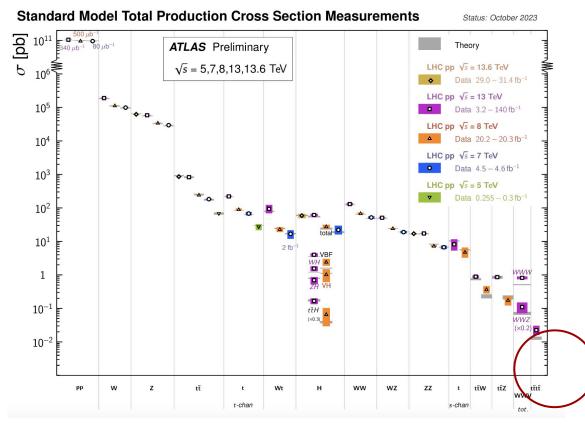
3- vs 4-Top Quark Production at c-NLO

Based on WIP with G. Durieux, R. Frederix, D. Pagani and M. Zaro

Hesham El Faham The University of Manchester


LHC TOP WG, April 2024, CERN

Status

- Top quark plays a special role in SM and beyond
- So far, no direct signs of beyond the SM physics
- Keep measuring rare processes

Status

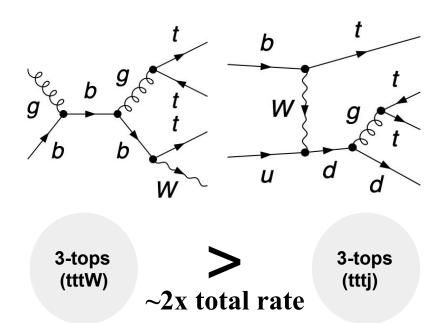
- Top quark plays a special role in SM and beyond
- So far, no direct signs of beyond the SM physics
- Keep measuring rare processes

This talk is on 3- and 4-tops

3- and 4-tops: A brief motivation

Both processes

- are extremely rare under the SM assumptions [e.g. 2107.07529]
- can probe four-fermion operators within a SMEFT framework [e.g. 2011.15060]
- can be affected through top-philic new physics scenarios [see 2404.14482]


3-tops

is unique as a NP searching program, can be a crucial signature of flavour-violating neutral Interactions [e.g. 1901.04643]

4-tops

is sensitive to many new physics scenarios, such as composite Higgs models and supersymmetry [e.g. 2104.09512]

3-tops: Components

At NLO QCD in the 5FS

tttt with one *t* decaying is *tttW* with real radiation

emission <

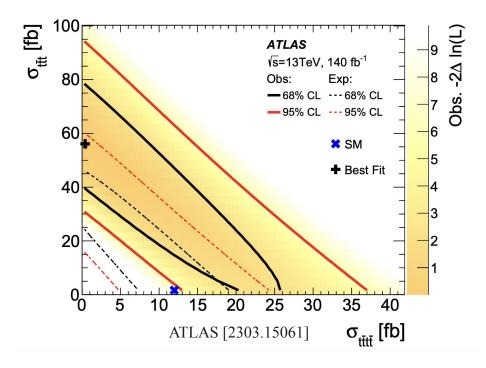
Overlap removal is necessary!

All computations are via MadGraph where Diagram Removal (DR) scheme is used for the overlap treatment

3- vs 4-tops: Basics

	4-tops	3-tops	
Cross-section [fb]	~20	~1	
Experimental signature	Multi-lepton	Multi-lepton	
Measured?	Yes (with 3-tops set to SM) [2303.15061, 2305.13439]	No	
Computed?	c-NLO [1711.02116]	LO in QCD [2107.07629]	

3- vs 4-tops: Basics

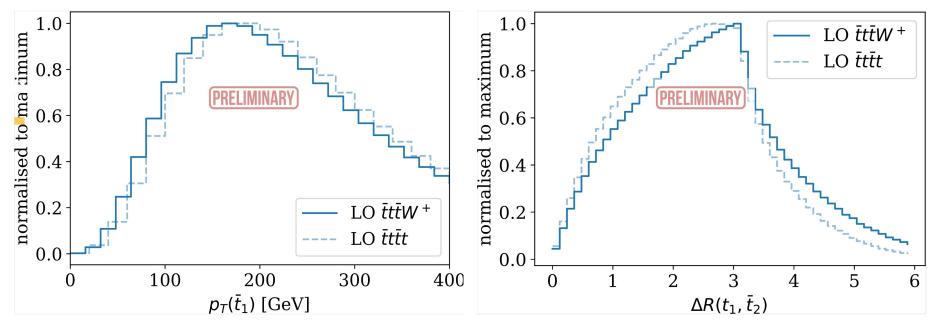

	4-tops	3-tops	
Cross-section [fb]	~20	~1	
Experimental signature	Multi-lepton See Nikolaos talk; Dimitra	Multi-lepton akopoulos, Worek [2401.10678]	
Measured?	Yes (with 3-tops set to SM) [2303.15061, 2305.13439]	No	
Computed?	c-NLO [1711.02116]	LO in QCD [2107.07629]	

3- vs 4-tops: Basics

	4-tops	3-tops	
Cross-section [fb]	~20	~1	
Experimental signature	Multi-lepton See Nikolaos talk; Di	Multi-lepton mitrakopoulos, Worek [2401.10678]	
Measured?	Yes (with 3-tops set to SM) [2303.15061, 2305.13439]	No	
Computed?	c-NLO [1711.02116]	3-tops at NLO QCD was made (~ 1 yea available by Gauthier on <u>https://github.com/gdurieux/triple-top-nle</u>	

3- and 4-tops: Striking similarities?

Strong anti-correlation observed..


Lack of discrimination power between very similar processes

Need for precise total rates and differential predictions for SM 3-tops

i.e. theoretical understanding is key

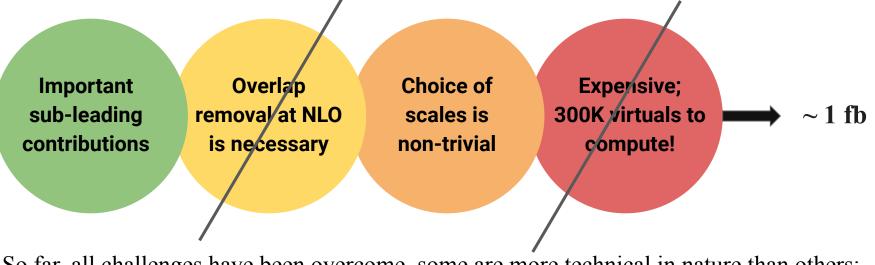
3- vs 4-tops: Differentially at LO

Kinematic similarities manifest differentially

3-tops: Theoretical challenges

Important sub-leading contributions Overlap removal at NLO is necessary Choice of scales is non-trivial Expensive; 300K virtuals to compute!

3-tops: Theoretical challenges


Important sub-leading contributions Overlap removal at NLO is necessary Choice of scales is non-trivial Expensive; 300K virtuals to compute!

12

1 fb

 \sim

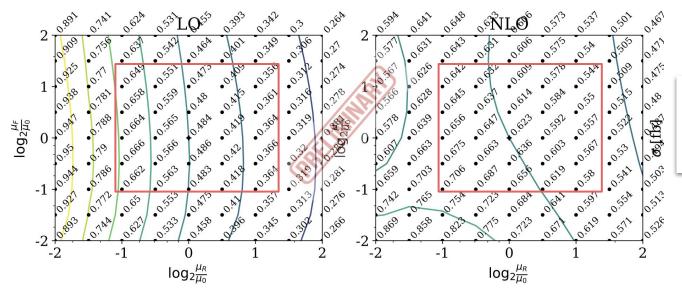
3-tops: Theoretical challenges

So far, all challenges have been overcome, some are more technical in nature than others; will focus here on the more physics-oriented ones

Set the stage

In the upcoming slides, I refer to LO

QCD and NLO QCD as just "LO" and

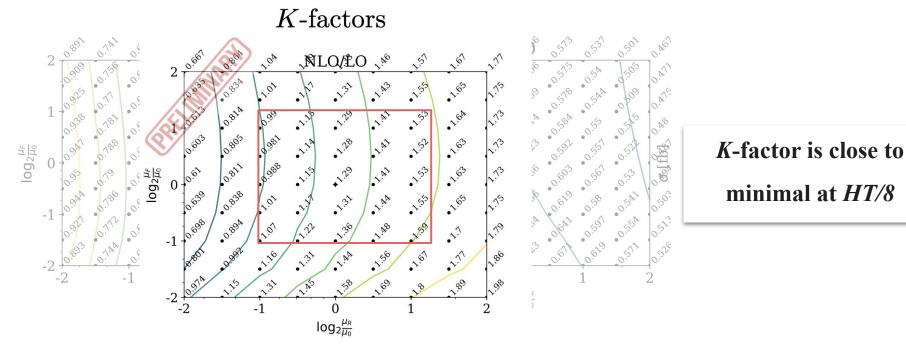

"NLO" until otherwise mentioned

Choice of scales is non-trivial

3-tops: Scale choice at the inclusive-level

Lower scales feature higher scale variations uncertainties

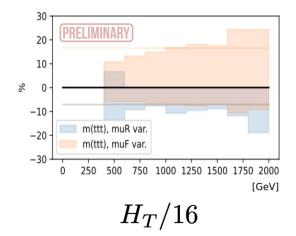
2D scale variations

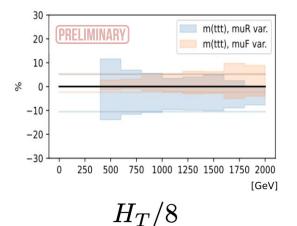

Scale variation is close

to minimal at HT/8

Choice of scales is non-trivial

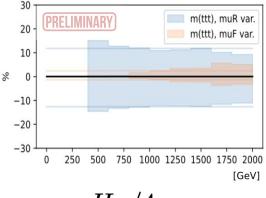
3-tops: Scale choice at the inclusive-level

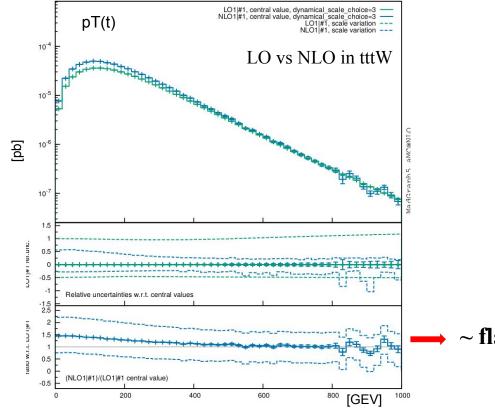

Higher scales hints to worse convergence; higher k-factors



Choice of scales is non-trivial

3-tops: Scale choice at the differential-level


Strong scale dependence manifest differentially


~ similar muR and

muF variations

 $H_T/4$

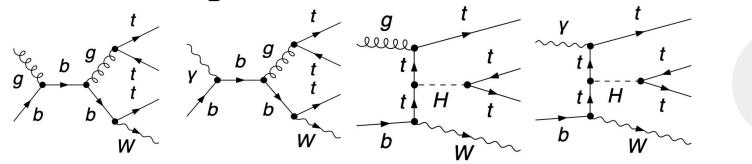
3-tops: NLO differential *k***-factors**

~ flat differential *k*-factors with significant variation within scales band

N(LO) EW corrections

3-tops:

 $LO \rightarrow 1,2,3,4 \rightarrow LO1 = LO QCD$ NLO $\rightarrow 1,2,3,4,5 \rightarrow NLO1 = NLO QCD$

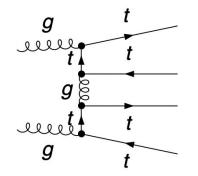

In the upcoming slides, I will be mentioning LO and NLO with their indices, i.e. 1, 2, etc.

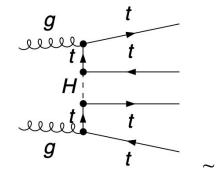
4-tops:

 $LO \rightarrow 1,2,3,4,5 \rightarrow LO1 = LO QCD$

 $NLO \rightarrow 1,2,3,4,5,6 \rightarrow NLO1 = NLO QCD$

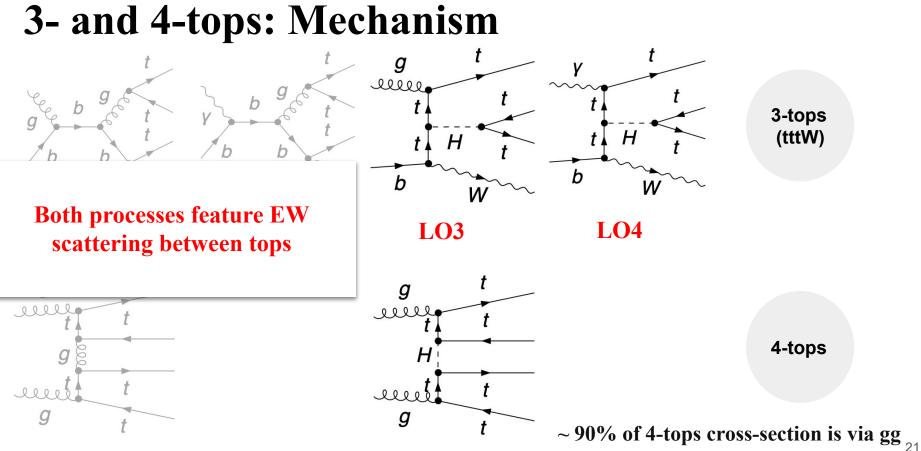
3- and 4-tops: Mechanism


3-tops (tttW)

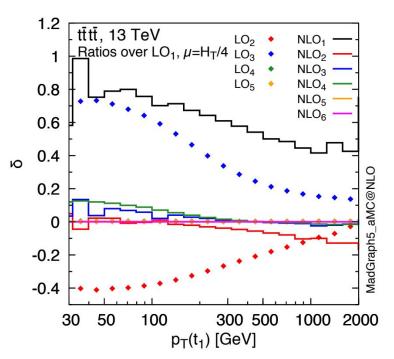

LO1

LO2

LO3


LO4

4-tops

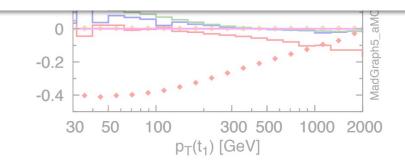

~ 90% of 4-tops cross-section is via gg $_{20}$

4-tops: Sub-leading orders

The computation of [1711.02116]; Frederix, Pagani and Zaro

$\delta [\%]$	$\mu = H_T/8$	$\mu = H_T/4$	$\mu = H_T/2$
- LO ₂	-26.0	-28.3	-30.5
- LO ₃	32.6	39.0	45.9
LO_4	0.2	0.3	0.4
LO_5	0.02	0.03	0.05
NLO_1	14.0	62.7	103.5
\longrightarrow NLO ₂	8.6	-3.3	-15.1
\rightarrow NLO ₃	-10.3	1.8	16.1
NLO_4	2.3	2.8	3.6
NLO_5	0.12	0.16	0.19
NLO_6	< 0.01	< 0.01	< 0.01
$NLO_2 + NLO_3$	-1.7	-1.6	0.9

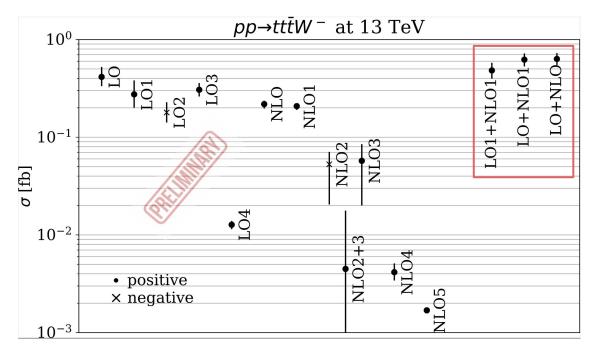
Important sub-leading contributions


4-tops: Sub-leading orders

The computation of [1711.02116]; Frederix, Pagani and Zaro

$\delta [\%]$	$\mu = H_T/8$	$\mu = H_T/4$	$\mu = H_T/2$
- LO ₂	-26.0	-28.3	-30.5
- LO ₃	32.6	39.0	45.9
LO_4	0.2	0.3	0.4
LO_5	0.02	0.03	0.05
NLO_1	14.0	62.7	103.5
\longrightarrow NLO ₂	8.6	-3.3	-15.1
\rightarrow NLO ₃	-10.3	1.8	16.1
NLO_4	2.3	2.8	3.6
NLO_5	0.12	0.16	0.19
NLO ₆	< 0.01	< 0.01	< 0.01
$\mathrm{NLO}_2 + \mathrm{NLO}_3$	-1.7	-1.6	0.9

Sub-leading orders are important in 4-tops

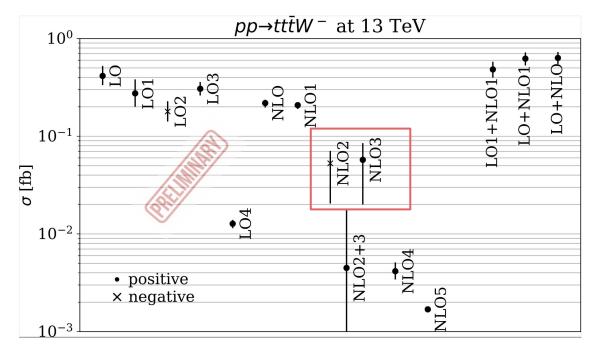


Important sub-leading contributions

Important sub-leading contributions

3-tops: Hierarchy of LO and NLO

At the inclusive-level, it is an "all-or-not-at-all" situation

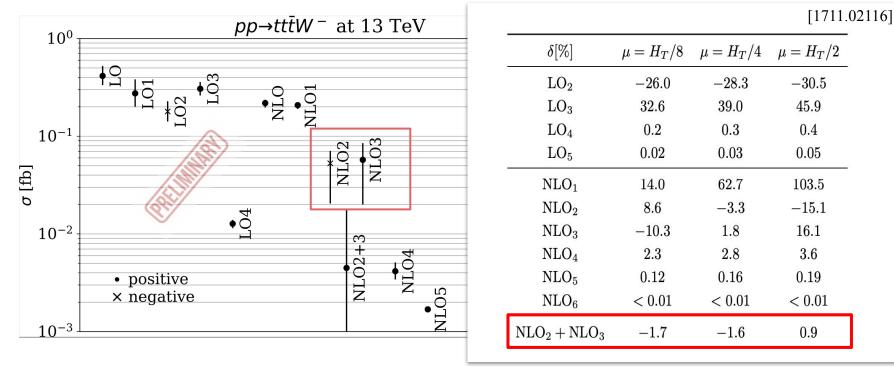


L0	0.41	fb	-20%	+20%	(±0.3%)
L01	0.27	fb	-30%	+40%	(±0.2%)
L02	-0.18	fb	+30%	-20%	(±0.1%)
L03	0.31	fb	-10%	+20%	(±0.2%)
L04	0.013	fb	-9%	+8%	(±0.3%)
NL0	0.22	fb	-8%	+7%	(±1%)
NL01	0.21	fb	-7%	+2%	(±0.8%)
NL02	-0.053	fb	+30%	-60%	(±1%)
NL03	0.057	fb	-60%	+50%	(±1%)
NL04	0.0042	fb	-20%	+20%	(±7%)
NL05	0.0017	fb	-4%	+5%	(±1%)
				23 23	

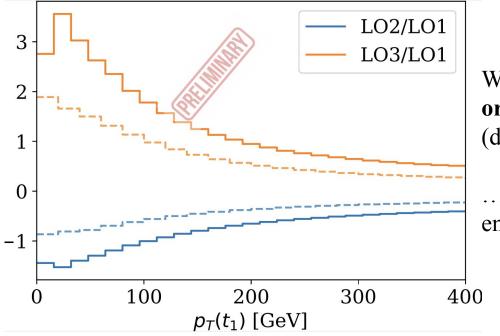
Important sub-leading contributions

3-tops: Hierarchy of LO and NLO

(N)LO2 and N(LO)3 are significant albeit with strong cancellations occuring

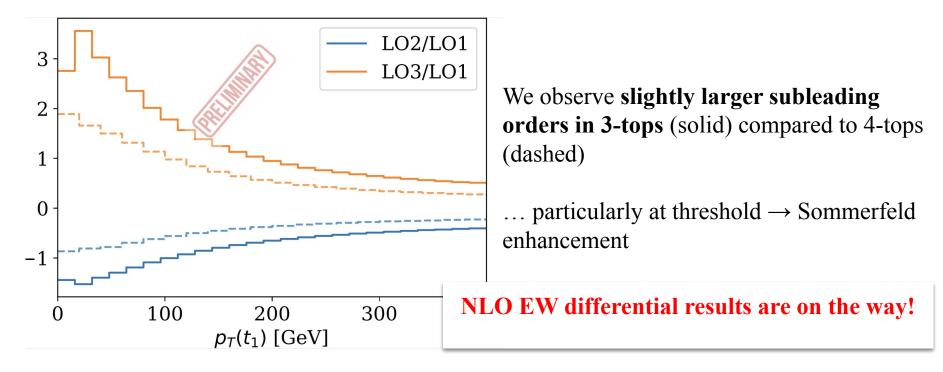

LO	0.41	fb	-20%	+20%	(±0.3%)
L01	0.27	fb	-30%	+40%	(±0.2%)
L02	-0.18	fb	+30%	-20%	(±0.1%)
L03	0.31	fb	-10%	+20%	(±0.2%)
L04	0.013	fb	-9%	+8%	(±0.3%)
NL0	0.22	fb	-8%	+7%	(±1%)
NL01	0.21	fb	-7%	+2%	(±0.8%)
NL02	-0.053	fb	+30%	-60%	(±1%)
NL03	0.057	fb	-60%	+50%	(±1%)
NL04	0.0042	fb	-20%	+20%	(±7%)
NL05	0.0017	fb	-4%	+5%	(±1%)
				23 - 23	

Important sub-leading contributions


26

3-tops: Hierarchy of LO and NLO

..similar cancellations have been observed for 4-tops at c-NLO


3-tops vs 4-tops: Differential LO Hierarchy

We observe **slightly larger subleading orders in 3-tops** (solid) compared to 4-tops (dashed)

... particularly at threshold \rightarrow Sommerfeld enhancement

3-tops vs 4-tops: Differential LO Hierarchy

Summary and Conclusions

- 3-tops and 4-tops are rare processes with strong motivations for a good theoretical and experimental control
- 3-tops is ~ 10 times smaller than 4-tops; albeit with kinematic similarities which require reliable differential and total rate predictions
- Complete NLO predictions are necessary for both processes; while this is available for 4-tops, here we presented the our WIP on c-NLO predictions for 3-tops
- c-NLO 3-tops is challenging due to several factors like: scale choices, overlap treatment, expensive MC simulations, etc.
- NLO QCD and EW LOs are indispensable; NLO EW orders cancel strongly at the inclusive-level → We are investigating the differential impacts..