

Universidad de Oviedo Universidá d'Uviéu University of Oviedo

tW inclusive and differential cross section measurements at 13.6 TeV

ALEJANDRO SOTO RODRÍGUEZ (UNIVERSITY OF OVIEDO)

ON BEHALF OF THE CMS COLLABORATION

LHC TOP WG meeting

24-26 April 2024

Overview

- Objective: perform the first inclusive and differential cross section measurements at 13.6 TeV of the tW process using Run 3 data collected in 2022.
 - Integrated luminosity: 34.7 fb⁻¹.
- First single top measurement performed in Run 3.
- **Main challenge:** irreducible **t**t background largely dominates signal contribution.
- tt was measured at 13.6 TeV using a smaller dataset of 1.21 fb⁻¹ (2022 data): <u>JHEP08(2023)204</u>.
- Previous measurements:
 - <u>JHEP 07 (2023) 046</u>: Inclusive and differential cross section measurements of tW using full Run 2.
 - <u>PAS TOP-19-003</u>: Differential cross section measurements of tW using 2016 data.
 - <u>JHEP 10 (2018) 117</u>: Inclusive cross section measurement of tW using 2016 data.

Reference: <u>PAS-TOP-23-008</u>. Result **presented** in **MoriondEW** 2024: <u>Indico</u>.

tW vs tt

tW interferes with tt
 at NLO in QCD → DR and DS schemes used to define tW to avoid double counting of diagrams.

- The matrix element for the final state WWbb: $|\mathcal{M}_{WWb\bar{b}}|^2 = |\mathcal{M}_{singly}|^2 + |\mathcal{M}_{doubly}|^2 + 2Re\left(\mathcal{M}_{singly}^*\mathcal{M}_{doubly}\right)$
- Besides the nominal sample of tW generated with powheg-pythia8 with the **DR** method we consider (for the differential measurement comparisons):
 - Powheg DS-pythia8, Powheg DR-Herwig7, amcatnlo DR-pythia8, amcatnlo DR2-pythia8, amcatnlo DS-pythia8 and amcatnlo DS dyn.-pythia8.

tW: Kinematic Selection

• Summary of the **object selection**:

Leptons	Jets	МЕТ	b tagging
$p_T > 20 \text{ GeV } \& \eta < 2.4$ Tight ID Cut-based	$p_T > 30 \text{ GeV } \& \eta < 2.4$ Tight ID for Puppi Jets	Puppi MET(<u>JINST 15 (2020)</u> <u>P09018</u>)	ParticleTransformer (<u>arXiv:2202.03772</u>)
(electrons: <u>JINST 16 (2021)</u> <u>P05014</u> , muons: <u>JINST 13</u> (2018) P06015)	(<u>JINST 15 (2020) P09018</u>)		

- We define **loose jets** with the same selection as the main jets but with $p_T \varepsilon$ [20, 30] GeV.
- Event selection:
 - At least two leptons in the event.
 - Leading lepton $p_T > 25$ GeV.
 - All lepton pairs must satisfy $m(\ell_1, \ell_2) > 20$ GeV.
 - Channel:
 - $e^{\pm}\mu^{\mp}$ (the two leading leptons must be an electron and a muon of opposite charge).

Inclusive measurement - strategy

- Inclusive measurement:
 - **1j1b** (SR).
 - **2j1b** (SR).
 - **2j2b** (tt CR).
- A ML fit to extract the inclusive cross section is performed to the following distributions:
 - **1j1b**: Random Forest (RF) multiclassifier to discriminate DY vs tt vs tW.
 - **2j1b**: RF multiclassifier to discriminate tt semileptonic vs tt vs tW.
 - **2j2b**: subleading jet p_T .

Inclusive measurement - MVAs

8 variables are selected for each RF based on:

- Good discriminating power.
- Data/MC agreement.
 - The agreement between the observed data and the simulation is measured using a goodness-of-fit test based on the saturated model. If the p-value is under 5%, the variable is rejected.
- For the RF in the 1j1b region the **four most discriminating variables** are:

Uncertainties - Experimental and normalisation

- Jet energy scale and resolution: varying both within its p_T and η bin uncertainties.
- **Lepton and trigger**: varying the data-to-simulations SFs by their uncertainties.
- **Electron scale and smearing**: the momenta of the electrons is varied by their uncertainties, taken from the electron scale and smearing corrections.
- Luminosity (1.4%) <u>LUM-22-001</u> and **pileup** (varying \pm 4.6% the pp inelastic cross section).
- **Unclustered energy**: the effect from unclustered energy from the calorimeters is taken into account through the momentum resolution of the various PF candidates.
- **b-tagging** and **mistagging**: varying the data-to-simulations SFs by their uncertainties.
- tī: 3.5% (from <u>JHEP08(2023)204</u>).
- VV, ttV: 50% (from <u>JHEP07(2023)046</u>).
- DY: 10% (from <u>JHEP07(2023)046</u>).
- Non-W/Z (W+jets, tī semileptonic): 50% (from <u>JHEP07(2023)046</u>).

Uncertainties - modelling I

- All uncertainties in this slide are considered for tt and tW.
 We will indicate whether they are correlated or uncorrelated between tt and tW.
 - **PDF**+ α_s (correlated): determined by reweighting the samples according to the 100 NNPDF3.1 replicas. For PDFs the variations are summed quadratically to obtain its uncertainty. α_s variations are not added to the PDFs and and they are considered as a separate nuisance.
 - μ_R/μ_F scales (uncorrelated): we take the difference w.r.t. scaling μ_R and μ_F by 2 and 0.5 relative to their common nominal value. We take separate nuisances for μ_R and μ_F .
 - **UE** (correlated): using dedicated samples that vary the Pythia parameters that tune the measurements to the UE.
 - **CR** (correlated): using various models (CR1/QCD-inspired, CR2/gluon move and with early resonace decays activated/ERDon). The different models are included as separate nuisances.
 - m_{top} (correlated): using ± 3 GeV varied samples and extrapolated to ± 1 GeV assuming linearity.
 - **ISR** (uncorrelated): using the dedicated weights that vary the PS scales by a factor of two.
 - **FSR** (correlated): using the dedicated weights that vary the PS scales by a factor of two.

Uncertainties - modelling II

- ME/PS matching (*h_{damp}*) considered for tt only: using dedicated samples that vary the Powheg *h_{damp}* parameter by its uncertainty. The nominal value used for *h_{damp}* (250 GeV) is taken as the rounded average of ATLAS (258.75 GeV) and CMS (237.8775 GeV) values. For the variations (158 GeV and 418 GeV), they are obtained doing a translation of the old values (150.7305 GeV, 237.8775 GeV and 397.6125GeV).
- Top quark p_T modelling considered for tt only: estimated by taking the difference between reweighted and unweighted distributions. Using data-to-NLO weights derived following result from: <u>Phys. Rev. D 95, 092001</u> and <u>PAS-TOP-16-011</u>.
- DS considered for tW only: using dedicated samples, we take the difference w.r.t. nominal (i.e. DR) values.

Inclusive cross section measurement

- To discriminate between tW and tt events, two RFs, one in the 1j1b region and the other in the 2j1b region, are trained using the kinematic properties of the events.
- To extract the signal, a ML fit is performed using the two RF outputs and the subleading jet p_T in the **2j2b** region.

Inclusive cross section measurement

- Measurement dominated by systematic uncertainties.
- The main difference between tt
 and tW is the additional b jet that
 is present in tt, thus:
 - The leading uncertainties are the ones associated with the energy of the jets and b tagging. But also, the normalisation of the second leading background: Non-W/Z (misidentified leptons).

Differential measurements

- Measurement performed in the 1j1b region vetoing events with low energy jets (loose jets).
- Signal extraction is performed by **background subtraction**.
- Unfolding from detector level to particle level is performed using TUnfold (<u>JINST 7 (2012) T10003</u>).
- We measure the following observables:
 - p_T of the leading lepton.
 - p_T of the jet.
 - $\Delta \phi(e,\mu)$.
 - $p_z(e, \mu, \text{jet})$.
 - *m*(*e*, *µ*, jet).
 - $m_T(e, \mu, \text{jet}, p_T^{\text{miss}})$.

Differential measurements - data/MC comparison

Differential measurements - results

- Results are normalised to the fiducial cross section and bin width.
- There is **good agreement** between the measurements and the predictions from the different event generators:
 - POWHEG vs MADGRAPH5_aMC@NLO.
 - PYTHIA8 vs HERWIG7.
 - Different schemes to treat the interference between tW and $t\overline{t}$.

Differential measurements - results

- Results are normalised to the fiducial cross section and bin width.
- There is **good agreement** between the measurements and the predictions from the different event generators:
 - POWHEG vs MADGRAPH5_aMC@NLO.
 - PYTHIA8 vs HERWIG7.
 - Different schemes to treat the interference between tW and $t\overline{t}$.

Differential measurements - GOF test

- We perform a χ^2 GOF test for the differential distributions to compare the observed result with the different MC generators.
- Performed using the full covariance matrix as well as statistical uncertainties of the predictions.
- We tabulate the p-values of the test:

Variable	PH DR + P8	PH DS + P8	PH DR + H7
Leading lepton $p_{\rm T}$	0.96	0.98	0.96
Jet $p_{\rm T}$	0.96	0.97	0.97
$\Delta arphi(\mathrm{e}^{\pm},\mu^{\mp})/\pi$	0.94	0.94	0.93
$p_z(\mathbf{e}^{\pm}, \mu^{\mp}, j)$	0.96	0.96	0.96
$m_{\mathrm{T}}(\mathrm{e}^{\pm},\mu^{\mp},j,ec{p}_{\mathrm{T}}^{\mathrm{miss}})$	0.78	0.75	0.79
$m(\mathbf{e}^{\pm},\mu^{\mp},j)$	0.95	0.93	0.95

Variable	aMC DR + P8	aMC DR2 + P8	aMC DS + P8	aMC DS dyn. + P8
Leading lepton $p_{\rm T}$	0.94	0.96	0.95	0.96
Jet $p_{\rm T}$	0.96	0.98	0.97	0.99
$\Delta arphi(\mathrm{e}^{\pm},\mu^{\mp})/\pi$	0.93	0.93	0.94	0.93
$p_z(\mathbf{e}^{\pm},\mu^{\mp},j)$	0.96	0.96	0.96	0.96
$m_{\rm T}({ m e}^{\pm},\mu^{\mp},j,ec{p}_{ m T}^{ m miss})$	0.80	0.77	0.80	0.79
$m(\mathbf{e}^{\pm},\mu^{\mp},j)$	0.96	0.95	0.96	0.96

Summary

- The **first** inclusive and differential cross section measurements of the tW process at **13.6 TeV** have been presented: <u>CMS-PAS-TOP-23-008</u>.
- The measured inclusive cross section $\sigma_{tW}^{obs} = 84.1 \pm 2.1(\text{stat})^{+9.8}_{-10.2}(\text{syst}) \pm 3.3(\text{lum})$ pb is compatible with the SM prediction $\sigma_{tW}^{SM} = 87.9^{+2.0}_{-1.9}(\text{scale}) \pm 2.4(\text{PDF} + \alpha_S)$ pb (JHEP05 (2021) 278).
- With respect to the differential measurements, compatible results between the SM expectations and the measured cross sections are also observed.

Inclusive tW cross section [pb]

100

80

60

20

Prediction

CMS Preliminary

▼ ee, eμ, μμ (7 TeV, 4.9 fb⁻¹), PRL 110 (2013) 022003
 ▲ ee, eμ, μμ (8 TeV, 12.2 fb⁻¹), PRL 112 (2014) 231802

eμ (13 TeV, 138 fb⁻¹), JHEP 07 (2023) 046
I+jets (13 TeV, 36 fb⁻¹), JHEP 11 (2021) 111
eμ (13.6 TeV, 34.7 fb⁻¹), CMS-PAS-TOP-23-008

March 2024

13

√s [TeV]

12

aNNLO+aN³LL, PDF4LHC21 (pp), JHEP 05 (2021) 278

 $m_{top} = 172.5 \text{ GeV}, \alpha_{e}(M_{-}) = 0.118 \pm 0.001$