

Inclusive and differential measurement of top quark cross sections in association with a Z boson

F. Colombina on behalf of the CMS Collaboration

Overview and motivation

- Differential measurements of tZq and ttZ with Run-2 both ATLAS and CMS
- Evidence for tWZ reported by CMS
- Simultaneous measurement:
 - less dependent on signal modeling assumptions
 - enhance sensitivity to deviation from SM across signals

CMS

[1/GeV]

] (Z)^Ldp/op 0.002

þ

Data

Pred.

Page 3

tWZ modeling

- tWZ modeling at NLO: intermediate top becomes resonant, overlap with $t\bar{t}Z$ and $t\bar{t}$
 - o amplitude \mathcal{A} divided into $\mathcal{A}^{(res)}$ and $\mathcal{A}^{(non-res)}$
 - \circ DR1, removes $\mathcal{A}^{(\mathrm{res})}$ in $\mathcal{A}_{-\otimes}$
 - DR2, removes $|\mathcal{A}^{(res)}|^2$ in $|\mathcal{A}|^2$
 - DS, subtraction term
- DR1 for nominal, DR2 for uncertainty
- DS lies between DR1 and DR2

WG

LHC

→ ttZ and tWZ treated as one signal

Event selection

- Select ttZ, tWZ and tZq in the same region
 Object selection
- Isolated jets with p_T > 25 GeV, |η| < 5
 o if b-tagged, required to be central

Event selection

- Exactly three leptons (e[±] or μ^{\pm}) o p_T > 25, 15, 10 GeV
- One lepton pair with: • opposite sign, same flavor • $|m_{gl} - Z| < 20 \text{ GeV}$ • $N_{j} \ge 2, N_{b} \ge 1$ LHCLOPWG

Maximum h

Page 4

138 fb⁻¹ (13 TeV)

Leading lepton p₋ [GeV]

IS Preliminarv

Data/MC

138 fb⁻¹ (13 TeV

CMS Preliminary

Data

Ge/

Event selection

DESY

Fake factor (FF) method

Measurement region

- QCD multijet samples
- exactly one fakeable lepton
- at least one jet with $\Delta R_{\ell_i} > 0.7$

o per-lepton FF:

LHC

$$f_{i} = \frac{N_{tight}}{N_{tight} + N_{fakeable}}$$

evaluated for tWZ CMS analysis

 Contribution in SR: estimated from data in the AR, removing events with only prompt leptons

Off-Z-peak region to check the estimation

- Application region (AR): same selection as SR, but fakeable leptons
- Leptons divided into prompt and nonprompt
- Weight in this region:

 $(-1)^{n-1}\prod_{i=1}^{3}\frac{f_{i}}{1-f_{i}}$

Top quark reconstruction

Page

- Three different cases are considered:
 - o 2 jets, 1 b-tag: only leptonic top is reconstructed
 - \circ 3 jets, ≥ 1 b-tag: both hadronic and leptonic top reconstructed separately, lowest χ^2 is kept

$$\chi_{t,lep}^{2} = \left(\frac{m_{lvb} - m_{t}}{\sigma_{t,lep}}\right)^{2} \qquad \qquad \chi_{t,had}^{2} = \left(\frac{m_{bjj} - m_{t}}{\sigma_{t,had}}\right)^{2}$$

 $\circ \geq$ 4 jets, \geq 1 b-tag: both hadronic and leptonic top are reconstructed

$$\chi_t^2 = \left(\frac{m_{lvb} - m_t}{\sigma_{t,lep}}\right)^2 + \left(\frac{m_{bjj} - m_t}{\sigma_{t,had}}\right)^2$$

when reconstruction is not possible, unphysical value given to the related variables

Signal-background discrimination

Data/MC

Page 8

- Multiclass classifier with 3 output nodes:
 - <mark>∘</mark> t<u>Z</u>q
 - ttZ+tWZ
 - backgrounds
- k-fold cross-validation approach[®](k=2)
- Inputs:

LHC

- kinematic properties[®]
- top reconstruction

WG

- Good discrimination achieved (AUC ~87%)
- Checked correlation among inputs and unfolding observables to avoid biases
- Max-score splitting for fit categories

Inclusive measurement

Page 9

• Two additional regions included in the fit for the inclusive measurement:

• four lepton region \rightarrow pure in ttZ

- zero b-jet region → CR for WZ
- Both regions are rather pure, no classifier necessary
 - o four lepton → b-jet multiplicity
 o zero b-jet → jet multiplicity
- For the SR, the three output nodes are included in the fit

Inclusive measurement

- Profile likelihood-ratio scan for $\sigma_{_{tzq}}$ and $\sigma_{_{t\bar{t}z+twz}}$
- Statistically limited

LHC

- main syst: background modeling, (b-)jets
- Good agreement with SM for tZq, small excess for ttZ+tWZ
- Consistent with previous CMS measurements
- When separating ttZ and tWZ

>WG

• $\sigma_{t\bar{t}z} = 0.99 \pm 0.07$ pb • $\sigma_{t\bar{t}z} = 0.88 \pm 0.16$ pb \rightarrow tWZ freely floating

 $\sigma_{t\bar{t} Z+tWZ} = 1.14 \pm 0.07 \text{ pb}$ $\sigma_{tZq} = 0.81 \pm 0.10 \text{ pb}$

Inclusive measurement

Differential measurement

• Cross sections measured as a function of five leptonic observables:

•
$$p_T(Z)$$

• $p_T(\ell_w)$
• $\Delta R(Z, \ell_w)$
• $\Delta \varphi(\ell, \ell')$
• $\cos(\theta^*)$

Divide output notes into 4 bins

LHCTOPWG

 Background output node still included in the fit as one bin

Unfolding

- \bullet Unfolding performed simultaneously for tZq and $t\bar{t}Z{+}tWZ$
- General trend as for the inclusive measurement:
 - small excess for ttZ+tWZ
 - tZq in agreement with SM expectations

Unfolding

Unfolding

 $\cos\theta_*$

138 fb⁻¹ (13 TeV)

CMS Preliminary

Summary

• First simultaneous differential measurement of tZq, ttZ and tWZ $\circ~\sigma_{_{tZq}}$ and $\sigma_{_{t\bar{t}Z+tWZ}}$ and correlations measured as function of five variables Excess for ttZ+tWZ, tZq in agreement with SM **Outlook** Results can be used for theory and EFT interpretations Fiducial cross sections Run-3 to reduce statistical uncertainties Thank you! LHC Page 16