in the H2(H1) configuration. So the
total contribution to App̄

FB is non vanishing only if the weight coming from the parton distributions
is different, that is if:

fp1,H1
(x1)fp2,H2

(x2) "= fp1,H2
(x1)fp2,H1

(x2) (6)

where fpi,Hj
(xi) is the parton distribution of the parton pi in the hadron Hj . The same argument

applies also to Att̄
FB with or without cuts on Mtt̄ or ∆y .

At LHC H1 = H2 so AFB is equal to zero, at Tevatron (6) is not generally true but it can be used
to distinguish which subprocesses can give rise to contribution to AFB .
Now we can start to look at the partonic subprocesses that generate a tt̄ pair. At the Born order the
partonic processes are qq̄ → tt̄ and gg → tt̄ so, if we forget for a moment electroweak interactions,
the denominator in AFB (total cross section) is O(α2

s) at leading order. The numerator is instead
O(α3

s) at LO, indeed gg → tt̄ and qq̄ → tt̄ with q "= u, d are excluded by (6) and uū(dd̄) → tt̄
partonic cross section is symmetric under yt → −yt. The exclusion of gg → tt̄ and qq̄ → tt̄ with
q "= u, d doesn’t depend on the perturbative order, so thanks to (6) we can exclude these partonic
processes for the next calculations1.
Writing the numerator and the denominator of AFB in powers of αs we obtain

AFB =
N

D
=

α3
sN1 + α4

sN2 + · · ·

α2
sD0 + α3

sD1 + · · ·
=

αs

D0
(N1 + αs(N2 −N1D1/D0)) + · · · . (7)

The terms up to 1 loop have been already calculated (D0, D1, N1), instead only some parts of
N2 are known. The inclusion of the N1D1/D0 term without N2 could worsen the perturbative
approximation of the exact result, so we are allowed to use only the Born cross section in the
denominator and the O(α3

s) term in the numerator.
We can also rewrite N and D including EW corrections, and the leading contribution (excluding
the O(α2

s) terms) are

AFB =
N

D
=

α2Ñ0 + α3
sN1 + α2

sαÑ1 + α4
sN2 + · · ·

α2D̃0 + α2
sD0 + α3

sD1 + α2
sαD̃1 + · · ·

= αs
N1

D0
+ α

Ñ1

D0
+

α2

α2
s

Ñ0

D0
+ · · · (8)

1We know that there are PDFs with s(x) != s̄(x), but the effect is negligible.
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It’s useful to divide electroweak contribution into 
QED (photon) and weak (Z) part. 

QED QED can be easily obtained from QCD calculation and the substitution of one 
gluon into one photon in the squared amplitudes.
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where F tt̄

QED and F tt̄
QCD don’t depend on external momenta and helicities. We reexamined the

calculations and we found that, in front of the QED part of the formula shown in [8], there should
be an overall factor three, which comes from the three different replacements of the gluon propagator
(Fig. 4). Following their argument we can identify the color structure and the couplings of QCD
(F tt̄

QCD) and QED (F tt̄
QED) cases, and obtain the ratio of them.
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In F tt̄
QCD there are two different color structures and the result depends on d2 = dABCdABC = 40

3

that arises from Tr(tAtBtC) = 1
4 (if

ABC+dABC), F tt̄
QED instead depends on the charges of incoming

quarks (Qq) and top (Qt), ntt̄ = 3 due to the three cases shown in Fig. 4.
Also qq̄ → tt̄g and qq̄ → tt̄γ subprocess can be evaluated through the results obtained for qq̄ → tt̄g
in the QCD case and the substitution of a gluon with a photon.
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F tt̄g
QCD, F tt̄g

QED and F tt̄γ
QED are related to F tt̄

QCD, F tt̄
QED by simple equations.

F tt̄g
QCD = F tt̄

QCD F tt̄g
QED =

2

3
F tt̄
QED F tt̄γ

QED =
1

3
F tt̄
QED (14a)

F tt̄
QED = F tt̄g

QED + F tt̄γ
QED (14b)

The first equation in (14a) is trivial, we couldn’t get the cancellation of the infrared singularity
without it. The same arguments applies also to equation (14b) that underlines how infrared finite-
ness for QED corrections can be obtained only combining tt̄, tt̄g and tt̄γ final states.
The O(α2

sα) of qq̄ → tt̄g comes from the interference of qq̄ → g → tt̄g (Fig. 3) and qq̄ → γ → tt̄g
(Fig. 5). This terms can be obtained from the results calculated in the QCD case, with the replace-
ment of one gluonic propagator with a photonic one and the right couplings, as we did in the case of
qq̄ → tt̄. The only difference is the number of replaceable gluonic propagators in the interferences
term: in the qq̄ → tt̄g case they are only two and not three.
The O(α2

sα) of qq̄ → tt̄γ comes from the squared module of the sum of qq̄ → g → tt̄γ diagrams
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(Fig. 6), and again its value can be obtained by the QCD case of the different process qq̄ → tt̄g.
In this case the particle replaced in the amplitudes is not virtual but real, so there is a one-to-one
relation between diagrams involved in QCD and QED cases.
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DIFFERENCES:
Only couplings and color factor!
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for the emission of gluon with mass λ and Eg < ∆E. These soft gluon terms must include only the
interference of initial and final state gluon to cancel the IR-divergence of the box, anyway the price
we pay is a dependence on ∆E. In the case of the real emission of gluon only the interference of
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initial and final state radiation gives asymmetric term5, so demanding hard gluon with Eg > ∆E
and combining the result with soft gluon emission and loop correction, we finally obtain the total
effect of the O(α3

s) of the inclusive production of tt̄ induced by qq̄, independent of ∆E.
qg → tt̄q and q̄g → tt̄q̄ tree level diagram are the same of qq̄ → tt̄g with ingoing q̄(q) and outgoing
g crossed, so it’s easy to understand how asymmetric term can arise, but its contribution to AFB

is numerically negligible.

In order to analyze the O(α2
sα) it’s useful to divide QED corrections from the pure weak ones. In

the QED sector we obtain contributions to O(α2
sα) of N from three6 partonic processes: qq̄ → tt̄,

qq̄ → tt̄g and qq̄ → tt̄γ. If we start from the first case, we find that it can be calculated simply
substituting with a photon propagator one of the three gluon propagator that appears in the O(α3

s)
interference of boxes and tree level amplitudes.
The only differences between the calculation of O(α3

s) and of QED O(α2
sα) are the couplings and

the presence of SU(3) generators in the vertexes, so summing over color in the final state and

5These diagram are shown in Fig. 3, also a diagram with the trigluon vertex can be drawn, but it doesn’t give
any contribution to AFB

6Also γq → tt̄q and γq̄ → tt̄q̄ can contribute, but their contribution is negligible
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In Fig. 1 all the tree level diagrams of the subprocesses qq̄ → tt̄ and gg → tt̄ are shown2. From the
squared modules |Mqq̄→g→tt̄|

2 and |Mgḡ→tt̄|
2 we obtainD0 the LO cross section, from |Mqq̄→γ→tt̄+

Mqq̄→Z→tt̄|
2 instead we get the O(α2) term of the numerator of AFB. Indeed the cross section

obtained by s-channel γ, Z amplitudes contains a term (9) that contributes to AFB thanks to the
different couplings of Z with different chiralities.
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(
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Vq = T 3

q − 2Qq sin
2(θW ) Aq = T 3

q

The interference of qq̄ → γ, Z → tt̄ and qq̄ → g → tt̄ is zero because the color structure, so we don’t
have O(αsα) terms3 in N and D.

The O(α3
s) terms that contributes to N come from four partonic processes: qq̄ → tt̄, qq̄ → tt̄g,

qg → tt̄q and q̄g → tt̄q̄. In the first case these corrections comes from the interference of the 1-loop
corrections of QCD and the Born amplitude, in the other ones simply from the tree level amplitude.
All the vertex and self-energies 1-loop correction don’t generate any asymmetric term, so only the
boxes are relevant for our purpose (Fig. 2). Box integrals don’t produce ultraviolet and collinear
divergences, only infrared singularities can arise. After regularization through a mass term λ for
the gluon4, the dependence of the result on λ can be cancelled adding soft gluon terms that account

2Higgs s-channel is completely negligible
3qq̄ → tt̄ presents O(α) W mediated t-channel diagrams leading to non-vanishing contribution to the O(αsα) of

N (with q = d) and D (with q = d, s, b). Unfortunately, this term are strongly suppressed by CKM matrix (with
q = d, s) or by parton distributions (with q = b).

4We don’t have trigluon vertex, so we don’t break the gauge symmetry
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2.4 Total cross sections from 8 to 100 TeV

In addition to the studies performed for the LHC at 13 TeV, in this subsection we discuss
and show results for the dependence of the total cross section on the energy of the proton–
proton collision. In figure 19 NLO QCD total cross sections are plotted from 8 to 100 TeV, as
bands including scale and PDF uncertainties. The corresponding numerical values are listed
in table 4. As usual, central values refers to µ = µg, and scale uncertainties are obtained
by varying independently µr and µf in the standard interval [µg/2 < µf , µr < 2µg].

In the left plot of figure 19 we show the results for tt̄V -type processes, whereas tt̄tt̄

production and tt̄V V -type processes results are displayed in the right plot. In both plots
we show in the first and in the second inset the dependence of the K-factors at µ = µg on
the energy. The first insets refer to processes with zero total-charge final states, whereas
the second insets refer to processes with charged final states. The very different qualitative
behaviors between the two classes of processes is due to the fact that the former include
already at LO an initial state with gluons, whereas the latter do not. The gluon appears
in the partonic initial states of charged processes only at NLO via the (anti)quark–gluon
channel. At small Bjorken-x’s, the gluon PDF grows much faster than the (anti)quark
PDF. Thus, increasing the energy of the collider, the relative corrections induced by the
(anti)quark–gluon initial states leads to the growth of the K-factors and dominates in their
energy dependence. Also, as can be seen in figure 19 and table 4, these processes present a
larger dependence on the scale variation than the uncharged processes. [Davide: what don’t
you like of the previous sentence Fabio? ]

The differences in the slopes of the curves in the main panels of the plots are also
mostly due to the gluon PDF. Charged processes do not originate from the gluon–gluon
initial state neither at LO nor at NLO. For this reason, their growth with the increasing of
the energy is smaller than for the uncharged processes. All these arguments point to the
fact that, at 100 TeV collider, it will be crucial to have NNLO QCD corrections for tt̄W

±,
tt̄W

±
� and tt̄W

±
Z processes.

The fact that tt̄tt̄ production is the process with the rapidest growth is again due to
percentage content of gluon–gluon-initiated channels, which is higher than for all the other
processes. [Davide: Should we shows plots in figure 20? ]. From the left plot, it is easy
also to note that the scale uncertainty of tt̄tt̄ production is larger than for the tt̄V V -type
processes. In this case, the difference originates from the different powers of ↵s at LO; tt̄tt̄
production is of O(↵

4
s) whereas tt̄V V -type processes are of O(↵

2
s↵
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). [Davide: Additional
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At the LHC, reliable SM predictions must be calculated 
at NLO QCD accuracy or beyond.


NNLO QCD is expected to be of the same order of 
NLO EW .   


EW corrections grow large and negative for large pt’s 
(Sudakov logs). Moreover they in general involve all 
the SM masses and couplings.         


α2
s ∼ α

NNLO EW, 
NNNLO QCD 

…..

Perturbation Theory
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LO1
 LO2
 LO3
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 NLO2
 NLO3
 NLO4


NLO1 = NLO QCD

NLO2 = NLO EW


The complete set of LOi and NLOi is denoted as “Complete-NLO”.


In general, NLO3 and NLO4 are negligible, 
but there are important exceptions as  or . 
tt̄W tt̄tt̄

tt̄V

NLO QCD and EW corrections: the Complete-NLO

Process O(A) O(Σ)

gg → tt̄H α1
sα

1/2 α2
sα

1

qq̄ → tt̄H, q "= b α1
sα

1/2, α3/2 α2
sα

1, α3

qq̄ → tt̄H, q = b α1
sα

1/2, α3/2 α2
sα

1, α1
sα

2, α3

Table 1: Born-level partonic processes relevant to tt̄H production. For each of them,

we report the coupling-constant factors in front of the non-null contributions, both at the

amplitude (middle column) and at the amplitude squared (rightmost column) level.

Figure 1: Representative O(α1
sα

1/2) Born-level diagrams.

Figure 2: Representative O(α3/2) Born-level diagrams.

tt̄H production, k = 3 at the LO (eq. (2.1)) and k = 4 at the NLO (eq. (2.2)). This

immediately shows that it is also convenient to write Σk,q ≡ Σk0+p,q, with p ≥ 0, for

the NpLO coefficients; k0 is then a fixed, process-specific integer associated with the Born

cross section, equal to 3 in tt̄H production. The integer q identifies the various terms of

eqs. (2.1) and (2.2). We have conventionally chosen to associate increasing values of q with

Σk0+p,q coefficients (at fixed p) which are increasingly suppressed in terms of the hierarchy

of the coupling constants, α % αS. Thus, q = 0 corresponds to the coefficient with the

largest (smallest) power of αS (α), and conversely for q = qmax. This maximum value

qmax that can be assumed by q is process- and perturbative-order-dependent, and it grows

with the number of amplitudes that interfere and that factorise different coupling-constant

combinations; in the case of tt̄H production at the LO, this can be seen by comparing the

two rightmost columns of table 1.

We propose that the coefficient Σk0+p,q be called the leading (when q = 0), or the

(q + 1)th-leading (when q ≥ 1, i.e. second-leading, third-leading, and so forth), term of the

– 4 –

Process O(A) O(Σ)

gg → tt̄H α1
sα

1/2 α2
sα

1

qq̄ → tt̄H, q "= b α1
sα

1/2, α3/2 α2
sα

1, α3

qq̄ → tt̄H, q = b α1
sα

1/2, α3/2 α2
sα

1, α1
sα

2, α3

Table 1: Born-level partonic processes relevant to tt̄H production. For each of them,

we report the coupling-constant factors in front of the non-null contributions, both at the

amplitude (middle column) and at the amplitude squared (rightmost column) level.

Figure 1: Representative O(α1
sα

1/2) Born-level diagrams.

Figure 2: Representative O(α3/2) Born-level diagrams.

tt̄H production, k = 3 at the LO (eq. (2.1)) and k = 4 at the NLO (eq. (2.2)). This

immediately shows that it is also convenient to write Σk,q ≡ Σk0+p,q, with p ≥ 0, for

the NpLO coefficients; k0 is then a fixed, process-specific integer associated with the Born

cross section, equal to 3 in tt̄H production. The integer q identifies the various terms of

eqs. (2.1) and (2.2). We have conventionally chosen to associate increasing values of q with

Σk0+p,q coefficients (at fixed p) which are increasingly suppressed in terms of the hierarchy

of the coupling constants, α % αS. Thus, q = 0 corresponds to the coefficient with the

largest (smallest) power of αS (α), and conversely for q = qmax. This maximum value

qmax that can be assumed by q is process- and perturbative-order-dependent, and it grows

with the number of amplitudes that interfere and that factorise different coupling-constant

combinations; in the case of tt̄H production at the LO, this can be seen by comparing the

two rightmost columns of table 1.

We propose that the coefficient Σk0+p,q be called the leading (when q = 0), or the

(q + 1)th-leading (when q ≥ 1, i.e. second-leading, third-leading, and so forth), term of the

– 4 –

Born B0 = O(α1
sα

1/2) B1 = O(α3/2)

QCD
Virtual VQCD,0 = O(α2

sα
1/2) VQCD,1 = O(α1

sα
3/2)

Real RQCD,0 = O(α3/2
s α1/2) RQCD,1 = O(α1/2

s α3/2)

EW
Virtual VEW,0 = O(α1

sα
3/2) VEW,1 = O(α5/2)

Real REW,0 = O(α1
sα

1) REW,1 = O(α2)

Table 2: Coupling-constant factors relevant to Born, one-loop, and real-emission ampli-

tudes; see the text for more details.

in the context of a mixed QCD-EW expansion, the virtual or final-state particle mentioned

before must be chosen in a set larger than the one relevant to a single-coupling series. In

particular, for the case of tt̄H production with stable top quarks and Higgs, such a set is:
{

g, q, t, Z,W±,H, γ
}

, (2.5)

where the light quark q may also be a b quark, and the top quark enters only one-loop

contributions. In the case of such contributions, the particles in the set of eq. (2.5) are fully

analogous to the L-cut particles (see sect. 3.2.1 of ref. [50]), and we understand ghosts and

Goldstone bosons. When the extra particle added to the Born diagram (be it virtual or real)

is strongly interacting, it is then natural to classify the resulting one-loop or real-emission

diagram as a QCD-type contribution, and a EW-type contribution otherwise2. The idea

of this amplitude-level classification is that QCD-type and EW-type contributions will

generally lead to QCD and EW corrections at the amplitude-squared level, respectively.

However, this correspondence, in spite of being intuitively appealing, is not exact, as we

shall show in the following; this is one of the reasons why “QCD corrections” and “EW

corrections” must not be interpreted literally. The classification just introduced is used in

table 2: for a given Born-level amplitude Bi associated with a definite coupling-constant

factor, the corresponding one-loop and real-emission quantities are denoted by VQCD,i and

RQCD,i in the case of QCD-type contributions, and by VEW,i and REW,i in the case of EW-

type contributions. We can finally consider all possible combinations Bi·V∗,j, RQCD,i·RQCD,j,

and REW,i ·REW,j and associate them with the relevant amplitude-squared quantities Σ4,q.

Note that one must not consider the RQCD,i · REW,j combinations, owing to the fact that

the two amplitudes here are relevant to different final states3.

We now observe that this bottom-up construction leads to redundant results. Here,

the case in point is that of VQCD,1 and VEW,0: the one-loop diagram (which enters VQCD,1)

obtained by exchanging a gluon between the q̄ and t̄ legs of the diagram to the left of fig. 2

is the same diagram as that (which enters VEW,0) obtained by exchanging a Z between the

q and intermediate-t legs of the diagram to the right of fig. 1. This fact does not pose any

2An alternative classification (equivalent to that used here when restricted to tt̄H production and to pro-

cesses of similar characteristics, but otherwise more general) is one that determines the type of contribution

according to the nature of the vertex involved.
3For generic processes, this is not necessarily the case, the typical situation being that where some

massless particles in the set of eq. (2.5) are present at the Born level.
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Figure 1: Representative Feynman diagrams for the different channels entering the NLOQCD+EW

predictions for t`
+
`
�
j production. The diagram 1(a) contributes to the NLO2, while the dia-

grams 1(b) and 1(c) contribute to the NLO1. Similar diagrams are present for tZj production,
while in tHj production the Higgs boson does not couple to the initial-state particles.

5FS , where the tilde on top of � has been added just for distinguishing them from the purely
QCD case. We notice that (NLO5FS

QCD+EW
)
+�̃

5FS
+

��̃5FS
�

is not obtained by selecting t-channel diagrams,
but retaining all the possible contributions: not only t-channel, but also s-channel and tW as-
sociated production with subsequent W boson hadronic decay, see Fig. 1 for representative
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2.2 Separation of different production modes
In this section we explain why we cannot select the t-channel mode and at the same time take
into account NLO EW corrections. Moreover, we explain why we believe that not singling out
the t-channel mode is anyway preferable for providing reference predictions for experimental
measurements. After this explanation, we will motivate the strategy that we have designed
in order to take into account flavour-scheme dependence and scale variations in our theory
uncertainty.

5

Before our recipe, than rationale behind it
Central scale for  
μF, μR

from the former and weak Sudakov logarithms from the latter. In our calculation both NLO
QCD and NLO EW corrections induce the opening of a new production mechanisms, namely
the tWh associated production. First, the tWh component in the NLO QCD corrections is not
negligible, as also documented in Sec. 3. Second, separating the different production channels
is not possible for the case of the EW corrections. For these reasons, in our study we have
refrained from combining NLO QCD and NLO EW corrections in the multiplicative approach
and we provide predictions only in the additive approach, NLOQCD+EW.

2.3 Input Parameters
In this paper we provide results for proton–proton collisions at the LHC, with a centre-of-mass
energy of 13 TeV. In our calculation we use the following on-shell input parameters

mZ = 91.188 GeV , mW = 80.385 GeV , mH = 125 GeV ,

�Z = 2.49707 GeV , �W = 2.09026 GeV , �H = 0 , (3)
mt = 173.3 GeV , mb = 4.92 GeV , �t = 0 ,

and employ the complex mass scheme [38, 39]. We have set �H = 0 and �t = 0, since in our
calculation there is always an external on-shell top quark and in the case of tHj production an
external on-shell Higgs boson. We also set �Z = 0 in the case of tZj production. The value
mb = 4.92 GeV directly enters our calculations only in the 4FS. It has been chosen in order to
be consistent with the value used in the PDF evolution of the PDF sets that we employ for the
calculations in the 5FS. We discuss later in detail the PDF-set choice. We also note that while
in the 5FS the Higgs boson does not couple to the b quark, it does in the 4FS. However, the
contribution of diagrams involving this coupling is subleading in the case of tHj production,
where a top quark is present in the final state and a W -boson in the propagator, leading to
much larger Higgs couplings. For this reason, in the 4FS we can safely use the on-shell mb value
also for the bottom Yukawa interaction. See also Ref. [11] for more details.

In our calculation EW interactions are renormalised in the Gµ-scheme with

Gµ = 1.16639 · 10�5 GeV�2
, (4)

while QCD interactions are renormalised in the MS-scheme with five active flavour in the 5FS
and four active flavour in the 4FS. The numerical input and the µR dependence of ↵s is directly
taken from the PDF sets used in the calculation. In order to estimate QCD scale uncertainties,
we vary independently by a factor of two µr and µf around the central value µ0 defined as
follows,

µ0 ⌘ HT/6 =

P
i
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6
, i = t,H, b for tHj , (5)

µ0 ⌘ HT/6 =

P
i
mT,i

6
, i = t, Z, jb for tZj , (6)

µ0 ⌘ HT/6 =

P
i
mT,i

6
, i = t, Z(`

+
`
�
), b for t`

+
`
�
j . (7)

The scale definition in Eq. (5) is based on the findings of Refs. [11, 27] and the same rationale
has been used for Eqs. (6) and (7). With t and b we refer to both quarks and antiquarks, and
the momentum of the bottom (anti)quark is set to zero when this particle is not present in the
final state4. More details about the scale dependence will be discussed in Sec. 3.1.1.

4Since in our calculation there are not �, g�!bb̄ splittings in the final state, this definition is IR safe.
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3.1.2 NLO QCD+EW predictions

We proceed to the computation of total cross sections at NLO QCD+EW accuracy, without
selecting t-channel diagrams; s-channel and tWh contributions are retained as explained in
Sec. 2.2. Inclusive results for the processes that we consider in this work, tHj, tZj and t`

+
`
�
j,

are shown in Tab. 1, using the settings described in Sec. 2. The two dilepton invariant mass
cuts for t`

+
`
�
j will allow us to investigate the impact of EW corrections and compare this to

the result for the undecayed tZj process.

Accuracy Channel FS tHj tZj

NLOQCD t-ch.

4FS 68.1(1)
+2.7(+4.0%)
�4.5(�6.6%)

+0.4(+0.5%)
�0.4(�0.5%) 764(1)

+33(+4.3%)
�48(�6.2%)

+3(+0.4%)
�3(�0.4%)

5FS 71.3(1)
+5.2(+7.2%)
�1.7(�2.4%)

+0.3(+0.5%)
�0.3(�0.5%) 805(1)

+45(+5.5%)
�8(�1.0%)

+3(+0.4%)
�3(�0.4%)

5FS
scale
4�5 71.3(1)

+5.2(+7.2%)
�7.7(�10.9%)

+0.3(+0.5%)
�0.3(�0.5%) 805(1)

+45(+5.5%)
�89(�11.1%)

+3(+0.4%)
�3(�0.4%)

NLOQCD
t-ch., s-ch.,

tWh

5FS 85.1(2)
+5.4(+6.4%)
�2.3(�2.7%)

+0.5(+0.6%)
�0.5(�0.6%) 895(2)

+46(+5.1%)
�16(�1.8%)

+4(+0.4%)
�4(�0.4%)

5FS
scale
4�5 85.1(2)

+6.2(+7.2%)
�9.2(�10.9%)

+0.5(+0.6%)
�0.5(�0.6%) 895(2)

+50(+5.5%)
�99(�11.1%)

+4(+0.4%)
�4(�0.4%)

NLOQCD+EW
t-ch., s-ch.,

tWh

5FS 82.2(2)
+5.6(+6.8%)
�2.4(�2.9%)

+0.5(+0.6%)
�0.5(�0.6%) 904(2)

+42(+4.7%)
�19(�2.1%)

+4(+0.4%)
�4(�0.4%)

5FS
scale
4�5 82.2(2)

+5.9(+7.2%)
�8.9(�10.9%)

+0.5(+0.6%)
�0.5(�0.6%) 904(2)

+50(+5.5%)
�100(�11.1%)

+4(+0.4%)
�4(�0.4%)

Accuracy Channel FS t`
+
`
�
j (“inclusive”) t`

+
`
�
j (Z-peak)

NLOQCD t-ch.

4FS 80.2(2)
+3.7(+4.6%)
�5.0(�6.2%)

+0.3(+0.4%)
�0.3(�0.4%) 70.9(2)

+3.1(+4.3%)
�4.4(�6.2%)

+0.3(+0.4%)
�0.3(�0.4%)

5FS 84.0(1)
+4.7(+5.6%)
�0.9(�1.0%)

+0.3(+0.4%)
�0.3(�0.4%) 75.0(1)

+4.2(+5.6%)
�0.8(�1.0%)

+0.3(+0.4%)
�0.3(�0.4%)

5FS
scale
4�5 84.0(1)

+4.7(+5.6%)
�8.7(�10.4%)

+0.3(+0.4%)
�0.3(�0.4%) 75.0(1)

+4.2(+5.6%)
�8.5(�11.3%)

+0.3(+0.4%)
�0.3(�0.4%)

NLOQCD
t-ch., s-ch.,

tWh

5FS 93.7(2)
+4.9(+5.2%)
�1.7(�1.8%)

+0.4(+0.4%)
�0.4(�0.4%) 83.4(2)

+4.3(+5.1%)
�1.5(�1.8%)

+0.4(+0.4%)
�0.4(�0.4%)

5FS
scale
4�5 93.7(2)

+5.2(+5.6%)
�9.7(�10.4%)

+0.4(+0.4%)
�0.4(�0.4%) 83.4(2)

+4.6(+5.6%)
�9.4(�11.3%)

+0.4(+0.4%)
�0.4(�0.4%)

NLOQCD+EW
t-ch., s-ch.,

tWh

5FS 89.6(2)
+5.1(+5.7%)
�1.7(�1.9%)

+0.4(+0.4%)
�0.4(�0.4%) 77.2(2)

+4.9(+6.3%)
�1.5(�1.9%)

+0.3(+0.4%)
�0.3(�0.4%)

5FS
scale
4�5 89.6(2)

+5.0(+5.6%)
�9.3(�10.4%)

+0.4(+0.4%)
�0.4(�0.4%) 77.2(2)

+4.3(+5.6%)
�8.7(�11.3%)

+0.3(+0.4%)
�0.3(�0.4%)

Table 1: Total cross-section for tHj, tZj and t`
+
`
�
j production. The uncertainties are scale

and PDF of the form ± absolute (± relative in %). The first number in parentheses after the
central value is the absolute statistical error.

For each process, in the first block we show results for the t-channel mode in the 4FS and 5FS
at NLO in QCD. The 4FS and 5FS combined results, denoted as 5FSscale

4�5
, are obtained from the

combination of the 4FS and 5FS uncertainties as described in detail in Sec. 2.1. In the second
block we show the NLOQCD and NLOQCD+EW results in the 5FS including all the contributions
(t-ch., s-ch., and tWh-assoc.). In both cases we show first the pure 5FS result and then the
5FSscale

4�5
result. The latter is obtained using the 5FS central value, but now assigning as scale

uncertainty the rescaled scale-uncertainty from the NLO QCD combination between 4FS and
5FS in the t-channel only case, the result in the third line of the first block. The NLOQCD+EW

prediction in the 5FSscale

4�5
is at the moment the most precise and accurate prediction and should
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t-ch., s-ch.,

tWh

5FS 82.2(2)
+5.6(+6.8%)
�2.4(�2.9%)

+0.5(+0.6%)
�0.5(�0.6%) 904(2)

+42(+4.7%)
�19(�2.1%)

+4(+0.4%)
�4(�0.4%)

5FS
scale
4�5 82.2(2)

+5.9(+7.2%)
�8.9(�10.9%)

+0.5(+0.6%)
�0.5(�0.6%) 904(2)

+50(+5.5%)
�100(�11.1%)

+4(+0.4%)
�4(�0.4%)

Accuracy Channel FS t`
+
`
�
j (“inclusive”) t`

+
`
�
j (Z-peak)

NLOQCD t-ch.

4FS 80.2(2)
+3.7(+4.6%)
�5.0(�6.2%)

+0.3(+0.4%)
�0.3(�0.4%) 70.9(2)

+3.1(+4.3%)
�4.4(�6.2%)

+0.3(+0.4%)
�0.3(�0.4%)

5FS 84.0(1)
+4.7(+5.6%)
�0.9(�1.0%)

+0.3(+0.4%)
�0.3(�0.4%) 75.0(1)

+4.2(+5.6%)
�0.8(�1.0%)

+0.3(+0.4%)
�0.3(�0.4%)

5FS
scale
4�5 84.0(1)

+4.7(+5.6%)
�8.7(�10.4%)

+0.3(+0.4%)
�0.3(�0.4%) 75.0(1)

+4.2(+5.6%)
�8.5(�11.3%)

+0.3(+0.4%)
�0.3(�0.4%)

NLOQCD
t-ch., s-ch.,

tWh

5FS 93.7(2)
+4.9(+5.2%)
�1.7(�1.8%)

+0.4(+0.4%)
�0.4(�0.4%) 83.4(2)

+4.3(+5.1%)
�1.5(�1.8%)

+0.4(+0.4%)
�0.4(�0.4%)

5FS
scale
4�5 93.7(2)

+5.2(+5.6%)
�9.7(�10.4%)

+0.4(+0.4%)
�0.4(�0.4%) 83.4(2)

+4.6(+5.6%)
�9.4(�11.3%)

+0.4(+0.4%)
�0.4(�0.4%)

NLOQCD+EW
t-ch., s-ch.,

tWh

5FS 89.6(2)
+5.1(+5.7%)
�1.7(�1.9%)

+0.4(+0.4%)
�0.4(�0.4%) 77.2(2)

+4.9(+6.3%)
�1.5(�1.9%)

+0.3(+0.4%)
�0.3(�0.4%)

5FS
scale
4�5 89.6(2)

+5.0(+5.6%)
�9.3(�10.4%)

+0.4(+0.4%)
�0.4(�0.4%) 77.2(2)

+4.3(+5.6%)
�8.7(�11.3%)

+0.3(+0.4%)
�0.3(�0.4%)

Table 1: Total cross-section for tHj, tZj and t`
+
`
�
j production. The uncertainties are scale

and PDF of the form ± absolute (± relative in %). The first number in parentheses after the
central value is the absolute statistical error.

For each process, in the first block we show results for the t-channel mode in the 4FS and 5FS
at NLO in QCD. The 4FS and 5FS combined results, denoted as 5FSscale

4�5
, are obtained from the

combination of the 4FS and 5FS uncertainties as described in detail in Sec. 2.1. In the second
block we show the NLOQCD and NLOQCD+EW results in the 5FS including all the contributions
(t-ch., s-ch., and tWh-assoc.). In both cases we show first the pure 5FS result and then the
5FSscale

4�5
result. The latter is obtained using the 5FS central value, but now assigning as scale

uncertainty the rescaled scale-uncertainty from the NLO QCD combination between 4FS and
5FS in the t-channel only case, the result in the third line of the first block. The NLOQCD+EW

prediction in the 5FSscale

4�5
is at the moment the most precise and accurate prediction and should
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The choice of the PDF set is motivated by a few aspects that are explained in the following.
First, our calculation is performed at NLO QCD+EW accuracy and therefore (at least) the
same level of accuracy has to be present for the PDFs themselves. Second, in order to evaluate
flavour-scheme uncertainties, both a 4FS and a 5FS version of the same PDF fit have to be
available. Therefore, the only three possible options at the moment are: NNPDF3.0 [40, 41],
NNPDF3.1 [42, 43] and MMHT2014/MMHT2015 [44, 45]. All these three sets are accurate
up to NNLO in QCD and NLO in QED accuracy and include a photon density based on the
LUXqed parameterisation [46, 47]. The set NNPDF3.1 should be preferred over the NNPDF3.0
one, being an improvement of the former, and we choose it for our calculations. Notably, in
the case of b-initiated processes this improvement cannot be neglected. We have verified that
results in the 5FS obtained with NNPDF3.1 and NNPDF3.0 at NLO QCD accuracy are not
compatible within their PDF uncertainties; the difference between them is several times larger
than the respective PDF uncertainties. These differences have to be attributed to the different
numerical input values for mb in the NNPDF3.0 and NNPDF3.1 PDF fits,5 which can induce
large effects on the bottom PDF and in turn to the bottom–gluon luminosity, entering the
LO predictions for all the processes considered in this paper. Especially, in our calculation
we set µ0 = HT/6, which is quite small, and the smaller the factorisation scale, the larger
the effect induced by a different mb value, since mb determines the threshold condition for
the bottom-quark PDF. On the other hand, this effect is smaller if instead of NLO PDFs one
employs PDFs at NNLO accuracy. For this reason we suggest to avoid to use of NLO PDFs for
the calculation of the processes considered in this work and we adopt NNLO PDFs. We also
note that with this choice NNPDF3.1 and MMHT2014/MMHT2015 predictions are very well
compatible. As a last remark we want also point out that, to the best of our knowledge, no
4FS PDF set including a photon PDF and NLO QED effects is available at the moment, but
would be necessary for NLO EW corrections in the 4FS.

Finally, we describe the clustering procedure that we perform in order to obtain jets and
dressed leptons. First of all we recombine possible photons that are present in the final state,
due to NLO EW corrections or shower effects, with leptons. In fact, this step concerns only the
t`

+
`
�
j process. A dressed lepton is obtained by recombining a bare lepton ` with any photon

� satisfying the condition
�R(`, �) < 0.1 , (8)

where �R(`, �) ⌘
p
(�⌘(`, �))2 + (��(`, �))2 and ⌘(`, �) and ��(`, �) are the difference of the

bare-lepton and photon pseudorapidities and azimuthal angles, respectively. In case that the
condition (8) is satisfied for both `

+ and `
�, the photon is clustered together with the bare

lepton for which �R(`, �) is the smallest. After this, we cluster jets via the anti-kT algorithm
[49] as implemented in FastJet [50] using the parameters

p
min

T
= 25 GeV , R = 0.5 , (9)

and including also the previously unrecombined photons in the clustering procedure. This
means that in our calculation, especially at fixed order, a jet can correspond to a single photon.6
However, it is important to note that in this work the jet definition is relevant only for differential
distributions and not for total cross sections. Indeed, the tHj, tZj and t`

+
`
�
j processes are

all properly defined and IR finite without tagging any jet. When we will consider b-jets, we
will simply refer to jets containing a bottom (anti)quark, without any restriction on their
pseudorapidity. Also, since in our calculation there are no �, g�!bb̄ splittings in the final state,

5We explicitly verified that these effects originate from the different value of the mass of the bottom quark
via the NNPDF2.1 PDF sets [48], which allows to use different values for mb; consistent deviations have been
found.

6In many LHC analyses jets are defined with up to 99% of their energy of electromagnetic origin and even
up to 90% that can be associated to a single photon. More details can be found in Ref. [20].
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Lepton photon recombination

The choice of the PDF set is motivated by a few aspects that are explained in the following.
First, our calculation is performed at NLO QCD+EW accuracy and therefore (at least) the
same level of accuracy has to be present for the PDFs themselves. Second, in order to evaluate
flavour-scheme uncertainties, both a 4FS and a 5FS version of the same PDF fit have to be
available. Therefore, the only three possible options at the moment are: NNPDF3.0 [40, 41],
NNPDF3.1 [42, 43] and MMHT2014/MMHT2015 [44, 45]. All these three sets are accurate
up to NNLO in QCD and NLO in QED accuracy and include a photon density based on the
LUXqed parameterisation [46, 47]. The set NNPDF3.1 should be preferred over the NNPDF3.0
one, being an improvement of the former, and we choose it for our calculations. Notably, in
the case of b-initiated processes this improvement cannot be neglected. We have verified that
results in the 5FS obtained with NNPDF3.1 and NNPDF3.0 at NLO QCD accuracy are not
compatible within their PDF uncertainties; the difference between them is several times larger
than the respective PDF uncertainties. These differences have to be attributed to the different
numerical input values for mb in the NNPDF3.0 and NNPDF3.1 PDF fits,5 which can induce
large effects on the bottom PDF and in turn to the bottom–gluon luminosity, entering the
LO predictions for all the processes considered in this paper. Especially, in our calculation
we set µ0 = HT/6, which is quite small, and the smaller the factorisation scale, the larger
the effect induced by a different mb value, since mb determines the threshold condition for
the bottom-quark PDF. On the other hand, this effect is smaller if instead of NLO PDFs one
employs PDFs at NNLO accuracy. For this reason we suggest to avoid to use of NLO PDFs for
the calculation of the processes considered in this work and we adopt NNLO PDFs. We also
note that with this choice NNPDF3.1 and MMHT2014/MMHT2015 predictions are very well
compatible. As a last remark we want also point out that, to the best of our knowledge, no
4FS PDF set including a photon PDF and NLO QED effects is available at the moment, but
would be necessary for NLO EW corrections in the 4FS.

Finally, we describe the clustering procedure that we perform in order to obtain jets and
dressed leptons. First of all we recombine possible photons that are present in the final state,
due to NLO EW corrections or shower effects, with leptons. In fact, this step concerns only the
t`

+
`
�
j process. A dressed lepton is obtained by recombining a bare lepton ` with any photon

� satisfying the condition
�R(`, �) < 0.1 , (8)

where �R(`, �) ⌘
p
(�⌘(`, �))2 + (��(`, �))2 and ⌘(`, �) and ��(`, �) are the difference of the

bare-lepton and photon pseudorapidities and azimuthal angles, respectively. In case that the
condition (8) is satisfied for both `

+ and `
�, the photon is clustered together with the bare

lepton for which �R(`, �) is the smallest. After this, we cluster jets via the anti-kT algorithm
[49] as implemented in FastJet [50] using the parameters

p
min

T
= 25 GeV , R = 0.5 , (9)

and including also the previously unrecombined photons in the clustering procedure. This
means that in our calculation, especially at fixed order, a jet can correspond to a single photon.6
However, it is important to note that in this work the jet definition is relevant only for differential
distributions and not for total cross sections. Indeed, the tHj, tZj and t`

+
`
�
j processes are

all properly defined and IR finite without tagging any jet. When we will consider b-jets, we
will simply refer to jets containing a bottom (anti)quark, without any restriction on their
pseudorapidity. Also, since in our calculation there are no �, g�!bb̄ splittings in the final state,

5We explicitly verified that these effects originate from the different value of the mass of the bottom quark
via the NNPDF2.1 PDF sets [48], which allows to use different values for mb; consistent deviations have been
found.

6In many LHC analyses jets are defined with up to 99% of their energy of electromagnetic origin and even
up to 90% that can be associated to a single photon. More details can be found in Ref. [20].
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Inclusive results

be taken as reference value for tHj, tZj and t`
+
`
�
j production. For a detailed discussion of

the motivations and the procedure for assigning the scale and flavour-scheme uncertainties, see
Secs. 2.1 and 2.2. Concerning the PDF uncertainties, they are also reported in Tab. 1 and
always refer to the central value.

QCD and EW K-factors are reported in Tab. 2, both for the t-channel only case and includ-
ing all the contributions. Specifically, we show the NLOQCD/LO and the NLOQCD+EW/NLOQCD

ratios, the former both in the 4FS and 5FS, the latter only in the 5FS. Several observations

FS Channel K-factor tHj tZj

4FS
t-ch. NLOQCD/LO

1.17 1.18

5FS 1.20 1.13

5FS t-ch.,
s-ch., tWh

NLOQCD/LO 1.37 1.24

NLOQCD+EW/NLOQCD 0.97 1.01

FS Channel K-factor t`
+
`
�
j (“inclusive”) t`

+
`
�
j (Z-peak)

4FS
t-ch. NLOQCD/LO

1.18 1.18

5FS 1.13 1.13

5FS t-ch.,
s-ch., tWh

NLOQCD/LO 1.24 1.24

NLOQCD+EW/NLOQCD 0.96 0.93

Table 2: QCD and EW K-factors for all processes. The statistical error is beyond the digits
displayed here.

are in order. As already discussed, scale uncertainties of the NLOQCD results are quite small,
reaching at most 7%, for the individual 4FS and 5FS predictions for all four processes consid-
ered here. At the same time PDF uncertainties remain below the percent level. On the other
hand, the t-channel results differ by about 4% between the 4FS and 5FS. Combining the 4FS
and 5FS scale variations enlarges the scale uncertainty to at most 11% in the lower direction,
in order to encompass the lower edge of the 4FS uncertainty band. Including the s-channel
and W -associated channel increases the cross section by 12% for tZj and t`

+
`
�
j and 19% for

tHj. We notice that NLO QCD scale uncertainties for the pure 5FS results are at the same
level with and without the selection of the t-channel modes. This fact supports our strategy
for the evaluation of flavour-scheme and scale uncertainties.

Electroweak corrections have a different impact on the four processes considered. They
decrease the NLOQCD tHj cross section by 3%, increase the tZj one by 1% whilst the Z-
peak results and “inclusive” results are reduced by 7% and 4% respectively. The presence
of the Z�!`

+
`
� decay has a non-negligible impact on the relative size of EW corrections.

Indeed, the radiation of photons from the leptons induces the migration of events outside the
region m(`

+
`
�
) ⇠ mZ . This is the reason why in the Z-peak case NLO EW corrections are

larger in magnitude than in the “inclusive” case: more events migrate outside the selected
phase-space region. Nevertheless, for all the processes and cuts considered, the size of EW

13

In both cases NLO EW corrections are larger than 
the scale unc. in pure 5FS, but not in the  !5FSscale

4−5

d
σ

/d
m

 [
p
b
/G

e
V

]

NLOQCD+EW

NLOQCD

LO

10−5

10−4

10−3

10−2
t!+

!
−j, LHC13

m(!+
!
−)> 30 GeV

N
L
O

Q
C

D
+

E
W

total unc. scale unc. PDF unc.

 1

 1.5

N
L
O

Q
C

D

m(!+
!
−) [GeV]

5FSscale
4−5

5FS

NLOQCD+EW/NLOQCD

 1

 1.5

 0  20  40  60  80  100  120  140

scale unc.



d
σ

/d
η

 [
p

b
]

NLOQCD+EW

NLOQCD

LO

10−2

10−1

tZj, LHC13

N
L

O
Q

C
D

+
E

W

total unc. scale unc. PDF unc.

 0.8

 1

 1.2

N
L

O
Q

C
D

η(j!1
)

5FSscale
4−5

5FS

NLOQCD+EW/NLOQCD

 0.8

 1

 1.2

−4 −2  0  2  4

scale unc.
d

σ
/d

η
 [

p
b

]

NLOQCD+EW

NLOQCD

LO

10−3

10−2

t!+
!
−j, LHC13

|m(!+
!
−)−mZ| < 10 GeV

N
L

O
Q

C
D

+
E

W

total unc. scale unc. PDF unc.

 0.8

 1

 1.2

N
L

O
Q

C
D

η(j!1
)

5FSscale
4−5

5FS

NLOQCD+EW/NLOQCD

 0.8

 1

 1.2

−4 −2  0  2  4

scale unc.

d
σ

/d
η

 [
p

b
]

NLOQCD+EW

NLOQCD

LO

10−3

10−2

t!+
!
−j, LHC13

m(!+
!
−)> 30 GeV

N
L

O
Q

C
D

+
E

W

total unc. scale unc. PDF unc.

 0.8

 1

 1.2

N
L

O
Q

C
D

η(j!1
)

5FSscale
4−5

5FS

NLOQCD+EW/NLOQCD

 0.8

 1

 1.2

−4 −2  0  2  4

scale unc.

tZj
peak
 inclusive


tℓ+ℓ−jtℓ+ℓ−j

Differential distributions



d
σ

/d
p

T
 [

p
b

/G
e

V
]

NLOQCD+EW

NLOQCD

LO

10−4

10−3

10−2
tZj, LHC13

N
L

O
Q

C
D

+
E

W

total unc. scale unc. PDF unc.

 0.8

 1

 1.2

N
L

O
Q

C
D

pT(j!1
) [GeV]

5FSscale
4−5

5FS

NLOQCD+EW/NLOQCD

 0.8

 1

 1.2

 0  50  100  150  200  250  300  350  400  450

scale unc.
d

σ
/d

p
T
 [

p
b

/G
e

V
]

NLOQCD+EW

NLOQCD

LO

10−5

10−4

10−3

10−2 t!+
!
−j, LHC13

|m(!+
!
−)−mZ| < 10 GeV

N
L

O
Q

C
D

+
E

W

total unc. scale unc. PDF unc.

 0.8

 1

 1.2

N
L

O
Q

C
D

pT(j!1
) [GeV]

5FSscale
4−5

5FS

NLOQCD+EW/NLOQCD

 0.8

 1

 1.2

 0  50  100  150  200  250  300  350  400  450

scale unc.

d
σ

/d
p

T
 [

p
b

/G
e

V
]

NLOQCD+EW

NLOQCD

LO

10−5

10−4

10−3

10−2 t!+
!
−j, LHC13

m(!+
!
−)> 30 GeV

N
L

O
Q

C
D

+
E

W

total unc. scale unc. PDF unc.

 0.8

 1

 1.2

N
L

O
Q

C
D

pT(j!1
) [GeV]

5FSscale
4−5

5FS

NLOQCD+EW/NLOQCD

 0.8

 1

 1.2

 0  50  100  150  200  250  300  350  400  450

scale unc.

tZj
peak
 inclusive


tℓ+ℓ−jtℓ+ℓ−j

Differential distributions



d
σ

/d
p

T
 [
p
b
/G

e
V

]

NLOQCD+EW

NLOQCD

LO

10−4

10−3

10−2
tZj, LHC13

N
L
O

Q
C

D
+

E
W

total unc. scale unc. PDF unc.

 1

 1.2

N
L
O

Q
C

D

pT(Z) [GeV]

5FSscale
4−5

5FS

NLOQCD+EW/NLOQCD

 1

 1.2

 0  50  100  150  200  250  300  350  400  450

scale unc.
d

σ
/d

p
T
 [
p
b
/G

e
V

]

NLOQCD+EW

NLOQCD

LO

10−5

10−4

10−3

10−2 t!+
!
−j, LHC13

|m(!+
!
−)−mZ| < 10 GeV

N
L
O

Q
C

D
+

E
W

total unc. scale unc. PDF unc.

 0.8

 1

 1.2

N
L
O

Q
C

D

pT(!+
!
−) [GeV]

5FSscale
4−5

5FS

NLOQCD+EW/NLOQCD

 0.8

 1

 1.2

 0  50  100  150  200  250  300  350  400  450

scale unc.

d
σ

/d
p

T
 [
p
b
/G

e
V

]

NLOQCD+EW

NLOQCD

LO

10−5

10−4

10−3

10−2 t!+
!
−j, LHC13

m(!+
!
−)> 30 GeV

N
L
O

Q
C

D
+

E
W

total unc. scale unc. PDF unc.

 0.8

 1

 1.2

N
L
O

Q
C

D

pT(!+
!
−) [GeV]

5FSscale
4−5

5FS

NLOQCD+EW/NLOQCD

 0.8

 1

 1.2

 0  50  100  150  200  250  300  350  400  450

scale unc.

tZj
peak
 inclusive


tℓ+ℓ−jtℓ+ℓ−j

Differential distributions



d
σ

/d
η

 [
p

b
]

NLOQCD+EW

NLOQCD

LO

10−3

10−2

tHj, LHC13

N
L

O
Q

C
D

+
E

W

total unc. scale unc. PDF unc.

 0.8

 1

 1.2

 1.4

N
L
O

Q
C

D

η(j
`1

)

5FSscale
4−5

5FS

NLOQCD+EW/NLOQCD

 0.8

 1

 1.2

 1.4

−4 −2  0  2  4

scale unc.

d
σ

/d
p

T
 [

p
b

/G
e

V
]

NLOQCD+EW

NLOQCD

LO

10−5

10−4

10−3
tHj, LHC13

N
L

O
Q

C
D

+
E

W

total unc. scale unc. PDF unc.

 0.8

 1

 1.2

N
L
O

Q
C

D

pT(j
`1

) [GeV]

5FSscale
4−5

5FS

NLOQCD+EW/NLOQCD

 0.8

 1

 1.2

 0  50  100  150  200  250  300  350  400  450

scale unc.

d
σ

/d
p

T
 [

p
b

/G
e

V
]

NLOQCD+EW

NLOQCD

LO

10−6

10−5

10−4

10−3

tHj, LHC13

N
L

O
Q

C
D

+
E

W

total unc. scale unc. PDF unc.

 0.8

 1

 1.2

N
L
O

Q
C

D

pT(t) [GeV]

5FSscale
4−5

5FS

NLOQCD+EW/NLOQCD

 0.8

 1

 1.2

 0  50  100  150  200  250  300  350  400  450

scale unc.

d
σ

/d
p

T
 [

p
b

/G
e

V
]

NLOQCD+EW

NLOQCD

LO

10−5

10−4

10−3
tHj, LHC13

N
L

O
Q

C
D

+
E

W

total unc. scale unc. PDF unc.

 1

 1.2

N
L
O

Q
C

D

pT(H) [GeV]

5FSscale
4−5

5FS

NLOQCD+EW/NLOQCD

 1

 1.2

 0  50  100  150  200  250  300  350  400  450

scale unc.

Figure 4: NLOQCD+EW predictions for tHj. In each plot the first inset shows the total uncer-
tainty (flavour-scheme, scale and PDFs) and the second inset shows the NLOQCD+EW/NLOQCD

ratio along with the NLOQCD scale uncertainties both in the 5FSscale

4�5
and 5FS.
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Figure 5: NLOQCD+EW predictions for tZj. The layout of the plots is the same of Fig. 4.
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QCD scale and flavour (4FS vs. 
5FS) uncertainties combined in the 

.


NLO EW corrections are in general 
within the QCD uncertainty band 
only taking into account the 
flavour-scheme dependence.

5FSscale
4−5FS

3.1.2 NLO QCD+EW predictions

We proceed to the computation of total cross sections at NLO QCD+EW accuracy, without
selecting t-channel diagrams; s-channel and tWh contributions are retained as explained in
Sec. 2.2. Inclusive results for the processes that we consider in this work, tHj, tZj and t`

+
`
�
j,

are shown in Tab. 1, using the settings described in Sec. 2. The two dilepton invariant mass
cuts for t`

+
`
�
j will allow us to investigate the impact of EW corrections and compare this to

the result for the undecayed tZj process.
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�8(�1.0%)

+3(+0.4%)
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scale
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�4(�0.4%)

5FS
scale
4�5 85.1(2)

+6.2(+7.2%)
�9.2(�10.9%)

+0.5(+0.6%)
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j production. The uncertainties are scale

and PDF of the form ± absolute (± relative in %). The first number in parentheses after the
central value is the absolute statistical error.
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uncertainty the rescaled scale-uncertainty from the NLO QCD combination between 4FS and
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is at the moment the most precise and accurate prediction and should
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Figure 1: Representative Feynman diagrams for the different channels entering the NLOQCD+EW

predictions for t`
+
`
�
j production. The diagram 1(a) contributes to the NLO2, while the dia-

grams 1(b) and 1(c) contribute to the NLO1. Similar diagrams are present for tZj production,
while in tHj production the Higgs boson does not couple to the initial-state particles.

5FS , where the tilde on top of � has been added just for distinguishing them from the purely
QCD case. We notice that (NLO5FS

QCD+EW
)
+�̃

5FS
+

��̃5FS
�

is not obtained by selecting t-channel diagrams,
but retaining all the possible contributions: not only t-channel, but also s-channel and tW as-
sociated production with subsequent W boson hadronic decay, see Fig. 1 for representative
diagrams.

In order to combine scale and flavour-scheme uncertainties at NLO QCD accuracy, we
consider the t-channel only and we define the quantity (NLO

5FS

QCD,t�ch.
)
+�

4�5FS
+

��
4�5FS
�

via the envelope

of the two bands given by (NLO
4FS

QCD,t�ch.
)
+�

4FS
+

��4FS
�

and (NLO
5FS

QCD,t�ch.
)
+�

5FS
+

��5FS
�

, where the central
value is set equal to the one in the 5FS. The quantities �4�5FS

+ and �
4�5FS

� are then propagated
to the NLOQCD+EW prediction in the 5FS. In conclusion, in order to combine flavour-scheme
and scale uncertainties and take into account EW corrections, not only for t-channel, we will
employ as reference prediction the quantity (NLO

5FS

QCD+EW
)
+�

4�5FS
+

��
4�5FS
�

and in the case of QCD only

corrections, in order to be consistent, we will use the quantity (NLO
5FS

QCD
)
+�

4�5FS

��4�5FS , where in
the quantity NLO

5FS

QCD
the requirement of t-channel only is not applied. In Sec. 3 predictions

obtained following this approach will be simply denoted by 5FSscale

4�5
.

2.2 Separation of different production modes
In this section we explain why we cannot select the t-channel mode and at the same time take
into account NLO EW corrections. Moreover, we explain why we believe that not singling out
the t-channel mode is anyway preferable for providing reference predictions for experimental
measurements. After this explanation, we will motivate the strategy that we have designed
in order to take into account flavour-scheme dependence and scale variations in our theory
uncertainty.

5

NLO EW corrections mix 
the d ifferent channels 
( )


Flavour-scheme uncertainty 
is essential for a realistic 
e s t i m a t e o f t o t a l 
uncertainties.
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Excluding the tails, dominant EW effects originate 
from photon radiation from leptons (FSR).
Then, I can simply simulate this effect via QED in the 
PS, which is typically by default on in e.g. PYTHIA, 
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The large EW effects from FSR radiation can be 
simulated simply by QED effects within the PS and 
therefore they are automatically taken into account
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The situation is completely 
different if boosted regimes 
are considered.
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Considering only the dominant contribution from NLO EW: Sudakov and QED FSR.

Matching of NLO QCD + PS + EWSL + QED FSR at the LHC:

Prepared for submission to JHEP

TIF-UNIMI-2023-25

LU-TP-23-10

Improving NLO QCD event generators with

high-energy EW corrections

Davide Pagani,
a
Timea Vitos,

b
Marco Zaro

c

aINFN, Sezione di Bologna, Via Irnerio 46, 40126 Bologna, Italy
bDivision of Particle and Nuclear Physics, Department of Physics, Lund University, Sölvegatan
14A, SE-223 62 Lund, Sweden
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approach is based on a reweighting procedure of NLO+PS events. In particular, both events

with and without an extra hard emission from matrix elements are consistently reweighted

via the inclusion of the corresponding EWSL contribution. We describe the technical details

and the implementation in the MadGraph5 aMC@NLO framework. Via a completely

automated procedure, events at this level of accuracy can be obtained for a vast class

of hadroproduction processes. As a byproduct we provide results for phenomenologically

relevant physical distributions from top-quark pair and Higgs boson associated production

(tt̄H) and from the associated production of three Z gauge bosons (ZZZ).
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tZj: NLO QCD+EW off-shell effects

in tZj production is typically polarised, and therefore the measurements of polarisation-
sensitive observables and the extraction of helicity fractions provide additional probes of
the SM and possible deviations from it [1].

The importance of tZj as a signal process is shown by several dedicated LHC measure-
ments performed by CMS and ATLAS with the 13 TeV dataset [2–6]. The measurement
of the total tZj cross section [4–6], found to be in good agreement with the SM prediction,
represents an important stress-test of the SM, but performing di�erential measurements
is expected to give an enhanced sensitivity to possible deviations of top-quark couplings
from their SM values [7]. Therefore it is essential that the theoretical predictions account
for the modelling of the decays of the involved resonances.

From the theory side, SM predictions are currently limited to on-shell approximations
for the top-quark description. The next-to-leading-order (NLO) QCD corrections in the
SM are known for many years in the approximation where the production and decay are
factorised [8]. Combined NLO EW+QCD corrections in the SM have been computed for an
on-shell top quark and o�-shell Z boson, including also parton-shower e�ects [9]. As other
single-top processes, tZj production is suited to compare the five-flavour and four-flavour
schemes [9] and therefore to study the b-quark contribution to the proton structure [10].
Phenomenological investigations of the tZj process have been performed in the presence
of new-physics e�ects, with a focus on vector-like top partners [11] and anomalous tZq

couplings [12–14]. A detailed analysis in the SM e�ective field theory has been carried out
in Refs. [7, 15], where the combination of tZj and tHj processes has been shown to enhance
the sensitivity to anomalous values of several SM couplings.

The presented calculation provides the first complete o�-shell SM prediction at NLO
QCD+EW accuracy in the five-flavour scheme. The modelling of the top-quark and Z-
boson decays accounts for all resonant and non-resonant contributions and includes com-
plete spin correlations, both at LO and at NLO. An interesting feature of the o�-shell
calculation is that, although at LO the final-state signature selects the decay products
of a (leptonically-decaying) top quark, the real corrections at NLO (both QCD and EW)
inevitably include partonic processes featuring a (hadronically-decaying) anti-top quark.
These contributions, which are absent in on-shell-approximated calculations, turn out to
be quantitatively important.

The paper is organised as follows. In Sect. 2 we describe the details of our perturbative
calculation, the input SM parameters and the employed fiducial selection cuts, as well as
the reconstruction techniques adopted for the jet and neutrino kinematics. The integrated
cross sections and a number of di�erential distributions are discussed in Sect. 3. In Sect. 4
we draw the conclusions.

2 Details of the calculation

2.1 Description of the process

Following the signal definition of recent LHC analyses [5, 6], we consider the processes
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Figure 1. Sample tree-level diagrams contributing at O(–6) to o�-shell tZj production at the LHC.

at NLO EW and QCD accuracy, where jb stands for a b jet, and J could be either a light jet
or another b jet (J = jb, j). In the five-flavour scheme, the LO process receives contributions
from partonic channels that only involve quarks as external coloured particles:
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At cross-section level, three tree-level perturbative orders are present, namely O(–6),
O(–2

s –
4), and the interference O(–s–

5). However, the EW production of a top quark
and a Z boson can only take place at O(–6), which is in fact regarded as the LO signal.
The interference, of O(–s–

5), vanishes due to colour algebra, since the mixing of the bottom
quark with the light quarks is neglected (a unit CKM matrix is assumed). The O(–2

s –
4)

contributions and NLO corrections on top of them are not considered in this paper.
With the signal definition of Eq. (2.1), it is easy to see that the production of an

(o�-shell) top quark can take place both in s channel (q̄d qu initial state) and in t channel

(qu
(≠)
b , q̄d

(≠)
b initial states). Sample diagrams are shown in Fig. 1. It is essential to recall

that at LO a clear distinction between s- and t-channel contributions is possible, owing to a
di�erent number of b quarks in the final state [see Figs. 1(a)–1(b)]. However, starting from
NLO corrections (both QCD and EW), such a separation between the two top-quark pro-
duction mechanisms is ill defined, i.e. the di�erent contributions are not separately gauge
invariant owing to partonic channels that embed both s- and t-channel contributions, as in
o�-shell single-top production [16, 17]. All resonant and non-resonant [Fig. 1(c)] contribu-
tions are included for all partonic channels. Contributions without a top-quark resonance
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Figure 2. Sample diagram for anti-top-quark production in the gb̄ channel at O(–s–6).

as those embedding the vector-boson scattering subprocess [Fig. 1(d)] are expected to be
sub-dominant w.r.t. the top-quark-resonant ones.

At NLO there are four di�erent perturbative orders, but in this paper we only consider
corrections of O(–7) and O(–s–

6). The former are genuine EW corrections to the leading
EW order. The latter naively include two kinds of corrections: the QCD corrections to the
leading EW order and the EW ones to the LO interference. However, since virtual or real
EW corrections do not change the vanishing colour structure of the LO interference, the
O(–s–

6) is only made of pure QCD corrections to the LO EW contribution.
The following real partonic processes contribute at O(–s–

6):

q̄d qu æ b̄ b g e+e≠
µ

+
‹µ , qu

(≠)
b æ qd

(≠)
b g e+e≠

µ
+

‹µ , q̄d
(≠)
b æ q̄u

(≠)
b g e+e≠

µ
+

‹µ ,

g qu æ b̄ b qd e+e≠
µ

+
‹µ , q̄d g æ b̄ b q̄u e+e≠

µ
+

‹µ , g
(≠)
b æ q̄u qd

(≠)
b e+e≠

µ
+

‹µ .

The same processes contribute at O(–7), upon replacing external gluons with photons. The
gluon-induced channels that open up at NLO QCD give a sizeable contribution owing to
the enhancement from the large gluon luminosity in the proton. In contrast, the photon-
induced real corrections are suppressed by coupling power counting [O(–/–s)] and by the
small photon luminosity in the proton.

The new partonic channels that contribute at NLO can also enhance the cross section
due to di�erent underlying resonance structures with respect to those present at LO. In
particular, the processes

b̄ g, b̄ “ æ q̄u qd b̄ e+e≠
µ

+
‹µ (2.2)

allow for the production of a resonant anti-top quark followed by its hadronic decay (t̄ æ

q̄u qd b̄), as shown in the sample diagram in Fig. 2. Such a contribution, which is absent in
on-shell-approximated calculations [8, 9], is non-negligible and could be suppressed using
a jet veto requiring at most one light jet. Since the same considerations hold for the
charge-conjugated process of Eq. (2.1), if both tZj and t̄Zj production were included in the
signature as in experimental analyses [2–6],

pp æ e+e≠
µ

±(≠)
‹µ J jb + X , (2.3)

the contributions from t̄W+Z and tW≠Z intermediate states would both give a similar
relative correction to the respective cross section.
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in tZj production is typically polarised, and therefore the measurements of polarisation-
sensitive observables and the extraction of helicity fractions provide additional probes of
the SM and possible deviations from it [1].

The importance of tZj as a signal process is shown by several dedicated LHC measure-
ments performed by CMS and ATLAS with the 13 TeV dataset [2–6]. The measurement
of the total tZj cross section [4–6], found to be in good agreement with the SM prediction,
represents an important stress-test of the SM, but performing di�erential measurements
is expected to give an enhanced sensitivity to possible deviations of top-quark couplings
from their SM values [7]. Therefore it is essential that the theoretical predictions account
for the modelling of the decays of the involved resonances.

From the theory side, SM predictions are currently limited to on-shell approximations
for the top-quark description. The next-to-leading-order (NLO) QCD corrections in the
SM are known for many years in the approximation where the production and decay are
factorised [8]. Combined NLO EW+QCD corrections in the SM have been computed for an
on-shell top quark and o�-shell Z boson, including also parton-shower e�ects [9]. As other
single-top processes, tZj production is suited to compare the five-flavour and four-flavour
schemes [9] and therefore to study the b-quark contribution to the proton structure [10].
Phenomenological investigations of the tZj process have been performed in the presence
of new-physics e�ects, with a focus on vector-like top partners [11] and anomalous tZq

couplings [12–14]. A detailed analysis in the SM e�ective field theory has been carried out
in Refs. [7, 15], where the combination of tZj and tHj processes has been shown to enhance
the sensitivity to anomalous values of several SM couplings.

The presented calculation provides the first complete o�-shell SM prediction at NLO
QCD+EW accuracy in the five-flavour scheme. The modelling of the top-quark and Z-
boson decays accounts for all resonant and non-resonant contributions and includes com-
plete spin correlations, both at LO and at NLO. An interesting feature of the o�-shell
calculation is that, although at LO the final-state signature selects the decay products
of a (leptonically-decaying) top quark, the real corrections at NLO (both QCD and EW)
inevitably include partonic processes featuring a (hadronically-decaying) anti-top quark.
These contributions, which are absent in on-shell-approximated calculations, turn out to
be quantitatively important.

The paper is organised as follows. In Sect. 2 we describe the details of our perturbative
calculation, the input SM parameters and the employed fiducial selection cuts, as well as
the reconstruction techniques adopted for the jet and neutrino kinematics. The integrated
cross sections and a number of di�erential distributions are discussed in Sect. 3. In Sect. 4
we draw the conclusions.

2 Details of the calculation

2.1 Description of the process

Following the signal definition of recent LHC analyses [5, 6], we consider the processes

pp æ e+e≠
µ

+
‹µJ jb + X , (2.1)
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Figure 1. Sample tree-level diagrams contributing at O(–6) to o�-shell tZj production at the LHC.

at NLO EW and QCD accuracy, where jb stands for a b jet, and J could be either a light jet
or another b jet (J = jb, j). In the five-flavour scheme, the LO process receives contributions
from partonic channels that only involve quarks as external coloured particles:
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+
‹µ , qu

(≠)
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(≠)
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µ
+
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At cross-section level, three tree-level perturbative orders are present, namely O(–6),
O(–2

s –
4), and the interference O(–s–

5). However, the EW production of a top quark
and a Z boson can only take place at O(–6), which is in fact regarded as the LO signal.
The interference, of O(–s–

5), vanishes due to colour algebra, since the mixing of the bottom
quark with the light quarks is neglected (a unit CKM matrix is assumed). The O(–2

s –
4)

contributions and NLO corrections on top of them are not considered in this paper.
With the signal definition of Eq. (2.1), it is easy to see that the production of an

(o�-shell) top quark can take place both in s channel (q̄d qu initial state) and in t channel

(qu
(≠)
b , q̄d

(≠)
b initial states). Sample diagrams are shown in Fig. 1. It is essential to recall

that at LO a clear distinction between s- and t-channel contributions is possible, owing to a
di�erent number of b quarks in the final state [see Figs. 1(a)–1(b)]. However, starting from
NLO corrections (both QCD and EW), such a separation between the two top-quark pro-
duction mechanisms is ill defined, i.e. the di�erent contributions are not separately gauge
invariant owing to partonic channels that embed both s- and t-channel contributions, as in
o�-shell single-top production [16, 17]. All resonant and non-resonant [Fig. 1(c)] contribu-
tions are included for all partonic channels. Contributions without a top-quark resonance
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in tZj production is typically polarised, and therefore the measurements of polarisation-
sensitive observables and the extraction of helicity fractions provide additional probes of
the SM and possible deviations from it [1].

The importance of tZj as a signal process is shown by several dedicated LHC measure-
ments performed by CMS and ATLAS with the 13 TeV dataset [2–6]. The measurement
of the total tZj cross section [4–6], found to be in good agreement with the SM prediction,
represents an important stress-test of the SM, but performing di�erential measurements
is expected to give an enhanced sensitivity to possible deviations of top-quark couplings
from their SM values [7]. Therefore it is essential that the theoretical predictions account
for the modelling of the decays of the involved resonances.

From the theory side, SM predictions are currently limited to on-shell approximations
for the top-quark description. The next-to-leading-order (NLO) QCD corrections in the
SM are known for many years in the approximation where the production and decay are
factorised [8]. Combined NLO EW+QCD corrections in the SM have been computed for an
on-shell top quark and o�-shell Z boson, including also parton-shower e�ects [9]. As other
single-top processes, tZj production is suited to compare the five-flavour and four-flavour
schemes [9] and therefore to study the b-quark contribution to the proton structure [10].
Phenomenological investigations of the tZj process have been performed in the presence
of new-physics e�ects, with a focus on vector-like top partners [11] and anomalous tZq

couplings [12–14]. A detailed analysis in the SM e�ective field theory has been carried out
in Refs. [7, 15], where the combination of tZj and tHj processes has been shown to enhance
the sensitivity to anomalous values of several SM couplings.

The presented calculation provides the first complete o�-shell SM prediction at NLO
QCD+EW accuracy in the five-flavour scheme. The modelling of the top-quark and Z-
boson decays accounts for all resonant and non-resonant contributions and includes com-
plete spin correlations, both at LO and at NLO. An interesting feature of the o�-shell
calculation is that, although at LO the final-state signature selects the decay products
of a (leptonically-decaying) top quark, the real corrections at NLO (both QCD and EW)
inevitably include partonic processes featuring a (hadronically-decaying) anti-top quark.
These contributions, which are absent in on-shell-approximated calculations, turn out to
be quantitatively important.

The paper is organised as follows. In Sect. 2 we describe the details of our perturbative
calculation, the input SM parameters and the employed fiducial selection cuts, as well as
the reconstruction techniques adopted for the jet and neutrino kinematics. The integrated
cross sections and a number of di�erential distributions are discussed in Sect. 3. In Sect. 4
we draw the conclusions.

2 Details of the calculation

2.1 Description of the process

Following the signal definition of recent LHC analyses [5, 6], we consider the processes
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Figure 1. Sample tree-level diagrams contributing at O(–6) to o�-shell tZj production at the LHC.

at NLO EW and QCD accuracy, where jb stands for a b jet, and J could be either a light jet
or another b jet (J = jb, j). In the five-flavour scheme, the LO process receives contributions
from partonic channels that only involve quarks as external coloured particles:

q̄d qu æ b̄ b e+e≠
µ

+
‹µ , qu

(≠)
b æ qd

(≠)
b e+e≠

µ
+

‹µ , q̄d
(≠)
b æ q̄u

(≠)
b e+e≠

µ
+

‹µ .

At cross-section level, three tree-level perturbative orders are present, namely O(–6),
O(–2

s –
4), and the interference O(–s–

5). However, the EW production of a top quark
and a Z boson can only take place at O(–6), which is in fact regarded as the LO signal.
The interference, of O(–s–

5), vanishes due to colour algebra, since the mixing of the bottom
quark with the light quarks is neglected (a unit CKM matrix is assumed). The O(–2

s –
4)

contributions and NLO corrections on top of them are not considered in this paper.
With the signal definition of Eq. (2.1), it is easy to see that the production of an

(o�-shell) top quark can take place both in s channel (q̄d qu initial state) and in t channel

(qu
(≠)
b , q̄d

(≠)
b initial states). Sample diagrams are shown in Fig. 1. It is essential to recall

that at LO a clear distinction between s- and t-channel contributions is possible, owing to a
di�erent number of b quarks in the final state [see Figs. 1(a)–1(b)]. However, starting from
NLO corrections (both QCD and EW), such a separation between the two top-quark pro-
duction mechanisms is ill defined, i.e. the di�erent contributions are not separately gauge
invariant owing to partonic channels that embed both s- and t-channel contributions, as in
o�-shell single-top production [16, 17]. All resonant and non-resonant [Fig. 1(c)] contribu-
tions are included for all partonic channels. Contributions without a top-quark resonance
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(a) (b)

Figure 7. Invariant-mass distributions of the same-flavour lepton pair and of all three charged
leptons.

(a) (b)

Figure 8. Transverse-momentum distributions of the anti-muon and the electron.
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Conclusions
The ideal Monte Carlo with flavour unc., EW corrections and non-resonant off-shell 
effects is not available. So the best approach for the simulation depends on the 
precision that has to be achieved and the kind of observable that are considered.

Boosted regime and precision ≤ 10 %, EW are important and are not available in 
MC. Bad case: Reiweight with K-factors / or use NLO QCD+PS+EWSL  (DP, Vitos, 
Zaro ’23). 

Not boosted regime and precision ≤ 10 %, EW are important and mostly from QED 
radiation which is already simulated in the PS. Better. 

Precision ≤ 10 %, flavour uncertainties cannot be neglected. Simulation possibly 
in 4FS and 5FS.

In general, not separating different channels is preferable.
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Top, EW and Higgs sectors are all connected

Top, EW and Higgs
are connected
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V H, V BF

(     )
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Figure 1: Schematic representation of the interplay between operators and processes,

focussing on single-top production and associated channels. Six (five at LO and one at

NLO in QCD) operators enter single-top production (tj, blue square), and are therefore

also present in Z boson (tZj, red square) and in Higgs (tHj, purple square) associated

production. Operators exist that contribute to either tZj or tHj and also to both processes

without contributing to tj. The operators entering in diboson (V V ) production are a subset

(green square) of those contributing to tZj, while some of the operators contributing to

Higgs associated production (V H) and Vector Boson Fusion (VBF, orange dashed square)

are shared between tHj and tZj.

e↵orts of automating NLO SMEFT simulations for colliders [31]. Using these results,

we perform sensitivity studies of current and future inclusive measurements of the two

processes, contrasting them with existing limits on the operators of interest. Finally, we

present di↵erential distributions for a number of selected benchmark values of the Wilson

coe�cients inspired by current limits, highlighting the possibility of large deviations in the

high energy regime of both processes.

This paper is organised as follows. In Section 2 we establish the notation and the

conventions, we identify the set of operators entering tj, tZj and tHj and we establish

which ones can lead to an energy growth. In Section 3 a summary of the current constraints

available on the Wilson coe�cients of the corresponding operators is given. In Section 4

results for total cross sections as well as distributions are presented, operator by operator

and the prospects of using tZj and tHj to constrain new interactions are discussed. The

last section presents our conclusions and the outlook.
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An EFT perspective on BSM (SMEFT)

A SM  (much older) perspective

Taken from “Precision Electroweak Measurements on the Z 
Resonance”, hep-ex/0509008

New Physics in the Top 
sector has effects in the 
EW sector and vice 
versa.

SM as a QFT leads to relations 
between observables of the three 
different sectors: EW, Top, Higgs.

Taken from Degrande, Maltoni, 
Mimasu, Vryonidou, Zhang ‘18
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Figure 10: Extrapolated t-channel (a) single-top-quark and (b) single-top-antiquark production cross-sections for
di↵erent MC-generator setups compared to fixed-order NLO calculations. For the three calculations, the uncer-
tainty from the renormalisation and factorisation scales are indicated in darker shading, and the total uncertainties,
including the renormalisation and factorisation scale as well as the PDF+↵S uncertainties, are indicated in lighter
shading. For the NNLO prediction, only the renormalisation and factorisation scale uncertainty is provided in
Ref. [22]. For comparison, the PDF+↵S uncertainties from the NLO prediction [14] are added to the NNLO renor-
malisation and factorisation scale uncertainty reflected in the lighter shaded uncertainty band. For this comparison,
the uncertainty in the extrapolation does not include the contribution from the NLO-matching method and from the
choice of parton-shower model.
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Figure 10: Normalised differential cross sections for the sum of t-channel single top quark and
antiquark production at the particle level: (upper row) top quark pT and rapidity; (middle
row) charged lepton pT and rapidity; (lower left) W boson pT; (lower right) cosine of the top
quark polarisation angle. The total uncertainty is indicated by the vertical lines, while horizon-
tal bars indicate the statistical and experimental uncertainties, which have been profiled in the
ML fit, and thus exclude the uncertainties in the theoretical modelling. Three different predic-
tions from event generators are shown by the solid, dashed, and dotted lines. The lower panels
show the ratios of the predictions to the data.
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- Differential distributions are already probed with precision.

- Extrapolation from fiducial region to the full phase space depends on 

the underlying theory prediction.




fiducial [pb] LO NLO NNLO

t quark

total 4.07+7.6%
�9.8% 2.95+4.1%

�2.2% 2.70+1.2%
�0.7%

corr. in pro. -0.79 -0.24

corr. in dec. -0.33 -0.13

t̄ quark

total 2.45+7.8%
�10%

1.78+3.9%
�2.0% 1.62+1.2%

�0.8%

corr. in pro. -0.46 -0.15

corr. in dec. -0.21 -0.08

Table 2: Fiducial cross sections for top (anti-)quark production with decay at 13 TeV at

various orders in QCD with a central scale choice of mt in both production and decay. The

scale uncertainties correspond to a quadratic sum of variations from scales in production and

decay, and are shown in percentages. Corrections from purely production and purely decay

are also shown.

about 3 to ⇠ 1% at NNLO. However, for fiducial cross sections, the error bands from LO,

NLO, and NNLO do not overlap each other suggesting that scale variations underestimate

the true perturbative uncertainties in this case. The size of QCD corrections are similar for

top anti-quark production. The ratio of fiducial cross sections for top quark and anti-quark

production are 1.661, 1.657, and 1.667 at LO, NLO, and NNLO, respectively. Therefore these

charge ratio observables are stable against QCD corrections even in the fiducial phase space.

In experimental analyses, the total inclusive cross sections are usually determined through

extrapolation of the fiducial cross sections based on acceptance estimates obtained from MC

simulations. We can use the numbers shown in Tables 1 and 2 to derive the parton-level

acceptance at various orders. For top quark production, the acceptances are 0.0283, 0.0214,

and 0.0201 at LO, NLO, and NNLO respectively. The NNLO corrections can change the ac-

ceptance by 6% relative to the NLO value. This change also propagates into the measurement

of the total inclusive cross section through extrapolation.

A comment here is appropriate on the size of QCD corrections and the choice of the QCD

hard scale. With fiducial cuts applied, the jet veto introduces another hard scattering scale of

pT,veto = 40 GeV in addition to mt. A QCD scale choice (pT,vetomt)1/2 ⇠ mt/2 may therefore

be appropriate, especially at lower perturbative orders where the gluon splitting contributions

are absorbed into the bottom-quark PDF. Alternative results with a central scale choice of

mt/2 in production, with the central scale mt retained in decay, show better convergence of

the series, although the NNLO predictions are almost unchanged. It would be worthwhile to

resum the logarithmic contributions related to the scales pT,veto and mt.
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Production and decay at NNLO

there exist NNLO contributions which are the interference between one-loop s-channel and

t-channel diagrams. These contributions fall into the class of two-gluon exchange diagrams

in Fig. 2c. These contributions are not present in the structure-function approximation,

consistent with the use of t-channel in the title of this work.

ta

ta

(a)

ta

ta

tb tb

(b)

ta

ta

tb

tb

(c)

Figure 2: Examples of the color component of NLO and NNLO Feynman diagrams for t-

channel single top-quark production. Both virtual and real diagrams can be represented in

this form. The lower loop represents the heavy-quark line, whereas the upper loop represents

the light-quark line.

The on-shell top quark approximation and structure-function approximation can be sum-

marized schematically in Fig. 3. Owing to these approximations, the full QCD corrections

are factored into a piece describing the decay of the top quark, Vd, DIS-like production of the

top quark, Vh, and the DIS-like production of a light jet, Vl. In the remainder of this section,

we shall discuss the QCD corrections to each of these three parts separately.

t

W �
W

b

u

b

�e

e+

d

Vl

Vh Vd

Figure 3: Schematic diagram for t-channel single top-quark production at hadron colliders

in the on-shell top quark approximation and the structure-function approximation. The full

QCD corrections are factored into three di↵erent parts with these approximations.
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Fiducial: exactly 2 jets of which one b-tagged.

D = 0.5, pT( j) > 40 GeV, |η( j) | < 5, |η( jb) | < 2.4
pT(ℓ) > 40 GeV, |η(ℓ) | < 2.4

LO, NLO, NNLO do not overlap and scale unc. decrease. 

How much does it depend on the cut? 

Are the EW corrections important?

Berger, Gao, Zhu ’17 



Our study (fixed-order part)

tions that produce exactly an electron, a neutrino and exactly a jet-pair, of which only one is
b-tagged, and consider a fiducial region that is dominated by t-channel single-top production.
We calculate all LO terms and all the complete-NLO corrections, i.e., all NLO effects of QCD
and EW origin are taken into account. Furthermore, we study in detail the impact of the
parton shower on the predictions for the t-channel fiducial region.

This paper is organised as follows. In Sec. 2 we describe the two different frameworks used
in this work: complete-NLO accuracy at fixed order, in Sec. 2.1, and NLO QCD corrections
matched to shower effects, in Sec. 2.2. Then, we present numerical predictions at the inclu-
sive and differential level for several phenomenologically relevant distributions in Sec. 3, for
both the aforementioned approximations. Finally, in Sec. 4 we write our conclusions and we
summarise our findings. Furthermore, in Appendix A we collect comparisons with previous
results and among different approximations.

2 Calculational frameworks

In this section we describe the two calculational frameworks on which the results presented
in Sec. 3 are based. Our main focus is providing precise predictions for t-channel single-top
production with subsequent top-quark leptonic decays. Therefore, we consider the signature

e
+
, 1 light jet, 1 b�jet, /ET and no additional jets , (2.1)

which is exploited in the measurements of t-channel single-top production at the LHC. As
already mentioned in the introduction, on the one hand, we calculate all the fixed-order NLO
corrections of QCD and EW origin for the signature (2.1), i.e., the complete-NLO prediction.
On the other hand, we match a subset of the complete-NLO predictions to QCD shower effects.
The calculation framework for the former approximation is discussed in Sec. 2.1, while for the
latter in Sec. 2.2.

In our calculation, with both approximations, we always apply cuts (they are explicitly
defined in Sec. 3.1) in order to select the fiducial region that has been considered by the ATLAS
collaboration in the measurement of t-channel single-top production [27]. Other production
processes contribute to the signature (2.1) as well and the fiducial region is defined in order
to suppress them.

It is important to note that, within our setup, the calculation for a signature similar to
(2.1) where a µ

+ is present in the place of the e
+ is exactly the same. Thus, the numbers

given in this paper can be used also for that signature. On the other hand, in this work we
do not consider the case where a e

� (or µ
�) is present in the place of the e

+, i.e., the case of
t-channel single-top antiquark production; we expect results to be qualitatively similar.

2.1 Fixed-order complete-NLO predictions

In this section we describe the calculation at fixed-order complete-NLO accuracy for the
signature (2.1). First, in Sec. 2.1.1 we discuss the different resonances appearing in the
different perturbative orders that enter the complete-NLO approximation and we introduce
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Complete NLO corrections to the                            contribution to the  
t-channel signature, in the five-flavor-scheme.  
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Figure 1. Selection of Feynman diagrams contributing to the signature (2.1). The upper-left diagram
contributes to NLO1 and NLO2 (W+jets), the upper-central diagram to NLO4 (single-top resonant),
and the upper-right diagram also to NLO4 (non-resonant). The lower-left diagram is a typical s-
channel single-top production diagram, with an extra gluon, while the lower-right diagram can be
considered t̄W

+-associated production, both contributing to NLO3.

tree-level diagrams: W+jets with leptonic W decays contributes to the O(↵
2
s↵

2
). Thus, as

already mentioned, single-top production is not the only production process contributing to
this signature. Furthermore also non-resonant contributions are possible.

In this section we present the calculation of all the contributions to fixed-order complete-
NLO predictions for the signature (2.1). Following the notation already used in Refs. [42, 72–
78], with complete-NLO predictions we denote all the one-loop and real emission corrections
of QCD and EW origin. To this purpose we calculate all the O(↵

m
s ↵

n+2
) contributions with

m,n > 0 and m+ n = 2, 3 to

pp ! ⌫eJJJ , (2.2)

where J is any particle that may potentially enter in a fully-democratic jet, i.e., a jet that is
obtained by clustering quarks (including b-quarks), gluons, photons and leptons. As discussed
in Refs. [42, 75], this procedure is necessary in order to fully ensure IR safety when dealing
with complete-NLO contributions and massless final state. In practice, given the presence of
an electronic neutrino,1 all the possible final-states include a positron and two(three) massless
particles.

1In our calculation lepton PDFs are safely set to zero [79], so no initial-state leptons can be present.
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of QCD and EW origin. To this purpose we calculate all the O(↵

m
s ↵

n+2
) contributions with

m,n > 0 and m+ n = 2, 3 to

pp ! ⌫eJJJ , (2.2)
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1 Introduction

The electroweak production of top quarks in hadron-hadron collisions can be categorised in
three main production channels, which all involve a single top (anti)quark in the final state
and a Wtb interaction vertex. The three different channels can be distinguished according to
the virtuality of the W boson appearing in the Feynman diagrams. If the W is space-like, the
category is called t-channel, if the W is instead time-like the category is called s-channel and
in the case of a final-state (on-shell) W boson we refer to tW associated production.

At the Large Hadron Collider (LHC) the category with the largest production rate is the
t-channel, with about 225 pb at 13 TeV, of which approximately 135 pb is coming from top
production and the rest from anti-top production. Within the SM the interest in single-top
production is mainly motivated by the possibility of directly extracting the value of |Vtb| in
the CKM matrix element [1–5]. Moreover, in numerous BSM scenarios, single-top produc-
tion provides a sensitive probe to New Physics effects [6–16], possibly parametrised through
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Perturbative order Resonant processes

LO1 (↵
2
s↵

2
) W + 2 jets

LO2 (↵s↵
3
) -

LO3 (↵
4
) single-top (t- and s-ch.), WZ

NLO1 (↵
3
s↵

2
) W + 2 jets

NLO2 (↵
2
↵
3
) W + 2 jets

NLO3 (↵s↵
4
) single-top (t- and s-ch.), WZ,

tW , t̄W and WW + b-jet

NLO4 (↵
5
) single-top (t- and s-ch.), WZ,

tW , t̄W and WW + b-jet

Table 1. Intermediate resonances contributing to the various perturbative orders that enter the
calculation.

the notation used in this work. Then, in Sec 2.1.2 we specify the input parameters and finally
in Sec. 2.1.3 we describe the clustering procedure that we have adopted in order to ensure
infra-red (IR) safety. Numerical results are presented in Sec. 3.2.

The calculation that is described in this section, fixed-order complete-NLO predictions
for the signature (2.1), has been performed via the latest version of MadGraph5_aMC@NLO
[42], which is public. In the MadGraph5_aMC@NLO framework [57] infrared singularities are
dealt with via the FKS method [58, 59], which is automated in the module MadFKS [52, 60].
The evaluation of one-loop amplitudes is performed by dynamically switching among different
types of techniques for integral reduction, i.e., the so called OPP method [61], Laurent-series
expansion [62], and tensor integral reduction [63–65]. These techniques have been automated
in the module MadLoop [66], which is employed for generating the amplitudes. We recall that
MadLoop employs the codes CutTools [67], Ninja [68, 69] and Collier [70]. Moreover, it
includes an in-house implementation of the OpenLoops optimisation [71].

2.1.1 Structure of the calculation: underlying resonances and notation

The main process we are interested in is single-top production via t-channel with the top-
quark decaying leptonically. In other words, pp!tj, where j is a light jet and the top-quark
is decaying into t!e

+
⌫eb. In the 5FS, this process contributes at LO, which is of O(↵

4
), to

the cross section for the signature (2.1). Due to the misidentification of b-jets as light jets,
also s-channel single-top production contributes at the same order when the top quark decays
leptonically. Similarly, WZ production can contribute when the Z boson decays into a bb̄ pair.
The O(↵

4
) contributions, however, are the formally smallest LO contributions in the expansion

in powers of ↵s and ↵. Indeed, the signature (2.1) receives also O(↵
2
s↵

2
) contributions from
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The different contributions to the total cross section can be denoted as:
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+ ↵s↵
3
⌃
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+ ↵
4
⌃
⌫eJJJ
4,2

⌘ LO1 + LO2 + LO3 , (2.3)
⌃
⌫eJJJ

NLO
(↵s,↵) = ↵

3
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2
⌃
⌫eJJJ
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+ ↵
2

s↵
3
⌃
⌫eJJJ
5,1

+ ↵s↵
4
⌃
⌫eJJJ
5,2

+ ↵
5
⌃
⌫eJJJ
5,3

⌘ NLO1 +NLO2 +NLO3 +NLO4 , (2.4)

Single-top production via s- and t-channel enters at LO3 and the corresponding NLO QCD
and EW corrections are part of the NLO3 (e.g. bottom-left diagram in Fig. 1) and NLO4

(e.g. top-central diagram in Fig. 1), respectively. The same applies to WZ production. W+jets
contributes at LO to the LO1 and the corresponding NLO QCD and EW corrections are part
of the NLO1 and NLO2 (e.g. top-left diagram in Fig. 1), respectively. Moreover, including
NLO corrections, also tW -associated production can contribute to the signature (2.1). Indeed,
due to the top-quark decay, two W bosons are present: if one of them decays hadronically
and the other one leptonically, LO contributions from tW , t̄W (e.g. bottom-right diagram in
Fig. 1) and WW + bjet production enter the NLO3 and NLO4. This pattern is summarised in
Tab. 1. We remark that besides these production processes, all the off-shell and non-resonant
effects (e.g. top-right diagram in Fig. 1) are exactly taken into account.

In the following, in order to simplify the notation, we will also refer to the perturbative
orders LO3, NLO3 and NLO4 as “Single-Top”, while the remaining perturbative orders LO1,
LO2, NLO1 and NLO2 will be also referred as W+jets. In particular,

LO = LO3 ,

Single-Top �! NLO QCD = LO3 +NLO3 ,

NLO QCD+ EW = LO3 +NLO3 +NLO4 ,

(2.5)
LO = LO1(+LO2) ,

W + jets �! NLO QCD = LO1 +NLO1 ,

NLO QCD+ EW = LO1 +NLO1 +NLO2 ,

where LO2 has been put in parentheses since it is numerically zero when the signature (2.1)
is considered.

It is worth to note that going beyond NLO for pp ! ⌫eJJJ production, in particular at
O(↵

3
s↵

3
), top-quark pair production with semi-leptonic decays is present and also contributes

to the signature (2.1). Moreover, it represents the largest contribution to the background in
the searches for t-channel single-top production, see e.g. Ref. [27]. This contribution appears
only beyond the formal accuracy of our calculation and therefore it is not entering our results.
However, it has to be taken into account for a correct estimate of the background.
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Figure 1. Selection of Feynman diagrams contributing to the signature (2.1). The upper-left diagram
contributes to NLO1 and NLO2 (W+jets), the upper-central diagram to NLO4 (single-top resonant),
and the upper-right diagram also to NLO4 (non-resonant). The lower-left diagram is a typical s-
channel single-top production diagram, with an extra gluon, while the lower-right diagram can be
considered t̄W

+-associated production, both contributing to NLO3.

tree-level diagrams: W+jets with leptonic W decays contributes to the O(↵
2
s↵

2
). Thus, as

already mentioned, single-top production is not the only production process contributing to
this signature. Furthermore also non-resonant contributions are possible.

In this section we present the calculation of all the contributions to fixed-order complete-
NLO predictions for the signature (2.1). Following the notation already used in Refs. [42, 72–
78], with complete-NLO predictions we denote all the one-loop and real emission corrections
of QCD and EW origin. To this purpose we calculate all the O(↵

m
s ↵

n+2
) contributions with

m,n > 0 and m+ n = 2, 3 to

pp ! ⌫eJJJ , (2.2)

where J is any particle that may potentially enter in a fully-democratic jet, i.e., a jet that is
obtained by clustering quarks (including b-quarks), gluons, photons and leptons. As discussed
in Refs. [42, 75], this procedure is necessary in order to fully ensure IR safety when dealing
with complete-NLO contributions and massless final state. In practice, given the presence of
an electronic neutrino,1 all the possible final-states include a positron and two(three) massless
particles.

1In our calculation lepton PDFs are safely set to zero [79], so no initial-state leptons can be present.
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Inclusive results

Single-Top cross section

LO 4.623(1)
+0.415(+9.0%)

�0.533(�11.5%)
pb

NLO QCD 2.762(6)
+0.226(+8.2%)

�0.240(�8.7%)
pb

NLO QCD+EW 2.676(6)
+0.229(+8.6%)

�0.236(�8.8%)
pb

(NLO QCD)/LO 0.60(1)

(NLO QCD+EW)/(NLO QCD) 0.97(1)

W+jets cross section

LO 0.7656(6)
+0.3002(+39.2%)

�0.2265(�29.6%)
pb

NLO QCD 1.612(3)
+0.323(+20.1%)

�0.309(�19.2%)
pb

NLO QCD+EW 1.597(3)
+0.318(+19.9%)

�0.305(�19.1%)
pb

(NLO QCD)/LO 2.11(1)

(NLO QCD+EW)/(NLO QCD) 0.99(1)

Table 2. Various fixed-order cross sections (in pb), including their scale uncertainty, for the signature
(2.1) within the fiducial region defined in Sec. 3.1 for the Single-Top process (top table) and the
W+jets process (bottom table). The ratios (last two lines of both tables) are computed for the central
values of the corresponding predictions.

In Tab. 2, we also show results for W+jets, i.e., the contributions from the remaining
perturbative orders LO1, LO2, NLO1 and NLO2. The NLO QCD cross section (LO1+NLO1)
is much larger than the corresponding LO (LO1) prediction; the QCD K-factor is ⇠ 2.1.
Unlike the case of Single-Top, the requirement of exactly two jets does not lead to negative
corrections. This pattern is unusual for a NLO QCD calculation with a requirement of an
exclusive number of jets, i.e., applying a jet-veto. However, in this process real QCD radiation
can convert LO events that would not contribute to the signature (2.1) in events that do
contribute. For example, e+⌫egg final states, which are present at LO, do not contribute to
the signature (2.1). On the other hand, real QCD radiation can convert them via the g!bb̄

splitting into a e
+
⌫egbb̄ final state, which can contribute to the signature (2.1). Moreover,

the LO e
+
⌫egg final state has a much larger cross section than the e

+
⌫ebq one, which does

contribute to the signature (2.1) at LO. Hence, the NLO QCD contributions increase the
central value of the LO cross section by more than a factor 2.

At variance with Single-Top predictions, scale uncertainties decrease moving from LO
(⇠ +40%

�30%
) to NLO QCD (⇠ +20%

�20%
) accuracy. However, despite this reduction, they are larger
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3 Results

3.1 Fiducial region

In order to isolate the contribution to the signature (2.1) and select the fiducial region for
t-channel single-top production we perform the following procedure at the analysis level, adopt-
ing the cuts from Ref. [27].

As already mentioned in Sec. 2.1.3 jets are clustered via the anti-kT algorithm with
parameters �R

QCD
= 0.4 and p

QCD

T,min
= 30 GeV. Also, only jets that contain a b quark

or antiquark and have pseudorapidity |⌘(j)| < 2.5 are identified as b-jets; in the case of
|⌘(j)| > 2.5 a jet is always considered as a light jet. We also remind the reader that in
the case of the fixed-order results, if a bb̄ pair is clustered, the corresponding jet is always
considered as a light jet for IR safety. When we perform the calculation including shower
effects this requirement is not necessary and therefore we consider such a jet a b-jet, still only
if |⌘(j)| < 2.5. As already mentioned, we explicitly verified that this choice, being preferable
because it is much closer to a realistic experimental procedure, has a negligible impact on the
Single-Top results presented in this work.

After having defined jets (and dressed leptons), we define the fiducial region according
to (2.1), i.e., by requiring exactly one light jet (jl), one b-jet (jb), a positron and missing
transverse-energy. In particularly, following Ref. [27], these cuts are applied:

• exactly one lepton: |⌘(`)| < 2.5 and pT (`) > 25 GeV and identified as a positron,

• exactly one light jet: |⌘(jl)| < 4.5 and pT (jl) > 30 GeV,

• exactly one b-jet: |⌘(jb)| < 2.5 and pT (jb) > 30 GeV,

• missing transverse-energy: /ET > 30 GeV,

• positron and jets separation: �R(e
+
, `) > 0.4,

• positron and b-jet system: m(e
+
jb) < 160 GeV,

where /ET ⌘ pT (⌫e).
The requirement of exactly two jets of which one being a light jet and one being a b-jet is

suppressing the relative contribution of all the resonant processes besides the t-channel single
top. Indeed, s-channel single top typically leads to two b-jets and tW associate production to
three jets. Also, WZ and W + jets production mostly lead to 2 b-jets or 2 light jets.

3.2 Fixed order

In this section we present and discuss fixed-order results at complete-NLO accuracy for the
total cross section and the differential distributions at 13 TeV; we consider the signature
(2.1) in the fiducial region defined in Sec. 3.1. As summarised in (2.5), we will refer to the
perturbative orders LO3, NLO3 and NLO4 as “Single-Top”, while the remaining perturbative
orders LO1, LO2, NLO1 and NLO2 will be referred as “W+jets”.
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Calculation performed with MadGraph5_aMC@NLO

2.1.2 Input parameters

In order to perform the calculation, given the presence of intermediate resonances, we use
the complex-mass scheme. We use as input parameters for the EW sector Gµ, mZ and mW

and we accordingly perform the renormalisation in the Gµ-scheme. The results of Sec. 3.2 are
obtained with the following masses and widths for the input parameters of the complex mass
scheme2

mZ = 91.1876 GeV, mW = 80.385 GeV, mH = 125 GeV, mt = 173.34 GeV, (2.6)
�Z = 2.4955 GeV, �W = 2.0897 GeV, �H = 4.07 MeV, �t = 1.36918 GeV . (2.7)

In our calculation, the width of the Higgs boson is necessary only for regulating the integrable
singularity of the s-channel Higgs boson that can be present in one-loop diagrams.

The value of Gµ is set equal to

Gµ = 1.16639⇥ 10
�5 GeV�2

, (2.8)

and the CKM matrix is set equal to the 3⇥3 identity matrix. We renormalise QCD interactions
in the MS scheme and, as already mentioned, we use the 5FS.3 We set the renormalisation
and factorisation scales to µR = µF = HT /2, where HT is the scalar sum of the trans-
verse momenta of all the final-state particles, which are all massless. As PDF set we use
LUXqed17_plus_PDF4LHC15_nnlo_100 [80, 81], which includes a photon member and
↵s(mZ) = 0.118. Scale uncertainties are evaluated via the standard 9-point independent
variations of the factorisation and renormalisation scales.

2.1.3 Clustering procedure

Since we perform a fixed-order NLO computation, at most two particles can be clustered
together to generate signature (2.1). Therefore, in order to ensure IR safety we perform the
following procedure. First of all we perform a QED clustering among leptons and photons,
where �R =

p
(�⌘)2 + (��)2 is the distance among two particles and the clustering pa-

rameter is set to �R
QED

= 0.1. In practice, we apply the anti-kT clustering algorithm with
p
QED

T,min
= 0 GeV. If only a single particle is present within a radius �R = �R

QED, we do not
cluster this particle with any other. Otherwise, in order to be IR safe, if the distance between
two particles is �R < �R

QED we follow this procedure:

• If they are two photons, they are not clustered.

• If they are one photon and one lepton with flavour f , they are clustered and defined as
a lepton with flavour f .

2The same decay widths are used for LO and NLO calculations.
3The parameter SeparateFlavourConfigurations has been introduced in MadGraph5_aMC@NLO in

order to plot each one of the flavour configurations independently, even if they are summed together because
they have identical matrix elements. This allows, for example, b-tagging in the 5FS.
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In Single-Top scale uncertainties do not decrease from LO to NLO 
—> 1st sign that shower effects are necessary! Reason: jet-veto



Inclusive results
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• positron and jets separation: �R(e
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, `) > 0.4,

• positron and b-jet system: m(e
+
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where /ET ⌘ pT (⌫e).
The requirement of exactly two jets of which one being a light jet and one being a b-jet is

suppressing the relative contribution of all the resonant processes besides the t-channel single
top. Indeed, s-channel single top typically leads to two b-jets and tW associate production to
three jets. Also, WZ and W + jets production mostly lead to 2 b-jets or 2 light jets.

3.2 Fixed order

In this section we present and discuss fixed-order results at complete-NLO accuracy for the
total cross section and the differential distributions at 13 TeV; we consider the signature
(2.1) in the fiducial region defined in Sec. 3.1. As summarised in (2.5), we will refer to the
perturbative orders LO3, NLO3 and NLO4 as “Single-Top”, while the remaining perturbative
orders LO1, LO2, NLO1 and NLO2 will be referred as “W+jets”.
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Calculation performed with MadGraph5_aMC@NLO

2.1.2 Input parameters

In order to perform the calculation, given the presence of intermediate resonances, we use
the complex-mass scheme. We use as input parameters for the EW sector Gµ, mZ and mW

and we accordingly perform the renormalisation in the Gµ-scheme. The results of Sec. 3.2 are
obtained with the following masses and widths for the input parameters of the complex mass
scheme2

mZ = 91.1876 GeV, mW = 80.385 GeV, mH = 125 GeV, mt = 173.34 GeV, (2.6)
�Z = 2.4955 GeV, �W = 2.0897 GeV, �H = 4.07 MeV, �t = 1.36918 GeV . (2.7)

In our calculation, the width of the Higgs boson is necessary only for regulating the integrable
singularity of the s-channel Higgs boson that can be present in one-loop diagrams.

The value of Gµ is set equal to

Gµ = 1.16639⇥ 10
�5 GeV�2

, (2.8)

and the CKM matrix is set equal to the 3⇥3 identity matrix. We renormalise QCD interactions
in the MS scheme and, as already mentioned, we use the 5FS.3 We set the renormalisation
and factorisation scales to µR = µF = HT /2, where HT is the scalar sum of the trans-
verse momenta of all the final-state particles, which are all massless. As PDF set we use
LUXqed17_plus_PDF4LHC15_nnlo_100 [80, 81], which includes a photon member and
↵s(mZ) = 0.118. Scale uncertainties are evaluated via the standard 9-point independent
variations of the factorisation and renormalisation scales.

2.1.3 Clustering procedure

Since we perform a fixed-order NLO computation, at most two particles can be clustered
together to generate signature (2.1). Therefore, in order to ensure IR safety we perform the
following procedure. First of all we perform a QED clustering among leptons and photons,
where �R =

p
(�⌘)2 + (��)2 is the distance among two particles and the clustering pa-

rameter is set to �R
QED

= 0.1. In practice, we apply the anti-kT clustering algorithm with
p
QED

T,min
= 0 GeV. If only a single particle is present within a radius �R = �R

QED, we do not
cluster this particle with any other. Otherwise, in order to be IR safe, if the distance between
two particles is �R < �R

QED we follow this procedure:

• If they are two photons, they are not clustered.

• If they are one photon and one lepton with flavour f , they are clustered and defined as
a lepton with flavour f .

2The same decay widths are used for LO and NLO calculations.
3The parameter SeparateFlavourConfigurations has been introduced in MadGraph5_aMC@NLO in

order to plot each one of the flavour configurations independently, even if they are summed together because
they have identical matrix elements. This allows, for example, b-tagging in the 5FS.
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W+jets: g->bb splittings convert               events into                . 
Only the latter contribute to the signature —> large corrections.

Single-Top cross section

LO 4.623(1)
+0.415(+9.0%)

�0.533(�11.5%)
pb

NLO QCD 2.762(6)
+0.226(+8.2%)

�0.240(�8.7%)
pb

NLO QCD+EW 2.676(6)
+0.229(+8.6%)

�0.236(�8.8%)
pb

(NLO QCD)/LO 0.60(1)

(NLO QCD+EW)/(NLO QCD) 0.97(1)

W+jets cross section

LO 0.7656(6)
+0.3002(+39.2%)

�0.2265(�29.6%)
pb

NLO QCD 1.612(3)
+0.323(+20.1%)

�0.309(�19.2%)
pb

NLO QCD+EW 1.597(3)
+0.318(+19.9%)

�0.305(�19.1%)
pb

(NLO QCD)/LO 2.11(1)

(NLO QCD+EW)/(NLO QCD) 0.99(1)

Table 2. Various fixed-order cross sections (in pb), including their scale uncertainty, for the signature
(2.1) within the fiducial region defined in Sec. 3.1 for the Single-Top process (top table) and the
W+jets process (bottom table). The ratios (last two lines of both tables) are computed for the central
values of the corresponding predictions.

In Tab. 2, we also show results for W+jets, i.e., the contributions from the remaining
perturbative orders LO1, LO2, NLO1 and NLO2. The NLO QCD cross section (LO1+NLO1)
is much larger than the corresponding LO (LO1) prediction; the QCD K-factor is ⇠ 2.1.
Unlike the case of Single-Top, the requirement of exactly two jets does not lead to negative
corrections. This pattern is unusual for a NLO QCD calculation with a requirement of an
exclusive number of jets, i.e., applying a jet-veto. However, in this process real QCD radiation
can convert LO events that would not contribute to the signature (2.1) in events that do
contribute. For example, e+⌫egg final states, which are present at LO, do not contribute to
the signature (2.1). On the other hand, real QCD radiation can convert them via the g!bb̄

splitting into a e
+
⌫egbb̄ final state, which can contribute to the signature (2.1). Moreover,

the LO e
+
⌫egg final state has a much larger cross section than the e

+
⌫ebq one, which does

contribute to the signature (2.1) at LO. Hence, the NLO QCD contributions increase the
central value of the LO cross section by more than a factor 2.

At variance with Single-Top predictions, scale uncertainties decrease moving from LO
(⇠ +40%

�30%
) to NLO QCD (⇠ +20%

�20%
) accuracy. However, despite this reduction, they are larger
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corrections. This pattern is unusual for a NLO QCD calculation with a requirement of an
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⌫ebq one, which does
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Inclusive results
Calculation performed with MadGraph5_aMC@NLO (QCD)

Single-Top cross section

LO 4.623(1)
+0.415(+9.0%)

�0.533(�11.5%)
pb

LOPS QCD 2.968(3)
+0.28(+9.3%)

�0.35(�11.9%)
pb

NLO QCD 2.762(6)
+0.226(+8.2%)

�0.240(�8.7%)
pb

NLOPS QCD 2.974(9)
+0.098(+3.3%)

�0.098(�3.3%)
pb

(NLOPS QCD)/(LOPS QCD) 1.00(1)

(LOPS QCD)/LO 0.64(1)

(NLOPS QCD)/(NLO QCD) 1.08(1)

Table 3. Total cross section and scale uncertainty in various QCD approximations for the signature
(2.1) from Single-Top production within the fiducial region defined in Sec. 3.1. The ratios are computed
from the central values of their corresponding predictions.

the scale uncertainty at NLOPS QCD. Summarising, both QCD shower and EW fixed-order
effects are important in order to further improve the precision of predictions for the fiducial
region. However, these two results cannot be directly combined, being the latter based on a
fixed-order computation for a process where shower effects are very large. The technology for
matching NLO EW, and more in general complete-NLO, calculations to shower effects would
be very useful for the calculation studied here. We summarise in the plot in Fig. 7 the results
obtained for the total cross section within the fiducial region, including the scale uncertainties,
for different approximations discussed in this section and in Sec. 3.2.1.

Using the same layout of Tab. 3 and Fig. 7 we show predictions at fixed order and including
shower effects for W+jets production in Tab. 4 and Fig. 8. At variance with the Single-Top
case, the LOPS QCD result is larger than the LO one; the shower effects increase the central
value of the cross section by a factor 1.78. Although the jet veto (at most two jets) is present,
the additional radiation induced by the shower splits part of the final-state gluons into bb̄ pairs,
converting events with two light jets into events with one b-jet and one light jet, which in turn
contribute to the signature (2.1). Therefore, as explained in more details in Sec. 3.2.1, the real
radiation leads to an increase of the cross section, even though a jet veto is present. Matching
the shower simulation to NLO QCD corrections, and therefore improving the simulation of
hard real radiation, further increases the cross section by a factor 1.31. In this case the central
value of the NLOPS QCD result is higher by a factor of 1.11 w.r.t. the NLO QCD one.

For W+jets the jet veto induced by the signature (2.1) is not leading to negative cor-
rections, but nevertheless is preventing fixed-order calculations to substantially improve the
scale uncertainties moving from LO to NLO. However, like in Single-Top, taking into account
shower effects, NLO corrections do reduce the scale uncertainty, which moves from +31.1%

�23.6%
at

LOPS to +5.1%

�10.3%
at NLOPS QCD. Therefore, also for W+jets contributions to the signature
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Figure 7. Single-Top cross section and their uncertainty from scale dependence in the fiducial region
in various approximations. Corresponding numbers are listed in Tabs. 2 and 3.

W+jets cross section

LO 0.7656(6)
+0.3002(+39.2%)

�0.2265(�29.6%)
pb

LOPS QCD 1.36(2)
+0.42(+31.1%)

�0.32(�23.6%)
pb

NLO QCD 1.612(3)
+0.323(+20.1%)

�0.309(�19.2%)
pb

NLOPS QCD 1.79(5)
+0.09(+5.1%)

�0.18(�10.3%)
pb

(NLOPS QCD)/(LOPS QCD) 1.31(4)

(LOPS QCD)/LO 1.78(3)

(NLOPS QCD)/(NLO QCD) 1.11(3)

Table 4. Total cross sections and their uncertainty from scale dependence in various QCD approxi-
mations for the signature (2.1) from W+jets within the fiducial region defined in Sec. 3.1. The ratios
are computed for the central values of the corresponding predictions.

(2.1), parton shower effects (or possibly analytic jet-veto resummation) are necessary in order
to reduce theory uncertainties. On the other hand, the impact of NLO EW corrections on top
of NLO QCD predictions is much smaller (⇠ 1% at the inclusive level) than the scale uncer-
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LO is completely off. From LOPS to NLOPS we do see a reduction 
of scale unc. to 3%, i.e., the same size of NLO EW corrections. 
QCD+EW+PS would be desirable already at inclusive level.

Single-Top



Inclusive results
Calculation performed with MadGraph5_aMC@NLO (QCD)

LO is again off. From LOPS to NLOPS we see a reduction of scale 
uncertainties. 
QCD+EW+PS seems not necessary for W+jets.
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Figure 7. Single-Top cross section and their uncertainty from scale dependence in the fiducial region
in various approximations. Corresponding numbers are listed in Tabs. 2 and 3.
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(2.1), parton shower effects (or possibly analytic jet-veto resummation) are necessary in order
to reduce theory uncertainties. On the other hand, the impact of NLO EW corrections on top
of NLO QCD predictions is much smaller (⇠ 1% at the inclusive level) than the scale uncer-
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Figure 8. W+jets cross sections and their uncertainties from scale dependence in the fiducial region
in different approximations. Corresponding numbers are listed in Tabs. 2 and 4.

tainty even at NLOPS QCD accuracy. Given the results that we have found at the inclusive
and differential level for NLO EW corrections (see Sec. 3.2), in the case of the W+jets contri-
bution to the signature (2.1), the impact of EW corrections is negligible and their combination
with showered effects is not so relevant as in the case of Single-Top.

3.3.2 Differential distributions

We move now to differential distributions for Single-Top production. In Figs. 9 and 10 we
show the NLOPS QCD predictions for the observables already considered in Figs. 2 and 3.
In the main panel we show the central value for NLO QCD and NLOPS QCD predictions,
while in the first inset we compare their scale uncertainties normalised to the central value
of the NLO QCD prediction. Since the NLOPS QCD scale uncertainties are much smaller
than the corresponding NLO QCD ones, it is interesting to compare them with the size of
the NLO EW corrections, which on the other hand can be computed at the moment only
at fixed order (see discussion in Sec. 2.2). For this reason, in the second inset we show the
NLOPS QCD scale uncertainty band normalised to its central value together with the (NLO
QCD+EW)/(NLO QCD) ratio already shown in Figs. 9 and 10. In other words, in such a
way, we can directly compare the scale uncertainty at NLOPS QCD accuracy with the impact
of NLO EW corrections on top of the corresponding fixed-order calculation.
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