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The inclusive Higgs cross section: motivation

I will focus on SM on-shell Higgs (mH = 125 GeV) production at LHC.

∼ 90% of the inclusive Higgs cross section comes from gluon fusion

Gluon Fusion

t
t

t
H

dominant production mode
sensitive to heavy particle spectrum
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A lot of theory activity for decades, due to a number of reasons:

the LO is loop induced → perturbative corrections are complicated

the NLO correction is 130% of the LO → very slow perturbative convergence

central for LHC physics → high precision is required

Topics covered in this talk:

theory ingredients and state-of-the-art predictions for on-shell ggH

theory uncertainties on ggH

codes for ggH (partial and very biased overview)
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The LHC H(XS)WG recommendation

The LHCHXSWG Yellow Report 4 recommendation for the ggH XS is based on the
result advocated by the Zurich group: (LHC 13 TeV, mH = 125 GeV)

σ = 48.58 pb = 16.00 pb (LO, rEFT)
+20.84 pb (NLO, rEFT)
+ 9.56 pb (NNLO, rEFT)
+ 1.49 pb (N3LO, rEFT)
− 2.05 pb ((t, b, c), exact NLO)
+ 0.34 pb (NNLO, 1/mt)
+ 2.40 pb (EW, QCD-EW)

[Anastasiou,Duhr,Dulat,Furlan,Gehrmann,Herzog,Lazopoulos,Mistlberger 1602.00695]

A long story 1977....2016....

Further developments in recent years, related to the quark mass effects at NNLO
and electroweak corrections

I will also discuss the impact of resummations of classes of logarithmic contributions
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rEFT: Born-rescaled Effective Field Theory

In the limit mH � mt it is possible to use the so-called Higgs Effective Field Theory

LEFT = − 1

4v
C1G

a
µνG

aµνH

with effective Hgg vertex

Gluon Fusion

t
t

t
H

dominant production mode
sensitive to heavy particle spectrum
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→

Perturbative corrections in the EFT is much simpler → N3LO achieved

To improve the accuracy, the EFT result is rescaled to the full LO with exact mt

dependence

rescaled EFT (rEFT): σrEFT =
σexact
LO (mt)

σEFT
LO

σEFT = σexact
LO (mt)×KEFT

' 1.06× σEFT

The rEFT result represents the bulk of the ggH cross section
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Quark mass effects

Supplement rEFT with t mass effects beyond LO and b, c mass effects at LO and beyond

NLO: exact result for any quark running in the loop [Spira,Djouadi,Graudenz,Zerwas 1995]

NNLO:
top quark mass effects as an expansion in 1/mt [Pak,Rogal,Steinhauser 2009]

[Harlander,(Mantler,Marzani),Ozeren 2009(10)] [Davies,Gröber,Maier,Rauh,Steinhauser 2019]

exact top quark mass effects [not in YR4] [Czakon,Harlander,Klappert,Niggetiedt 2021]

exact top-bottom interference effects [not in YR4]
[Czakon,Eschment,Niggetiedt,Poncelet,Schellenberger 2023]

Numerical impact:

top mass corrections to rEFT in the MS (OS) scheme

σexact, only top − σrEFT = 0 (0) LO
−0.24 pb (−0.32 pb) NLO
+0.34 pb NNLO (1/mt corrections)

(+0.15 pb) NNLO (exact)

bottom and charm corrections in the MS (OS) scheme

σexact, t+b+c − σexact, only top = −1.17 pb (−2.23 pb) LO
−0.66 pb (−0.36 pb) NLO

(+0.43 pb) NNLO (b-t interference)
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Uncertainties due to heavy quark masses

Uncertainties quoted by the Zurich group in YR4:

δ(scale) δ(trunc) δ(PDF-TH) δ(1/mt) δ(t, b, c) δ(EW)

+0.10 pb
−1.15 pb ±0.18 pb ±0.56 pb ±0.49 pb ±0.40 pb ±0.49 pb

[Anastasiou,Duhr,Dulat,Furlan,Gehrmann,Herzog,Lazopoulos,Mistlberger 1602.00695]

δ(1/mt) represents unknown mass correction terms at NNLO
→ now gone

δ(t, b, c) represents missing b, c mass corrections beyond NLO and t mass
corrections beyond NNLO
It also accounts for scheme dependence (MS vs OS)
→ reduced by recent results, although difficult to quantify reliably residual
uncertainty
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Electroweak corrections

σ = 48.58 pb = ..... + (2.40± 0.49) pb (EW, QCD-EW)

Cross section gets EW corrections as well:

σ = σ0

[
1 + αsσ1 + α2

sσ2 + α3
sσ3 + . . .+ αλEW(1 + αss1 + . . .) + α2 · · ·

]
Additive approach + mixed QCD-EW (Zurich group):
Estimate s1 from an EFT (mH � mZ,W ) [Anastasiou,Boughezal,Petriello 2008]

Gives a +4.9% effect

Complete factorization approach: [Actis,Passarino,Sturm,Uccirati 2008]

σ = σ0(1 + αλEW)
[
1 + αsσ1 + α2

sσ2 + α3
sσ3 + . . .

]
Gives a +5.1% effect

Uncertainty estimated by varying s1 and/or by comparing the complete factorized result
to the additive one

Recent exact computation of mixed QCD-EW correction s1 (light quark contribution)
[Becchetti,Bonciani,DelDuca,Hirschi,Moriello,Schweitzer 2010.09451]

σEW = (2.19± 0.26) pb [not in YR4]
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rEFT

Where do these numbers come from?

σ = 48.58 pb = 16.00 pb (LO, rEFT)
+20.84 pb (NLO, rEFT)
+ 9.56 pb (NNLO, rEFT)
+ 1.49 pb (N3LO, rEFT)
− 2.05 pb ((t, b, c), exact NLO)
+ 0.34 pb (NNLO, 1/mt)
+ 2.40 pb (EW, QCD-EW)
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A long journey

LO [Wilczek 1977] [Georgi,Glashow,Machacek,Nanopoulos 1977]

NLO [Dawson 1991] [Djouadi,Spira,Zerwas 1991]

NNLO [Harlander,Kilgore 2002] [Anastasiou,Melnikov 2002]

Approximate N3LO
soft approximation (only log terms) [Moch,Vogt 2005]

soft + high-energy approximation [Ball,MB,Forte,Marzani,Ridolfi 2013]

soft + next-to-soft approximation [deFlorian,Mazzitelli,Moch,Vogt 2014]

Full N3LO
Wilson coefficient at N3LO [Chetyrkin,Kniehl,Steinhauser 1997] three loops [Baikov,

Chetyrkin,Smirnov,Smirnov,Steinhauser 2009] [Lee,Smirnov,Smirnov 2010] [Gehrmann,

Glover,Huber,Ikizlerli,Studerus 2010] one emission at two loops [Gehrmann,Jaquier,Glover,

Koukoutsakis 2012] [Duhr,Gehrmann 2013] [Li,Zhu 2013] one emission at one loop

[Anastasiou,Duhr,Dulat,Herzog,Mistlberger 2013] [Kilgore 2013] three emissions (soft expansion)

[Anastasiou,Duhr,Dulat,Mistlberger 2013] scale dependent terms [Anastasiou, Bühler,Duhr,Herzog

2012] [Höschele,Hoff,Pak,Steinhauser,Ueda 2012] [Bühler,Lazopoulos 2013] two emissions at one

loop [Li,vonManteuffel,Schabinger,Zhu 2014] all soft and next-to-soft terms at N3LO

[Anastasiou,Duhr,Dulat,Furlan,Gehrmann,Herzog,Mistlberger 2014]

37 terms in the soft expansion [Anastasiou,Duhr,Dulat,Herzog,Mistlberger 2015]

exact qq′ [Anzai,Hasselhuhn,Höschele,Hoff,Kilgore,Steinhauser,Ueda 2015]

exact [Mistlberger 2018]
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Scale dependence

Once mH = 125 GeV and the collider energy 13 TeV are fixed, the ggH cross
section still depends on unphysical scales:

the factorization scale µF

the rinormalization scale µR

It turns out that for on-shell Higgs the dependence on the factorization scale µF is
very mild.
Conversely, the cross section depends strongly on the renormalization scale µR

→ related to a badly convergent perturbative expansion!

A common choice to improve convergence: µR = mH/2

Customarily, scale dependence is used to estimate the uncertainty from missing
higher orders (MHO), by varying the scale about the central choice by a factor of 2
up and down

μ0 2μ0μ0/2
μ

Σpert

un
ce

rta
int

y

central

value

Marco Bonvini Theory uncertainties from missing higher orders 10



Higgs cross section: perturbative (in)stability
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Computed with ggHiggs

Other codes for fixed order: ihixs, SuSHi, HIGLU, ...

Note the very asymmetric
N3LO band, due to the presence of a stationary point
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Higgs cross section: perturbative (in)stability

 0

 10

 20

 30

 40

 50

 60

 70

 80

0.25 0.5 2 0.1  1  10  100

σ
 [
p
b
]

µR/mH

mH = 125 GeV at LHC 13 TeV in the rEFT

LO
NLO

NNLO
N3LO

1/2 < µR/mH < 2

 0

 10

 20

 30

 40

 50

 60

 70

L
O

N
L
O

N
N
L
O

N
3
L
O

Higgs cross section: gluon fusion

mH = 125 GeV

LHC 13 TeV µ0 = mH

Note the very asymmetric N3LO band, due to the presence of a stationary point
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Higgs cross section: perturbative (in)stability
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Observations

The canonical scale variation uncertainty depends on the central scale, and
clearly underestimates the actual MHO uncertainty at low orders
Why should we trust it?

Moreover, what do these uncertainties mean?
LHCHXSWG interpretation: 100% c.l. flat interval
LHCHXSWG alternative interpretation: 68% c.l. gaussian interval

Either interpretation is arbitrary — no probabilistic foundation!

Perturbative corrections are large, and several orders are required to see some
convergence
Understanding the origin of these large corrections helps improving the
convergence
→ resummation of threshold logarithms
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Threshold resummation

Gluon luminosity, peaked at small x, enhances the partonic coefficient at large z

σgg = τ

∫ 1

τ

dz

z
Lgg

(τ
z

)
Cgg(z), τ =

m2
H

s

The threshold z → 1 region dominates

The partonic cross section Cgg(z) contains log(1− z) terms that are enhanced in the
threshold region

It is possible to stabilise the perturbative expansion by resumming these large logarithmic
contributions to all orders in αs (thanks to welle established techniques)

For years the LHCHXSWG recommendation was based on NNLO+NNLL’
[Catani,deFlorian,Grazzini,Nason 2003] [deFlorian,Grazzini 2012]

NNLO+N3LL’ also available dQCD: [MB,Marzani 2014] [Schmidt,Spira 2015]

SCET: [Ahrens,Becher,Neubert,Yang 2008] [MB,Rottoli 2014]

N3LO+N3LL’ most accurate result [MB,Marzani,Muselli,Rottoli 2016]
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Scale dependence with threshold resummation
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[MB,Marzani 2014]

Computed with TROLL

Other codes for threshold resummation: RGHiggs, ...
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Threshold resummed perturbative expansion
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Perturbative convergence sped up! [MB,Marzani,Muselli,Rottoli 2016]

Reduction of theory uncertainty increasing the order
Less sensitivity to central scale
More robust uncertainty estimate (probabilistic interpretation still missing...)
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Uncertainties from MHOs
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Beyond canonical scale variation

We have seen that canonical scale variation has a number of limitations:

the result depends on the central scale chosen

the variation by a factor of 2 is arbitrary

it underestimates the actual uncertainty (for ggH and other processes as well)

no probabilistic interpretation

New definition of theory uncertainties from missing higher orders:

reliable

less dependent on arbitrary assumptions

probabilistically well defined

Ideally, theory uncertainty from MHO should be a probability distribution

A probabilistic definition in this context can only be based on a Bayesian approach
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The breakthrough: the Cacciari-Houdeau model

Cacciari and Houdeau [1105.5152] proposed a probabilistic model for the interpretation
of theory uncertainties, based on the behaviour of the perturbative expansion

Σ =
∑
k

ckα
k
s

“We make the assumption that all the coefficients ck in a perturbative series share
some sort of upper bound c̄ > 0 to their absolute values, specific to the physical
process studied. The calculated coefficients will give an estimate of this c̄,
restricting the possible values for the unknown ck.”

In other words, the model assumes that

|ck| ≤ c̄ ∀k
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Figure 2: Numerical estimates of the exact densities f(�k|c0, . . . , ck) (continuous curves) and their
analytical approximations in eq. (34) (dashed curves) in the case c̄(k) = 1 for k = 0 (left), k = 1
(middle), and k = 2 (right), for ↵s = 0.5 (top row) and ↵s = 0.12 (bottom row). These numerical
estimates are computed by integrating over the distributions for 10 unknown coe�cients, the results
being stable when using more. Using values of ↵s of the order of 0.2 or 0.3 does not degrade
significantly the quality of the approximation seen here in the ↵s = 0.12 case.

where f(c̄|c0, . . . , ck) is given in eq. (30) and the f(cn|c̄) in eq. (20). Figure 2 shows the numerical
results for k = 0, 1 and 2 and the corresponding analytical approximation for f(�k|c0, . . . , ck) in
eq. (34). We can see that the agreement is extremely good, especially when small (realistic) value
of ↵s are used. We will therefore rely on the approximation of equation (33) for our predictions of
densities for �k in the rest of this paper.

3 Comparison with the conventional method

In deriving the density for �k in the previous section we made no reference to the scale variation
�k of the partial sum �k(Q, µ) which is usually employed in the conventional uncertainty estimate
[��

k ,�+
k ] of section 2.1. In order to assess the compatibility of the two methods, we now wish to

study the relation between the density for �k and an interval of the kind [��
k ,�+

k ].
Given a specific series and a set of coe�cients (c0, . . . , ck) we wish to evaluate

C(�k 2 [��
k ,�+

k ]|c0, . . . , ck) =

Z �+
k

��
k

f(�k|c0, . . . , ck) d�k (39)

and, for definiteness, we now take [��
k ,�+

k ] as the interval given by eq. (8), so that we can set

��
k = min(�k(Q, Q/2),�k(Q, 2Q)) � �k = ��

k � �k (40)

�+
k = max(�k(Q, Q/2),�k(Q, 2Q)) � �k = �+

k � �k (41)

Since the shape of �k(Q, µ), and therefore the values of ��
k and �+

k , depend on all the values of
the calculated coe�cients (c0, . . . , ck), while the density function f(�k|c0, . . . , ck) depends only on

12
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Bayesian inference

known 
orders

assumptions 
(model, priors)

hidden 
parameters

unknown 
higher 
orders

Inference scheme

Inference on the unknown coefficients ck

P (unknown ck|known ck) =

∫
dpars P (unknown ck|pars)P (pars|known ck)

in terms of the posterior distribution of the hidden parameters

P (pars|known ck) ∝ P (known ck|pars)P0(pars)

which depends on the prior distribution P0(pars) and on the model through the
likelihood P (ck|pars)

Cacciari-Houdeau: P (ck|c̄) ∝ θ(c̄− |ck|), P0(c̄) ∝ 1/c̄
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Recent progress: my proposal(s) [MB 2006.16293]

CH probabilistic framework is good (probably the only way to define
probabilistically a theory uncertainty from missing higher orders)

better model assumptions on the behaviour of the expansion

do not forget scale dependence:
as a tool, to gain further information on missing higher orders
(as in canonical scale variation)

as an issue, due to the need of choosing a scale

Model 1: 
geometric behaviour model

a unified probabilistic way 
to deal with scale 

dependence

Model 2: 
scale variation model

Other models: 
variants, combinations, ...
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New model (1): Geometric behaviour model (aka improved CH)

More general expansion

Σ = ΣLO(µ)
∑
k≥0

δk(µ) ΣLO(µ)δk(µ) = ck(µ)αks(µ)

CH model assumes that δk behave as αks

ΣLO(µ) |δk(µ)| ≤ c̄ αks

Power growth of the coefficients ck ∼ ηk is very likely:

Cacciari-Houdeau proposed a modified version with η accounted for

in [Bagnaschi,Cacciari,Guffanti,Jenniches 1409.5036] η is determined from a survey

in an alternative approach [Forte,Isgrò,Vita 1312.6688] the value of η is fitted

My proposal: geometric behaviour model

|δk(µ)| ≤ c ak

depends on two hidden parameters c, a, it accounts for a possible power growth of
the coefficients within the model
Asymmetric variant, called abc model, proposed in [Duhr,Huss,Mazeliauskas,Szafron 2106.04585]
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Constructing a “scale-independent” result

The method just described still needs to chose a renormalization scale µ: if I change
the scale, the result changes

How can we get rid of the scale?

Basic idea: treat the unphysical scale µ as a parameter of the model, and simply
marginalize over it

P (Σ|δ0, ..., δn) =

∫
dµ P (Σ|δ0, ..., δn, µ)P (µ|δ0, ..., δn)

where P (µ|δ0, ..., δn) is the posterior distribution for µ given the known orders
(which depends on the model)

The prior P0(µ) contains our prejudices on what are the most appropriate scales,
but the results are largely independent of the precise form and size of the prior
⇒ a lot of arbitrariness is removed!
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Higgs in gluon fusion at LHC: probability distributions
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Computed with THunc (see also miho)
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Higgs in gluon fusion at LHC: probability distributions
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From distributions to statistical estimators
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After marginalising over the renormalization scale
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Canonical scale variation vs Geometric behaviour model
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Canonical scale variation vs Geometric behaviour model
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Canonical scale variation vs Geometric behaviour model
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Correlations in theory uncertainties from MHOs

Correlations in theory uncertainties from MHOs are expected:

between different bins of the same observable

between different observables of the same process

between different processes (or maybe not?)

It is possible to treat them within the Bayesian model, but never done so far.

Crucial observations:

correlations from MHO are due to similarities in the form of the perturbative
expansions

in a distributions, two adjacent bins tend to be 100% correlated

in a distributions, two far bins may be characterized by very different
perturbative expansions, and so be uncorrelated ...

... unless constraints like the knowledge of the total cross section (integral of
the distribution) are present (they may also induce anti-correlations)

it is very difficult to foresee correlations among different processes, unless the
underlying mechanism for the dominant perturbative corrections is the same

certainly, scale dependence is not to be used to generate correlations between
different processes and not even different observables of the same process!
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Let’s go back to the Higgs...
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N3LO PDFs

All results presented so far were computed with NNLO PDFs

Very recently, (approximate) N3LO PDFs became available [MSHT 2022] [NNPDF 2024]
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Figure 5.4. Same as Fig. 5.1 for Higgs production in gluon-fusion and via vector-boson fusion.

they do not at NLO for VBF, nor at NLO and NNLO for associated production. The impact of using aN3LO
PDFs instead of NNLO PDFs at N3LO for NNPDF4.0 is very moderate for gluon fusion, somewhat more
significant for associated production, and more significant for VBF, in which it is comparable to the PDF
uncertainty. For MSHT20 instead a significant from using aN3LO instead of NNLO PDFs is also observed
for gluon fusion, where suppression of the cross-sections is seen when replacing NNLO with aN3LO PDFs.
This follows from the behaviour of the gluon luminosity seen in Fig. 4.19. The impact of MHOUs on the
PDFs is generally quite small on the scale of the PDF uncertainty at all perturbative orders, and essentially
absent for gluon fusion. For associated production it marginally improves perturbative convergence.

6 Summary and outlook

We have presented the first aN3LO PDF sets within the NNPDF framework, by constructing a full set
of approximate N3LO splitting functions based on available partial results and known limits, approximate
massive DIS coe�cient functions, and extending to this order the FONLL general-mass scheme for DIS
coe�cient functions. We now summarize the new PDF sets that we are releasing, our main conclusions on
their features, and our plans for future developments.

The NNPDF4.0 aN3LO PDF sets are available via the LHAPDF6 interface,

http://lhapdf.hepforge.org/ .

Specifically, we provide an aN3LO NNPDF4.0 set

NNPDF40 an3lo as 01180

that supplements the LO, NLO and NNLO sets of Ref. [37].
We also provide NLO and aN3LO NNPDF4.0MHOU sets

NNPDF40 nlo as 01180 mhou

NNPDF40 an3lo as 01180 mhou

52

The uncertainty due to missing N3LO PDFs is thus gone now

Note that PDF (and αs) parametric uncertainties are still present, but should be
updated with respect to the YR4 value ±1.56 pb
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Small-x resummation

Another resummation can be important for ggH, in the opposite regime of threshold,
i.e. at small x. It mostly affect PDFs, giving a much larger gluon at small x
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Computed with HELL [MB,Marzani 1802.07758] [MB 1805.08785]

ggH cross section at FCC-hh ∼ 10% larger than expected!

At LHC +1% effect; larger effect expected at differential level

Becomes less important for high masses (likely negligible for off-shell Higgs)
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Summary

State of the art for ggH: codes
ggHiggs

SusHi

ihixs

HIGLUE

TROLL

RGHiggs

HELL

THunc

N3LO QCD large-mt EFT

NLO QCD exact

NNLO QCD top mass corrections

NLO EW + mixed NLO QCD-EW in the EFT

N3LL threshold resummation (QCD)

LHCHXSWG YR4 recommendation (LHC13):

σ = 48.6 +2.2
−3.3 pb (theory)± 1.56 pb (PDF+αs)

Beyond YR4:

new results on mass corrections at NNLO

new results on mixed EW-QCD corrections

N3LO PDFs

threshold and small-x resummations

more robust estimates of MHO uncertainties
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Backup slides
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Quark mass effects at resummed level

Threshold resummation

Cgg(N,αs)
N→∞
= g0

(
αs,

mH
mt

, mH
mb

, . . .
)
× expS(αs, lnN)

quark mass dependence appears only in g0, and is determined by matching to fixed
order.

include in g0 all known mass dependent terms
[deFlorian,Grazzini 2012] [MB,Marzani 2014]

include only the exact top at NLL only [Schmidt,Spira 2015]

Motivation: bottom quarks generate additional logarithms in g0 that are not
resummed → fixed order treatment is preferred
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Higgs at resummed level: probability distributions
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Higgs at resummed level: probability distributions
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From distributions to statistical estimators
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From distributions to statistical estimators
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New model (2): Scale variation inspired model

Scale dependence probes higher orders... why not using it?

Idea (inspired by canonical scale variation): assume that the size of the higher order
is comparable with the size of the scale dependence

Definition: “scale dependence numbers” rk

rk(µ) '
∣∣∣∣µ d

dµ
log ΣNkLO(µ)

∣∣∣∣
measure the scale dependence of Σ

My proposal: scale variation model

|δk+1(µ)| ≤ λ rk(µ)

depends on one hidden parameter λ

Canonical scale variation is approximately recovered for λ = log 2
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Not all higher orders are good...

In figure 1, the different orders of the hadronic gluon fusion cross section for the 8 TeV

LHC and a Higgs mass of 125 GeV, along with several N3LO approximants for various

numerical values of K are plotted as a function of the renormalisation scale µr, while the

factorisation scale is fixed to µf = mh. Note that the convolutions of splitting kernels and

partonic cross sections do not enter in this plot, since they are proportional to log(µ2
f/m2

h).

The µr scale variation for LHC with 14 TeV centre-of-mass energy is shown in fig. 3. The

µf scale dependence, shown in figure 5 for 8 TeV centre-of-mass energy, is, as expected,

extremely mild, in accordance with what is observed at NNLO.
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Figure 3: Scale variation of the different orders of the gluon fusion cross section at 14 TeV.

µf is fixed to mh and only µr is varied. The scaling coefficient K is varied from 0 to 40.

Figures 2 and 4 display the overall scale dependence, with both scales set to be equal

and varied simultaneously. We note that the curves for the approximate N3LO cross

section with various Ks spread widely in the low scale region, i.e. for µ < 30 GeV. This

is not unreasonable, though, as in this regime, the unknown N3LO contributions that are

neglected become much more important due to the running of αs. Indeed, at the lowest

renormalisation scale considered, µ = mh/16 ≈ 7 GeV, the coupling becomes as big as

– 15 –

[Buehler,Lazopoulos 1306.2223]
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New model (3): Constrained scale dependence

Because rk(µ) = O(αk+1
s ), they should also behave perturbatively

Idea: require perturbativity of the rk(µ) as a model condition!

Two conditions:

|δk+1(µ)| ≤ λrk(µ)

|rk+1(µ)| ≤ ηrk(µ)

that depends on two hidden parameters λ, η

Leads to more stable and narrower results
(but the implementation is numerical, hence slow)
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Higgs in gluon fusion at LHC: probability distributions
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Higgs in gluon fusion at LHC: probability distributions
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From distributions to statistical estimators
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From distributions to statistical estimators
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Posterior distribution for the scale µ
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Posterior distribution for the scale µ
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Higgs in gluon fusion at LHC: scale independent distributions
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Higgs in gluon fusion at LHC: scale independent distributions
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Higgs in gluon fusion at LHC: final results
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How can a theory uncertainty from missing higher orders be probabilistic?

Frequentist approach to probability→ requires repeatable events→ no way...

Bayesian approach→ probability defined as the degree of belief of an “event”

Initially no information→ the probability of an event is given by a prior distribution,
which encodes our subjective and arbitrary prejudices.

Acquiring information→ changes the degree of belief through inference (Bayes
theorem), making it less and less dependent on the prior.

see e.g. G.D’Agostini, Bayesian reasoning in data analysis

“Event” means something that can happen in different ways with different
likelihoods.
In our case, the “event” is “the observable takes the value Σ”, and its probability
distribution will be a function of Σ:

P (Σ|information, hypotheses)

Information = perturbative expansion of the observable.
Bayes theorem→ improve the knowledge on the observable, namely update the
distribution of Σ.
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Model 1: Geometric behaviour model (improved Cacciari-Houdeau)

Generalized condition that accounts for a possible power growth

|δk(µ)| ≤ cak ∀k < kasympt CH:
∣∣ckαks ∣∣ ≤ c̄αks

depends on two hidden parameters c, a
It accounts for a possible power growth of the coefficients within the model!

Likelihood:

P (δk|c, a,µ) ∝ θ(cak − |δk(µ)|) =
cak-cak δk

λrk-1 δk-λrk-1

namely all values of δk within the allowed range are equally likely
Prior:

P (c, a|µ) ∝
θ(c− 1)

c1+ε
× (1− a)ωθ(a)θ(1− a), ε = 0.1, ω = 1

Inference scheme:

δ0, ..., δn︸ ︷︷ ︸
known

inference−→ c, a
inference−→ δn+1, δn+2, ...︸ ︷︷ ︸

unknown

sum−→ Σ

Final output:
P (Σ|δ0, ..., δn, µ,model1)
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Posterior of c, a for Higgs production in gluon fusion

Probability distribution of the parameters
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Higgs production in gluon fusion at LHC
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Defining a good scale-dependence estimator

I want to define a model that uses scale variation.
I need a dimensionless number (to be compared to δk) that probes higher orders:

rk(µ) '
∣∣∣∣µ d

dµ
log ΣNkLO(µ)

∣∣∣∣ = O(αk+1
s ) = O(δk+1(µ))
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Model 2: Scale variation inspired model

I propose the condition

|δk+1(µ)| ≤ λrk(µ) ∀k < kasympt

that depends on one hidden parameter λ
Canonical scale variation is approximately recovered for λ = log 2

Likelihood:

P (δk|rk−1, λ, µ) ∝ θ(λrk−1 − |δk(µ)|) =

cak-cak δk

λrk-1 δk-λrk-1

namely all values of δk within the allowed range are equally likely

Prior:
P (λ|µ) ∝ λγe−λθ(λ), γ = 1

Inference scheme:

δ0, ..., δn, r0, ..., rn−1︸ ︷︷ ︸
known

inference−→ λ
inference+rn−→ δn+1︸ ︷︷ ︸

unknown

sum−→ Σ
Nn+1LO

in this case only the first missing higher order can be predicted:

P (Σ
Nn+1LO

|δ0, ..., δn, r0, ..., rn, µ,model2)

Marco Bonvini Theory uncertainties from missing higher orders 60



Posterior of λ for Higgs production in gluon fusion
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The first non-trivial order (δ1) sets the lower limit of λ

→ stable but possibly non optimal (overestimating uncertainty)

Improvable allowing violation of the bound (see appendix B.3)
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Combining models and inventing new ones

Models can be combined together, requiring two or more conditions at the same time

So far we have seen three conditions

|δk(µ)| ≤ cak

|δk(µ)| ≤ λrk−1(µ)

|rk(µ)| ≤ ηrk−1(µ)

that are not contradictory and can thus hold at the same time

The models are implemented in a code named THunc, that provides a custom model
feature to implement any customized model

Putting all conditions together....
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Higgs in gluon fusion at LHC: probability distributions
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From distributions to statistical estimators
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The abc model [Duhr,Huss,Mazeliauskas,Szafron 2106.04585]

It’s a generalisation of the geometric behaviour model,

geo: |δk(µ)| ≤ cak abc : −c+ b ≤
δk(µ)

ak
≤ c+ b

depends on three hidden parameters a, b, c
They keep requiring |a| ≤ 1, but the sign can be negative (to describe alternating
sign series)
Moreover the b parameter accounts for asymmetric behaviour

Comparison for
∑
k≥0

xk, x = 0.7
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Figure 3. Top left panel: The probability distribution from the abc-model for Sest
n+1 for different

values of n for the geometric series with x = 0.7. Top right panel: The same as the left panel, but we
show the probability for the scaled deviation from the known correction (Sest

n+1�Sn+1)/|Sn+1�Sn|.
Bottom left panel: The median (plus), 68% CI (errorbox) and 95% CI (errorbar) for the posterior of
Sest

n+1 , computed from the abc (blue) and geometric (red) models using information on the previous
orders. The exact values of Sn are shown as black circles. Bottom right panel: The same as the
left panel, but the exact Sn value is subtracted from Sest

n+1 and the difference is normalised by
|Sn+1 � Sn|.

distribution Pabc(�n) analytically in terms of Gauss’ hypergeometric function, allowing for
a fast and efficient numerical implementation of the model.

In the top left panel of figure 3 we show the probability distributions for the partial
sums Sn :=

Pn
k=0 �k =

Pn
k=0 xk for x = 0.7 and n  7 using the abc-model with parameter

values (✏,!, ⇠, ⌘) = (0.1, 1, 2, 0.1) (see the discussion below for the choice of these values).
For n = 0, the probability distribution is symmetric and centred around S0 = 1. For
n > 0 the distributions are clearly not symmetric and become more and more peaked
as n increases. In the top right panel we show the probability distributions for the scaled
deviation from the known correction (Sest

n+1�Sn+1)/|Sn+1�Sn| = (�est
n+1��n+1)/|�n+1|. This

allows us to compare different orders without the suppression of the expansion parameter.
In this plot the Sn+1 value corresponds to zero on the x-axis, while Sn corresponds to ±1

(depending on the sign of �n+1). Again, for n = 0 the distribution is centred around the
initial value S0, but for each subsequent order, the distribution shifts towards the true value.
We note that the shape of the distribution does not change significantly beyond n = 3, so

– 19 –

Note: I have proposed a different way to account for a sign pattern, which can be
applied to any symmetric model (app. B.5)
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Validation using known sums
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Scan of priors for the scale µ
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Scan of priors for the model parameters
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Explicit inference procedure in Cacciari-Houdeau

Probability of a missing higher order coefficient ck given the knowledge of the first
c0, ..., cn orders

P (ck|c0, ..., cn) =
P (ck, c0, ..., cn)

P (c0, ..., cn)
(k > n)

=

∫
dc̄ P (ck, c0, ..., cn, c̄)∫
dc̄ P (c0, ..., cn, c̄)

=

∫
dc̄ P (ck, c0, ..., cn|c̄)P0(c̄)∫
dc̄ P (c0, ..., cn|c̄)P0(c̄)

=

∫
dc̄ P (ck|c̄)P (c0|c̄) · · ·P (cn|c̄)P0(c̄)∫

dc̄ P (c0|c̄) · · ·P (cn|c̄)P0(c̄)

having used

P (A,B) = P (A|B)P (B), P (A) =

∫
dB P (A,B)

The probability for the full observable is given by

P (Σ|c0, ..., cn) =

∫
dcn+1dcn+2 · · · P (cn+1, cn+2, ...|c0, ..., cn)δ

(
Σ−

∞∑
k=0

ckα
k
s

)
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