

Probing entanglement in top quark production with the CMS detector

Giulia Negro on behalf of the CMS Collaboration

> LHC TOP WG meeting 26 April 2024

Entanglement at the LHC

- Fundamental predictions of Quantum Mechanics:
 - entangled states cannot be described by independent superpositions
 - measuring particle spin in an entangled system immediately reveals the spin state of the second particle
- A lot of measurements with electrons and photons already performed

Nobel Prize in 2022 for Aspect, Clauser, and Zeilinger

• First observation of entanglement in tt by ATLAS at the end of last year

arXiv:2311.07288

• Now also with CMS!

<u>CMS-PAS-TOP-23-001</u>		
Available on the CERN CDS information server	CMS PAS TOP-23-001	
CMS Physics Analysis Summary		
Contact: cms-pag-conveners-top@cern.ch	2024/04/01	
Probing entanglement in top quark production with the CMS detector		
The CMS Collaboration		

Entanglement of top quarks

- Top quark = ideal candidate for spin measurements:
 - extremely short lifetime allows measuring polarization and spin correlation in tt production
 - **spin information is preserved** in the angular distribution of its decay products

- Entanglement present in top quark pairs can be measured using spin correlations variables
- Entanglement depends on production mode, $m_{t\bar{t}}$, scattering angle of the top quark (Θ)

Afik, De Nova Eur. Phys. J. Plus **136**, 907

How to probe entanglement

At the LHC, top quarks are produced in a mixed state
 → can be represented as a density operator:

$$\rho = \frac{I_4 + \Sigma_i \left(B_i^+ \sigma^i \otimes I_2 + B_i^- I_2 \otimes \sigma^i \right) + \Sigma_{i,j} C_{ij} \sigma^i \otimes \sigma^j}{4}$$

- $B^{+/-}$ = 3-vectors characterizing degree of top quark/antiquark polarization
- C = 3x3 matrix characterizing top quark and antiquark spin correlations
- Peres-Horodecki criterion:

Peres, <u>Phys. Rev. Lett. 77, 1413</u> Horodecki, <u>Phys. Lett. A 232, 5</u>

if a state is separable (i.e., non-entangled), the transpose with respect to a subspace of the density operator is positive definite \rightarrow a state is non-separable (i.e., entangled) if this condition doesn't hold

→ top quarks are entangled in a certain phase space if at least one eigenvalue is < 0

How to probe entanglement

• Peres-Horodecki criterion: using simpler observables, a sufficient condition to observe entanglement in top quarks is:

$$\Delta = C_{33} + |C_{11} + C_{22}| - 1 > 0$$
 Eur. Phys. J. Plus 136, 907

- At low $m_{t\bar{t}}$, $C_{11} > 0$ and $C_{22} > 0 \rightarrow \Delta + 1 = tr[C] > 1$
- tr[C] can be probed from a single-differential cross section:

$$\frac{1}{\sigma} \frac{d\sigma}{d\cos\varphi} = \frac{1}{2}(1 - D\cos\varphi) \qquad D = -\frac{\operatorname{tr}[C]}{3} \to (D < -1/3) \qquad \text{for } d\cos\varphi$$

Sufficient condition or entanglement !

→ measure D to access entanglement information in top quark events!

5

- cos φ = ℓ̂₁ · ℓ̂₂ is the opening angle between leptons in parent top rest frame
 → most sensitive and experimentally well measured
 - \rightarrow focus of entanglement measurement

observable

Analysis strategy

6

- The degree of entanglement is highly phase space-dependent
 - scan of $\cos \Theta$ vs $m_{t\bar{t}}$ to determine most sensitive phase space while minimizing expected total uncertainties
- Focus on low-mass region ($345 < m_{t\bar{t}} < 400$ GeV) to increase entanglement
 - threshold region dominated by gg
 - maximal sensitivity with high statistics
- Cut on velocity along the beam line of the tt system to increase $gg/q\bar{q}$ fraction:

Aguilar-Saavedra,
Casas
$$\beta = |\frac{p_z^t + p_{\overline{z}}^{\overline{t}}}{E^t + E^{\overline{t}}}| < 0.9$$

arXiv:2205.00542

$$\frac{205.00542}{E^{i} + E^{i}}$$

- Use leptonic final states to measure the helicity angle $\cos \varphi = \hat{\ell}_1 \cdot \hat{\ell}_2$
 - fully encapsulates the spin correlations information for gg fusion production at low mass
- Perform a profile maximum likelihood fit of the $\cos \varphi$ distribution in the $m_{t\bar{t}}$ β signal region

 $gg \to t\bar{t}$ $m(t\bar{t})$ [GeV] $(1+\Delta)/3$ Entangled 10³ -0.4 -0.6 6×10^{2} 1/3 -0.8 4 × 1🕰 0.75 1.00 -0.50 -0.25 0.00 0.25 -0.75 0.50

 $\cos \Theta$

Threshold region

- Mis-modeling at a level of ~10% seen for $m_{t\bar{t}}$ ~345 GeV ($m_{e\mu}$ < 50 GeV)
- Consistent between dilepton and lepton+jets analyses in both CMS and ATLAS

Threshold region

- Mis-modeling at a level of ~10% seen for $m_{t\bar{t}}$ ~345 GeV ($m_{e\mu}$ < 50 GeV)
- Consistent between dilepton and lepton+jets analyses in both CMS and ATLAS
- NRQCD contributions close to threshold
 - spin and color singlet state (η_t): maximally entangled *toponium*
- Excess seen could come from toponium ?

→ inclusion of toponium (η_t) contributions in our signal model using simplistic model based on Phys Rev D 104 034023

> Toponium = predicted top quark-antiquark quasi-bound state with a mass of 343 GeV and width of 7 GeV

JHEP 06, 158

Dataset and signal model

- Current analysis = extension of 2016 top quark spin correlations analysis in dilepton events
- 35.9 fb⁻¹ of data @13 TeV collected in 2016
- Combined signal model: $t\bar{t}$ + toponium (η_t)
 - PowhegBox+Pythia8 as nominal tt sample
 - PowhegBox+Herwig and MG5 aMC@NLO(+MadSpin) [FxFx] as alternatives tt samples
 - η_t improves data modeling in the threshold region
 - only spin-0 η_t accounted (colour singlet pseudoscalar state) [PRD 104 (2021) 034023]
 - toponium model generated with MG5 aMC@NLO(LO)+Pythia8 with $337 < m_{n_{\star}} < 349 \text{ GeV}$
- Main background sources:
 - Z+jets (MG5_aMC@NLO + data-driven corrections)
 - single top (Powheg MC)
 - diboson (Pythia8 MC)

Phys. Rev. D 100 (2019) 072002

Event selection

- Current analysis = extension of 2016 top quark spin correlations analysis in dilepton events
 - same strategy for event selection, kinematic reconstruction, and background estimation
 - optimized sensitivity for entanglement measurement
- 2 oppositely charged isolated leptons (ee, eµ and μµ)
 - including also leptons from tau decays (different from 2016 analysis)
 - p_T > 25(20) GeV, for leading(trailing) lepton and $|\eta|$ < 2.4
 - veto events with more than two leptons
 - reject events with $m_{\ell\bar{\ell}}$ < 20 GeV
 - single lepton + dilepton triggers
- ≥ 2 jets (R=0.4), >=1 b jet
 - p_T > 30 GeV and $|\eta|$ < 2.4
 - jet cleaning: $\Delta R(\ell, jet) > 0.4$
- ee, µµ channels:
 - $E_{\text{miss}}^T > 40 \text{ GeV}$
 - Z veto: $|m_Z m_{\ell \bar{\ell}}| > 15 \text{ GeV}$
- Top quark reconstruction with $m_{\mathcal{C}b}$ weighting method
 - take solution with smallest $m_{t\bar{t}}$

Phys. Rev. D 100 (2019) 072002

 $\cos \varphi$

Extraction of entanglement proxy

- The entanglement proxy *D* is extracted with a template fit
 - all systematic effects included as nuisances
- How can we create variations of *D* outside of SM?
 - 1. generate top quark pairs with no spin correlations $\rightarrow D = 0$ (noSC samples)
 - 2. create new samples with mixtures of SM and noSC to obtain $D \in [D_{SM}, 0]$
 - 3. extend the fit for variations of $[-1, D_{SM}]$
- Use mixtures of SC and noSC to change fraction of tt with aligned vs opposite spins
 → any value of D between -1 and +1 can be reached

$$\mathsf{D} \sim \frac{\sigma(\uparrow\uparrow) + \sigma(\downarrow\downarrow) - \sigma(\uparrow\downarrow) - \sigma(\downarrow\uparrow)}{\sigma(\uparrow\uparrow) + \sigma(\downarrow\downarrow) + \sigma(\uparrow\downarrow) + \sigma(\downarrow\uparrow)}$$

Systematic uncertainties

- Current analysis = extension of 2016 top quark spin correlations analysis in dilepton events
 - same uncertainties considered + additional ones for toponium:
 - a flat uncertainty of 50% is applied on toponium
 - a binding energy uncertainty of ±0.5 GeV is considered
- Breakdown of leading syst. unc. in the entanglement proxy D at the post-fit level
- Leading experimental uncertainties:
 - Jet energy scale and resolution
- Leading theory-based uncertainties:
 - Toponium normalization
 - Parton Shower

Source	Uncertainty
	D
JES	10.1%
Toponium normalization	10.1%
Parton Shower (ISR)	6.3%
Scale	1.8%
Parton Shower (FSR)	1.2%
JER	0.9%
Z+jets shape	0.8%
b quark fragmentation	0.4%
tt normalization	0.3%
PDF	0.3%

Results

- Result of the binned profile likelihood fit of the $\cos \phi$ distribution
 - ~47500 signal candidates
- Good agreement with SM predictions

Results

• Scan of the $-2\Delta lnL$ distribution yields D at parton level, accounting for all detector effects

Results

• Scan of the $-2\Delta lnL$ distribution yields D at parton level, accounting for all detector effects

 $D_{obs} = -0.478 \pm 0.017(\text{stat})^{+0.018}_{-0.021}(\text{syst})$

$$D_{exp} = -0.465^{+0.016}_{-0.017}(\text{stat})^{+0.019}_{-0.022}(\text{syst})$$

>5 standard deviations observation of top quarks being entangled at tt threshold !

- Good agreement with SM predictions
 - significantly improved with η_t inclusion

Conclusions

- First observation of entanglement between top quarks with CMS data
- One of few quantum information studies in high energy physics
- Even in presence of a "toponium" bound state, we confirm the existence of entanglement in the tt system
- See next talk from Yoav for detailed comparison to ATLAS measurement

